10

11

12

13

14

15

16

17

18

19

20

21

22

23

Geophysical characterisation of the groundwater-surface water interface

P.J. McLachlan'*, J.E. Chambers?, S. S. Uhlemann?3, A. Binley?

1 - Lancaster Environment Centre, Lancaster University, Lancaster, UK

2 — Geophysical Tomography Team, British Geological Survey, Nottingham, UK

3 — ETH Zurich, Institute of Geophysics, Zurich, Switzerland

* Corresponding author: P. J. McLachlan, p.mclachlan@Iancaster.ac.uk

Abstract

Interactions between groundwater (GW) and surface water (SW) have important implications for
water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies,
the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and
water between GW systems and SW environments. However, geological, hydrological, and
biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct
observations. Over the past two decades geophysics has been increasingly used to characterise
spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in
evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological
processes. Geophysics should be used alongside traditional hydrological and biogeochemical
methods to provide additional information about the subsurface. Further integration of commonly
used geophysical techniques, and adoption of emerging techniques, has the potential to improve
understanding of the properties and processes of the GW-SW interface, and ultimately the

implications for water quality and environmental health.
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1. Introduction

It is widely recognised that groundwater (GW) and surface water (SW) form a continuum and are not
isolated components (Winter et al., 1998; Malard et al.,, 2002; Sophocleous, 2002). GW-SW
interactions have significant implications for water quantity, water quality, and health of aquatic
ecosystems, at site to catchment scales (Winter et al., 1976; Stanford and Ward, 1993; Findlay, 1995;
Boulton et al., 1998; 2010; Buss et al., 2009; Harvey and Gooseff, 2015). For instance, contaminated
GW discharge can degrade streams, lakes, deltas and wetlands, and associated habitats; conversely
GW discharge may also supply vital nutrients and act as a thermal buffer to maintain ecological
function (Power et al. 1999; Hayashi and Rosenberry 2002; Marzadri et al., 2013a, b). Over-
abstraction of GW can also result in the redistribution or disappearance of SW resources (Winter et

al., 1998), and in coastal regions, the contamination of fresh water aquifers (Ingham et al., 2006).

The transition zone between SW environments and GW systems, the GW-SW interface, is important
as it governs the exchange of water, nutrients, and pollutants (Buss et al., 2009; Kalbus et al., 2006;
Fleckenstein et al., 2010; Lin et al., 2010; Lansdown et al., 2015). Despite conceptually representing
an interface, the term GW-SW interface is commonly used to describe alluvial sediments proximal to
SW bodies, e.g. stream beds, lake beds, riparian zones, and flood plains. Therefore, it typically has
vertical extents up to several metres and horizontal extents on the order of hundreds of metres. It is
important to note here that the term GW-SW interface is not synonymous with the hyporheic zone
(HZ). Particular interest has been given to the HZ because of its role in biogeochemical cycling;
however its definition is ambiguous and discipline dependent (Stanford and Ward, 1988; Triska et
al., 1989; Tonina and Buffington, 2009; Boulton et al., 2010; Ward, 2016; Hester et al., 2017). It is

perhaps best described as the region of the GW-SW interface that occurs non-continuously in both
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space and time, and permits the residence of both GW and SW (e.g. Gooseff, 2010). The HZ is
therefore not ubiquitous, as is commonly assumed and is often limited to narrow zones (Hester et
al., 2013; 2017). The physical dimensions of the hyporheic zone are also difficult to define, however,
the majority of HZ studies focus on lateral scales of 1-10 m and vertical scales of <1 m (Ward, 2016).
Although traditionally used to refer to mixed regions in the vertical vicinity of rivers, there has been
the tendency to group the HZ with GW-SW mixing in lateral to SW bodies, e.g. the riparian zone,
with regions being referred to as fluvial HZs zones and floodplain HZs (Mitsch, 1992; Gilliam, 1994;

Edwards, 1998; Tonina and Buffington, 2009; Boano et al., 2014)

There are numerous established methods that exist for characterisation of the GW-SW interface
(Cook and Herczeg, 2000; Stonestrom and Constantz, 2003; Bridge et al., 2005; Greswell et al., 2005;
Kalbus et al., 2006; Rosenberry and LaBaugh, 2008; Fleckenstein et al., 2010). However, despite
providing direct measurements, use of piezometers, seepagemeters, and boreholes may be limited
by site conditions, environmental protection, or installation costs. In this way information may be
spatially limited and not representative. Conversely, tracer experiments (e.g. Findlay et al., 1993;
Triska et al., 1993; Harvey et al., 1996; Harvey and Fuller, 1998; Gonzalez-Pinzén et al., 2015; Xie et
al., 2016) provide information that is averaged over larger volumes and therefore may fail to
characterise spatial heterogeneity, e.g. identifying low mobility and high mobility zones in the

subsurface (Singha et al., 2008).

In the past two decades, near surface geophysics has been increasingly used in characterisation of
the GW-SW interface, in addition to other environmental applications (Binley et al., 2015; Parsekian
et al., 2015; Singha et al., 2015). Geophysical techniques are sensitive to geophysical properties of
the subsurface and hence act as proxies for geological, hydrological, and biogeochemical
parameters. It is important to note that while advances in geophysical instruments and subsequent
modelling have allowed for more reliable data interpretation, geophysical data can still be

ambiguous and often special consideration is required for the deployment of geophysical tools in
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different settings. Nonetheless, geophysical tools offer the unprecedented opportunity to
characterise subsurface parameters at vertical scales of centimetres to hundreds of metres,
horizontal scales of metres to hundreds of metres, and temporal resolutions of minutes to hours.
Furthermore, given that multidisciplinary research has been essential in GW-SW interface research
(Newbold, 1982; Bencala, 1984; Valett et al., 1993; Sophocleous, 2002; Wojnar et al., 2013; Ward,
2016), the wider application of geophysical tools would be beneficial. However, it is essential that
geophysics is used to address hydrogeological or biochemical problems, rather than hydrogeological

or biogeochemical solutions being used to explain geophysical results.

This review focuses on various geophysical tools relevant to characterising properties and processes
of the GW-SW interface. In this review, the GW-SW interface and GW-SW interactions are first
considered, common geophysical approaches are outlined, various geophysical applications are then
reviewed, and finally, avenues of future research are discussed. Although important in governing
zones of GW-SW interaction, more general geophysical studies investigating properties of the
bedrock aquifers are not included here, but have been the subject of a number of reviews (e.g.
Rubin and Hubbard, 2005; Linde et al., 2006; Singha et al., 2007; Holliger, 2008; Hubbard and Linde,
2011; Binley et al.,, 2015; Singha et al.,, 2015; Boago, 2017). However, large scale airborne
geophysical studies, which typically sense to depths of tens to hundreds of metres, are considered as
they have the potential to provide a large scale context for processes occurring across the GW-SW
interface. These applications fit well into the requirements of GW-SW interactions to be considered

at catchment scales (Kaika, 2003; Buss et al., 2009; Harvey and Gooseff, 2015).

2. The Groundwater-surface water interface

The GW-SW interface is subjected to exchanges spanning multiple spatial scales (Toth, 1963;
Woessner, 2000). At large scales, GW flow paths are principally influenced by hydrostatic forces
arising from topography and geology, and occur on scales of metres to hundreds of kilometres (Téth,

1963; Freeze and Witherspoon, 1967; Winter et al., 1998). On smaller scales, flow paths originating
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in the SW may temporarily enter the subsurface and allow for GW-SW mixing. These flow paths are
commonly referred to as hyporheic exchange flows (HEFs) and are principally governed by
geomorphological features (Elliot and Brooks, 1997; Kaser et al., 2009; Boano et al., 2014; Hester et
al., 2017). HEFs are generally reported to be driven by hydrodynamic forces induced by sand dunes,
and cobbles at millimetre to centimetre scales or by hydrostatic forces generated by pool-riffle
sequences, sediment bars, meanders, and riparian zones at metres to tens of metres (Harvey et al.,
1996; Woessner, 2000; Lautz and Siegel, 2006; Tonina and Buffington, 2007; 2009; Kaser et al., 2009;
2013; Stonedahl et al., 2010; 2013; Boano et al., 2014). In this way, hydrological pathways are
typically viewed as being nested within in each other (Figure 1). In reality, this distinction is
somewhat arbitrary as HEFs have been stated to occur laterally over hundreds of metres (Boano et
al., 2014). Ideally, the point at which the water originating from SW more closely resembles the GW
is the point at which it becomes groundwater recharge regardless of where and when it returns to

the surface.
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Figure 1: (a) Various scales of groundwater flow paths and their relation to (b) macro-scale and (c)
micro-scale exchanges in a fluvial and floodplain hyporheic zones (after Téth, 1963; Winter et al.,

1998; Stonedahl et al., 2010).

The GW-SW interface is also influenced by temporal variability across scales of milliseconds to years.
For instance, turbulent flow in rivers can drive GW-SW mixing within several millimetres of the
sediment-water interface on timescales of milliseconds to seconds (Menichino and Hester, 2014;
Chandler et al.,, 2016). On larger timescales, periodic variations in precipitation, snowmelt,
evapotranspiration, and flood pulses can modify, or reverse, GW-SW interactions (Boano et al.,
2008; Loheide and Lundquist, 2009; Wondzell et al., 2010; Larsen et al., 2014; Zimmer and Lautz;
2014; Dudley-Southern and Binley, 2015; Malzone et al.,, 2016; Schmadel et al.,, 2016). GW-SW
interactions can also be influenced by waves and tides (Harvey et al., 1987; King et al., 2009;
Bianchin et al., 2011), or driven by density contrasts (Musgrave and Reeburgh, 1982; Webster et al.,

1996; Boano et al., 2009).

Properties and processes of the GW-SW interface are therefore highly spatially and temporally
heterogeneous. Heterogeneity in alluvial deposits can influence permeability, dispersivity,
subsurface residence times, and zones of GW-SW exchange. Also bedrock aquifers can dictate
whether interaction are localised (e.g. in fractured or karstic settings) or distributed (e.g. in clastic
aquifers), and consequently they influence hydrological and biogeochemical conditions at the GW-
SW interface (Nagorski and Moore, 1999; Gandy et al., 2007; Kennedy et al., 2009). Temporal
variability in hydrostatic forces can influence locations and timings of GW-SW interactions, the
interaction of GW discharge and HEFs, and consequently biogeochemical reactions (Boano et al.,
2014). Biogeochemical properties, such as cation exchange capacity, redox gradients, and thermal
gradients, have long been known to be important (Bencala et al., 1984; von Gunten et al., 1991;
Winter et al., 1998; Power et al., 1999) but are highly variable, making it difficult to predict pollutant

attenuation and nutrient cycling. Furthermore, there have been a limited number of investigations
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into HZ and GW-SW interface processes across different orders of streams and their relevance to the
catchment (e.g. Gomez-Velez and Harvey, 2014; Kiel and Cardenas, 2014; Marzadri et al., 2017).
Therefore, field methods that provide spatially and temporally complete data sets about geological,
hydrological, and biogeochemical information at site to catchment scales are required (Buss et al.,

2009; Boano et al., 2014; Harvey and Gooseff, 2015; Ward et al., 2016; Hester et al., 2017).

3. Geophysical approaches

The general premise of geophysics is to obtain information about the geophysical properties of the
subsurface to infer information about geological, hydrological, and biogeochemical properties
(Binley et al., 2015). Geophysical properties can be interpreted using petrophysical models,
calibration with other methodologies (both non-geophysical and geophysical), and analysis of
temporal data sets of dynamic processes. Geophysical techniques considered here are electrical
resistivity (ER), induced polarisation (IP), self-potential (SP), electromagnetic induction (EMI), ground
penetrating radar (GPR), and seismic methods (Table 1). Furthermore, forward, inverse, and
petrophysical modelling are also briefly discussed due to their importance in data interpretation.
Fundamental geophysical theory (e.g. Telford et al., 2010) is beyond the scope of this section, and
instead focus is given to the basic principles of field and modelling techniques. Applications of
temperature sensing in GW-SW interface studies are also beyond the scope of this review
(Stonestrom and Constantz, 2003; Irvine and Lautz, 2015; Hare et al., 2015; Irvine et al., 2016;

Wilson et al., 2016).

Table 1 — Geophysical techniques and the parameters which they relate to. Rough indications of
investigation depths and temporal resolution are also included. In practice, terrestrial surveys
typically involve horizontal scales of metres to hundreds of metres, whereas for waterborne and
airborne surveys, horizontal extents may be metres to tens of kilometres and hundreds of metres to

hundreds of kilometres, respectively.
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Geophysical Technigue

Electrical Resistivity

Induced Polarisation

Spectral Induced
Polarisation

Self-Potential

Electromagnetic Induction

Ground Penetrating Radar

Seismic

Geophysical Properties

Electrical Conductivity

Electrical Conductivity,
Chargeability

Electrical Conductivity,
Chargeability (with
Frequency Dependency)
Electrical Potential
Electrical Conductivity
Dielectric Permittivity,

Electrical Conductivity

Bulk Density, Elastic

E les of Derived Envir

‘Water Content, Clay Content, Pore Water
Conductivity, Porosity, Stratigraphy

Water Content, Clay Content, Pore Water
Conductivity, Surface Area, Permeability,
Stratigraphy

‘Water Content, Clay Content, Pore Water
Conductivity, Surface Area, Permeability,
Stratigraphy

Hydrological Flux, Per

bility, Redox Gradients

‘Water Content, Clay Content, Salinity

Water Content, Porosity, Stratigraphy

Porosity, Stratigraphy

Typical | igati

Metres to Tens of Metres

Metres to Tens of Metres

Metres to Tens of Metres

Metres

Metres to Hundreds of
Metres

Metres to Tens of Metres

Metres to Tens of Metres

Depths

Typical Acquisition Time for
100 m Transect
Tens of Minutes

Tens of Minutes to Hours

Tens of Minutes to Hours

Seconds to Minutes

Seconds to Minutes

Minutes to Tens of Minutes

Tens of Minutes

Moduli

3.1. Electrical resistivity

ER methods are used to determine subsurface electrical resistivity by injecting low frequency (<1
kHz) electrical currents into the ground with two current electrodes and measuring the resultant
voltage between two or more potential electrodes (Binley, 2015). ER methods are typically minimally
invasive as they commonly involve placing stainless steel electrodes several centimetres into the
subsurface, however, in some cases borehole ER is used for enhanced characterisation (e.g. Slater et
al., 1997; Crook et al., 2008; Wilkinson et al., 2010; Coscia et al.,, 2011; 2012). In environmental
applications the ER signal is typically dependent on the characteristics of the pore fluid and grain-
fluid interface (Glover, 2015). Modern ER instruments are capable of systematically using different
combinations of electrodes arranged in lines or grids to image the subsurface in 2D or 3D surveys
(Loke et al., 2013). These types of surveys are often referred to as ER imaging (ERI) or ER
tomography (ERT). In addition to 2D and 3D surveys, temporally distributed measurements can be
used to monitor dynamic processes (e.g. Ward et al., 2010a; Johnson et al., 2012; Uhlemann et al.,

2016).

3.2. Induced polarisation

IP methods are effectively an extension of ER methods and use low frequency (<1 kHz) currents to

assess the capacitive properties of the subsurface (Binley, 2015). The IP signal typically arises due to
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the temporary accumulation of ions in porous media following the injection of an electric current
(Kemna et al., 2012). Whereas the ER signal is dependent on the properties of both the pore fluid
and the porous media, the IP signal is more closely associated with the properties of the grain-fluid
interface (Revil et al., 2012). IP can therefore provide information about lithological properties with
minimal interference from pore water conductivity (Vinegar and Waxman, 1984; Kemna et al., 2000;
Lesmes and Frye 2001; Weller et al., 2013; Glover, 2015). As with ER methods, IP measurements can
be made using two current electrodes and two potential electrodes. Modern multichannel systems
permit the use of multiple potential dipoles simultaneously in an array to record the full-waveform
of the IP signal. Induced polarisation can be conducted in either the time or the frequency domain
(Revil et al., 2012). Time domain IP methods involve injecting a direct electrical current between the
current electrodes before abruptly switching it off and measuring the voltage decay over a specific
time interval between the potential electrodes. Frequency domain IP involves injecting alternating
electrical currents and measuring the impedance and the phase lag of the current and voltage
waves. Frequency domain IP methods can also be carried out using multiple frequencies to assess
the frequency dependent impedance and phase shift between injected current and measured

voltage, this is typically referred to as spectral IP (SIP).

3.3. Self-potential

Unlike ER and IP methods, SP methods are passive in that they measure naturally occurring voltages
within the subsurface (Jackson, 2015). The SP method is relatively simple in that voltages can be
measured using non-polarising electrodes and a high impedance voltmeter (Minsley et al., 2007).
Non-polarising electrodes are required to minimise polarisation at the electrode interface and a high
impedance voltmeter is required to avoid drawing current from the ground. Under natural
conditions the SP signals arise from electro-kinetic, electro-chemical and thermo-electric effects
(Wynn and Sherwood, 1986; Revil et al.,, 2012; Jackson, 2015). The electro-kinetic effect, or

streaming potential, arises from the advective transfer of excess charges through porous materials
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(Rizzo et al., 2004). The electro-chemical effect originates from the presence of ion and electron
concentration gradients, such as those resulting from redox conditions (Sato and Mooney, 1960;
Revil et al., 2010). The thermo-electric effect is caused by the differential thermal diffusion of ions in

the pore fluid and donor electrodes in porous media (Wynn and Sherwood, 1986).

3.4. Electromagnetic induction

Whereas ER, IP, and SP use low frequency (<1 kHz) electrical currents, electromagnetic methods (e.g.
EMI and GPR) use higher frequency signals to induce electromagnetic effects in the subsurface. EMI
instruments operate in either the frequency domain (FD-EMI) or the time domain (TD-EMI) and use
primary and secondary coils to determine subsurface electrical conductivity and magnetic
susceptibility (Everett and Meju, 2005; Fitterman, 2015). In FD-EMI systems a primary current with a
specific angular frequency is generated in the primary coil; this induces a primary magnetic field that
is out-of-phase with the initial current. The primary magnetic field creates an electromagnetic force
that induces eddy currents in the subsurface and a consequent secondary magnetic field. The
secondary magnetic field is detected by the secondary coil and is used to infer information about in-
phase and out-of-phase components of the subsurface electrical properties. In TD-EMI systems, a
current is typically passed around the primary coil before it is abruptly switched off. This current
generates a primary magnetic field which induces an electromagnetic force, both of which are in-
phase with the primary current. The electromagnetic force generates eddy currents that decay by
ohmic dissipation following termination of the primary current. The decay of the eddy currents
produces a secondary magnetic field and its rate of change through time is measured by the
secondary coil to infer subsurface conductivity (Nabighian and Macnae, 1991). Modern FD-EMI
instruments contain multiple secondary coils and can be used to detect information from several
depths simultaneously. EMI systems have advantages over electrical methods in that they do not
require contact with the subsurface, allowing for easier usage in waterborne or airborne surveys

(e.g. Butler et al., 2004; Binley et al., 2013; Harrington et al., 2014).
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3.5. Ground penetrating radar

As with EMI, GPR methods use electromagnetic signals to assess subsurface properties. However the
frequencies used in GPR are higher (10 MHz to 2 GHz), such that the signal travels by wave
propagation, rather than by diffusion. In GPR systems a high frequency signal is emitted into the
subsurface via a transmitter antenna before it travels to the receiver antenna, e.g. by reflection from
an interface of contrasting electrical properties (Annan , 2005; Huisman et al., 2013; van der Kruk,
2015). The amplitudes and travel times of the returning waves are then used to determine dielectric
properties and locate boundaries in the subsurface. Field studies often involve time domain GPR
systems and typically use frequencies between 50 and 500 MHz. Frequency domain systems are also
available, and in some cases using wider bandwidth permits more accurate modelling of the
subsurface (Lambot et al., 2004; 2006). The depth of penetration of the signal is dependent upon the
electrical conductivity of the subsurface and the frequencies used. Due to frequency dependent
attenuation mechanisms, higher frequencies do not penetrate to as great depths but generally
permit higher resolution images. Furthermore, highly electrically conductive environments may

attenuate the signal and reduce the penetration depth.

3.6. Seismic methods

Seismic methods operate in a similar fashion to GPR but use the propagation of acoustic energy to
infer information about the mechanical properties of the subsurface (Steeples, 2005; Schmitt, 2015).
Seismic surveys can be conducted by generating waves with an acoustic source (e.g. a
sledgehammer). When these waves reach boundaries of contrasting mechanical properties, some
energy reflects off the boundary and some energy refracts along the boundary. Returning seismic
waves are detected by a series of receivers (geophones) on the surface and can be used to calculate
seismic wave velocity, mechanical impedance, elastic moduli, and determine the locations of

structural boundaries.



253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

3.7. Geophysical modelling

Forward modelling is used to calculate the data that would theoretically be observed for a given
distribution of geophysical properties. The underlying principles of geophysical methods are well
understood, so the creation of synthetic data sets from a model of geophysical properties is straight
forward (Binley, 2015). Forward modelling serves two key purposes: (1) to aid survey design and (2)
to assist in inversion and interpretation of data. For instance, different geophysical methods and
measurement schemes have different strengths and weaknesses. Therefore, by making reasonable
estimates of the subsurface properties, the usefulness of a geophysical technique can be assessed
prior to its deployment (Terry et al., 2017). Forward modelling may also be useful in guiding
interpretation of unusual features, and prior to sufficient computational power, geophysical data
was often interpreted by comparing data with forward models, such as ER sounding curves (Loke et

al., 2013).

Inverse modelling is the process of determining the distribution of subsurface geophysical properties
based on observed geophysical data and any prior information. The principles of geophysical
inversion are beyond the scope of this paper but information can be found elsewhere (e.g. Aster et
al., 2005; Tarantola, 2005; Menke, 2012; Linde et al., 2015). The majority of inverse problems are
non-unique in that there can be an infinite number of solutions for one geophysical data set. In
order to constrain the inversions, regularisation may be used to introduce assumptions to prevent
over fitting of data and encourage unique solutions, e.g. lateral smoothing in stratified deposits
(Constable et al., 1987; Tarantola, 2005). Moreover, uncertainty can further be reduced by carrying
out joint or coupled inversions. In hydrogeophysics, joint inversions involve incorporation of various
geophysical and hydrogeological data sets (e.g. Linde et al., 2006; Herckenrath et al., 2013) while
coupled inversions model geophysical data within the bounds of prior hydrological models (e.g.

Hinnell et al., 2010; Huisman et al., 2010).
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In order to be of use in hydrogeology, geophysical models are often interpreted in terms of
geological, hydrological, or biogeochemical parameters. Although geophysical data can be
interpreted qualitatively (e.g. by locating contrasts in geophysical properties), by monitoring
dynamic processes (Johnson et al., 2012; Singha et al., 2015), or through combination with other
methods (e.g. Day-Lewis and Lane, 2004; Moysey et al., 2005; Huisman et al., 2010; Miller et al.,
2014), petrophysical relationships are commonly used. Petrophysical relations can be used in joint
inversions to relate two independent geophysical methods (e.g. Hoversten et al., 2006; Zhang and
Revil, 2015) or after geophysical inversion to translate geophysical data. Although mechanistic
models exist (e.g. Leroy and Revil, 2009; Montaron, 2009, Revil et al.,, 2012), the majority of
petrophysical models used are semi-empirical or empirical. For instance, models have been
developed to relate electrical conductivity and porosity (Archie et al., 1942; Waxman and Smits,
1962), to link water content with dielectric permittivity (Topp et al., 1980), to interpret and IP
responses with surface area, grain size, and permeability (Vinegar and Waxman, 1984; Borner and
Schon, 1991; Slater and Lesmes, 2002; Binley et al., 2005; Slater et al., 2007; Weller et al., 2013;
2015a, b, c). It is also important to note that temperature has significant influence on electrical
conductivity, and as a result, ERI monitoring studies are often corrected for temperature (e.g. Brunet

et al 2010; Chambers et al 2014a; Uhlemann et al., 2016).

4. Geophysical characterisation of groundwater-surface water interactions

Geophysical applications to characterise properties and processes at the GW-SW interface can be
split into three principle areas: (1) characterising subsurface structure, (2) mapping zones of GW-SW
connectivity, and (3) monitoring hydrological processes. Whereas structural characterisation and
GW-SW exchange mapping have included studies at site and catchment scales, monitoring dynamic
processes has been conducted solely at site scales. In this section various geophysical applications

relevant to characterising the GW-SW interface are discussed. The majority of studies have focused
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on freshwater streams and rivers; however, studies have also been conducted in wetlands, deltas,

and lakes.

4.1. Structural characterisation

Structural characterisation is essential as the structure governs hydrological properties and
subsequent processes. Although minimally intrusive, calibration of geophysics with intrusive
methodologies is often required to interpret geophysical information (e.g. Zhou et al., 2000;
Chambers et al., 2014b). Also, in some cases borehole methods involving ERT, IP, GPR, or seismic
methods may be used for increased resolution of the deeper subsurface (e.g. Slater et al., 1997,
Huisman et al.,, 2003; Kemna et al., 2004; Crook et al., 2008; Dorn et al., 2011). Nonetheless,
geophysical methods provide a level of resolution that would be unachievable through use of point

measurements alone.

4.1.1. Small scale structural characterisation

Several applications have used geophysics to characterise subsurface structure at the Hanford
Nuclear Site (Washington, US) to assess pollution pathways to the Columbia River (Johnson et al.,
2015). For example, Slater et al. (2010) used waterborne ERI and IP surveys to determine the contact
depth of a high permeability unit and low permeability sections of the underlying unit. Depressions
in the contact interface were interpreted to be palaeochannels, and were shown to be areas of GW
discharge by using distributed temperature sensing. Land-based IP surveys were also conducted at
the site and were effective in revealing contrasts between the two units and locating palaeochannels
(Mwakanyamale et al., 2012). The locations of these palaeochannels were also in agreement with
later studies that used temporally distributed ERI to monitor GW-SW interactions (Johnson et al.,
2012; Wallin et al., 2013) as discussed in section 4.3. Also at the Hanford Site, Williams et al. (2012a-

d) used seismic surveys over several tens of kilometres to interpolate the sandstone-basalt interface
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between boreholes. They identified significant lows in the contact and determined additional

potential pollution pathways to the Columbia River.

A number of geophysical studies have also been conducted at a riparian wetland (Boxford, UK).
Crook et al. (2008) used surface and down borehole ER methods to reveal geological boundaries
beneath the neighbouring River Lambourn. In the wetland, Chambers et al. (2014b) used ERI, soil
probing and borehole data to characterise the 3D structure of the subsurface. They identified
different superficial deposits, determined the depth to the chalk bedrock, and identified the
weathering profile within the chalk, all of which are likely to have important hydrological
implications (Figure 2). Loke et al. (2015) compared a standard ERI Wenner array and an optimised
array and found that the optimised array was able to locate geological interfaces with greater
accuracy. In another study, surface GPR revealed that the gravels subdivide into a lower section of
chalky gravels and an upper section of coarse flint gravel (Newell et al., 2015). The study also found
that gravels below a depth of 2 m were relatively structureless whereas the shallower gravels
displayed potential point bar lateral accretion surfaces in association with the peat channels. The
deposit architecture and the presence of low permeability weathered chalk are likely to have
important implications for the hydrology of the site, with the superficial deposits perhaps creating

direction dependent permeability.
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Figure 2: 3D resistivity model of the Boxford riparian wetland. Solid volumes are shown for regions
with resistivities of less than 50 Ohm.m in blue (peat) and with resistivities greater than 150 Ohm.m

in orange (gravel) (Chambers et al., 2014b).

Geophysics has also been employed successfully for site scale structural characterisation in a variety
of other settings. Crook et al. (2008) used ERI to evaluate the structure and volume of alluvial
deposits in Oregon (US), highlighting how it could be used to provide valuable information to model
biogeochemical exchange. In comparison, Mermillod-Blondin et al. (2015) characterised alluvial
structure using GPR in the Rhone River (Lyon, France). They identified two lithofacies and installed
piezometers to monitor hydraulic head and temperature. Samples were also taken to assess water
chemistry, sedimentology, and bacterial and invertebrate assemblages. They found that HEFs were

faster in the cobble/gravel facies than the gravel/sand facies, and that faster flow led to a greater
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delivery of organic carbon and an increase in microbial activity. Revil et al. (2005) demonstrated how
ERI can be used to determine the 3D geometry of a palaeochannel and show that SP can be used to
determine preferential flow paths (Camargue, France). As well as constraining geological boundaries,
geophysics has been used to enhance the spatial extent of hydrological information. For example,
Miller et al. (2014) used ERI and permeameters to characterise broad scale hydrological patterns in
several alluvial floodplains in Oklahoma, US. Several studies have also indicated how multiple
geophysical techniques can be used to more accurately characterise the subsurface structure (e.g.
Gallardo and Meju, 2004; Glinther and Rucker, 2006; JafarGardomi and Binley, 2013). For instance,
Doetsch et al. (2012a) and Zhou et al. (2014) were able to improve structural characterisation at the

Thur River, Switzerland by structurally guiding ERI inversion with GPR data.

Although the majority of structural studies provide static images of the system, SW systems,
particularly rivers, are characterised by dynamic erosional and depositional patterns. This dynamic
nature is known to have important hydrological and biogeochemical implications for processes in
the GW-SW interface (Elliot and Brooks, 1997; Packman and MacKay, 2003; Harvey et al., 2012).
Although the dynamic nature of the GW-SW interface has not been investigated using geophysics,
these issues are also important in civil engineering applications. The modification of flow velocities in
rivers due to bridges can lead to scouring and undermining of foundations (Anderson et al., 2007).
Several methods (e.g. echo sounding, intrusive measurements, bulk electrical conductivity probes)
have been used to assess changes in channel bed geometry (Prendergast and Gavin, 2014).
However, GPR and seismic methods have been particularly useful as they can provide information
about the channel geometry and sediment structure beneath the sediment-water interface without

the need for intrusive measurements (Webb et al., 2000; Prendergast and Gavin, 2014).

4.1.2. Large scale structural characterisation

Large scale structural characterisation has typically used airborne TD-EMI (AEM) in association with

other data sets. Harrington et al. (2014) used AEM, geological maps, and environmental tracers to
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infer aquifer architecture beneath a large river in north-western Australia at the catchment scale
(Figure 3). They postulated zones of GW discharge which could be useful in targeting sites for future
investigation. AEM has also been used alongside geological mapping data to reveal sedimentary
structures and faults (Jgrgensen et al., 2012), with ERI to reveal geological variability in deltaic
deposits (Meier et al., 2014), with borehole data to identify hydrofacies in glacial deposits (He et al.,
2014), with seismic reflection to identify the bedrock-superficial interface (Oldenborger et al., 2016)
and with modelling to aid in predicting nitrate reduction at catchment scales (Refsgaard et al., 2014).
Although AEM dominates regional scale geophysical surveys, other techniques have also been used.
Froese et al. (2005) used ERI and GPR at 20 to 40 km intervals, along with lithological descriptions of
bank cuttings to characterise alluvial deposits along a 1000 km reach of the Yukon River (N.
America), and Ball et al. (2006) used waterborne ERI and geological borehole data to characterise
leakage potential in the Interstate and Tristate Canals (US). Columbero et al. (2014) also used
waterborne ERI surveys to characterise the structure of a glacial lake (NW Italy). They identified an
area where the lake silts had reduced thickness, and found that this region coincided with

anomalous SP signals. They tentatively suggest SP can be used to locate zones of GW discharge.
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exaggerated with a V:H ratio of 1:100 (Harrington et al., 2014).
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4.2. Mapping zones of groundwater-surface water exchange

A principle consequence of structural heterogeneity is that it generates variability in GW-SW
connectivity. Identification of zones of enhanced GW-SW connectivity is important for informing
water management and locating areas of potential environmental significance (Buss et al., 2009;
Binley et al., 2013). Methods for assessing spatial variability in GW-SW exchange (e.g. seepagemeters
and piezometers) can be labour intensive to install. Several geophysical applications have
demonstrated how geophysics can exploit the contrasts in electrical and thermal properties of SW
and GW to identify areas of GW-SW interaction at site to catchment scales more quickly. In this way
geophysics can be used as a reconnaissance tool for identifying important areas for further study or

as an additional data source to extrapolate information between traditional measurements.

4.2.1. Local scale mapping of groundwater-surface water interactions

Although contrasts in the electrical properties of GW and SW are relatively small in freshwater
environments, several geophysical studies have been successful in revealing areas of GW-SW
exchange. For instance, Mansoor et al. (2006; 2007) used waterborne ERI to detect locations of
elevated pore water conductivities within an urban wetland which arose due to leaching from
marginal landfill sites during rainfall events. Nyquist et al. (2008) mapped locations of GW-SW
exchange within a stream section at metre-scale resolution by comparing 2D ERI sections collected at
high and low stage. Differences in the inverted models were interpreted as zones of GW-SW
exchange; these zones correlated with the thinning of a clay layer located beneath a carbonate
aquifer and the overlying alluvium. FD-EMI methods have also been used to reveal contrasts in
electrical conductivity and locate zones of GW-SW connectivity. Butler et al. (2004) used FD-EMI and
seismic methods to locate a clay aquitard and the extent of a clay window recharge zone. Binley et al.
(2013) used waterborne FD-EMI surveys alongside piezometric data and chemical sampling (Heppell

et al., 2014) to reveal spatial variability in GW discharge. Areas of high electrical conductivity were
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correlated with upwelling of more solute rich GW, while areas of low electrical conductivity coincided

with areas exhibiting horizontal hydraulic gradients (Figure 4).
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Figure 4: Comparison of interpolated hydraulic heads obtained from piezometers and electrical
conductivity obtained from waterborne FD-EMI survey. (a) Horizontal profile obtained from 100 cm
deep piezometers. Symbols show measurement locations. (b) Vertical profile obtained from 20, 50,
and 100 cm deep piezometers. The dashed line shows measured stage profile. (c) Map of river bed
electrical conductivity obtained using Geonics EM38. Hydraulic heads are shown in metres above

ordinance datum (metres above sea level) (after Binley et al., 2013).

Contrasts in electrical conductivity have also been used in coastal environments where the contrasts
can be much larger. For instance, Zarroca et al. (2014) used ERI methods in association with
piezometric and natural tracer data in a coastal wetland. They were able to identify zones of focused
upwelling and distinguish between local and regional GW flow paths, and the intrusion of seawater

which converged in the wetland. Kinnear et al. (2013) demonstrated that FD-EMI could be used to
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map lateral variability in electrical conductivity. They found that fresh GW discharge in the brackish
Ringkgbing Fjord (Denmark) was constrained to the shoreline and demonstrated the potential for

geophysical techniques to aid in assessing water budgets over large areas.

4.2.2. Catchment scale GW-SW connectivity mapping

In a similar way as structural characterisation, there have been several applications to map GW-SW
connectivity at larger scales (hundreds of metres to tens of kilometres). Paine (2003) used field
based FD-EMI to determine ranges in electrical conductivity and AEM to locate salinisation sources,
in addition to quantifying lateral extent and intensity of salinitisation, by developing relationships
from borehole water samples in northern Texas (US). In the Venice Lagoon (ltaly), Viezzoli et al.
(2010) used AEM to assess saltwater intrusion in the coastal aquifer and to characterise the
transition between freshwater saturated sediments and overlying saltwater saturated sediments
beneath the lagoon. Kirkegaard et al. (2011) used AEM in the Ringkgbing Fjord (Denmark) finding
that buried valleys beneath the lagoon were characterised by high salinity waters while some areas
of the lagoon were characterised by fresher waters. In the same fjord, Kinnear et al. (2013) used
waterborne EMI surveys to reveal localised groundwater discharge zones into the brackish lagoon.
ERI has also been used to map locations of GW-SW discharge. Kelly et al. (2009) used a towed
waterborne ERI array and tracer data to differentiate between local and regional GW discharge

along a 50 km river reach in South East Australia.

4.3. Monitoring groundwater-surface water interactions

In addition to using contrasts in the geophysical properties of GW and SW to map areas of exchange,
geophysical techniques have been used to monitor and quantify processes of the GW-SW interface
at local scales (metres to tens of metres). Aside from heat tracing methods, geophysical monitoring
studies have almost exclusively involved ERI. However, Christiansen et al (2011) demonstrate how

time-lapse gravity measurements can be used assess river-riparian zone exchanges. ERI methods are
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somewhat analogous to monitoring wells in tracer experiments in that changes in resistivity are used
to infer changes in hydrological properties or conditions (e.g. saturation or pore water conductivity).
ERI can be used to image the entire region immediately beneath an electrode array. This means that
low mobility zones, which are likely to be important in biogeochemical cycling, can be also be

detected (Singha et al., 2008; Toran et al., 2013b).

Temporally distributed ERI surveys have been used at the Hanford Site (US) to monitor inland water
intrusion in relation to changes in river stage and to detect high and low mobility zones in the
riparian zone (Johnson et al., 2012; Wallin et al., 2013). They used time-series and time-frequency
analysis to reveal the timing and location of GW-SW interactions. Cardenas and Markowski (2011)
imaged a flood cycle in a dam regulated river finding that the HZ was laterally discontinuous and
varied with time. In addition to surface electrodes, cross borehole ERI has been used to increase
sensitivity at depths and locate areas of high and low permeability by monitoring 3D hydrological
processes within the riparian zone of the Thur River, Switzerland (Coscia et al., 2011, 2012). At the
Boxford riparian wetland, Uhlemann et al. (2016) found that peat exhibited a two layer behaviour
separate by an intermittent clay layer; the upper layer showed a reduction in resistivity during the
summer due to increased pore water conductivity and the lower layer exhibited an increase in

resistivity during the winter months due to the reception of resistive GW.

Studies in fresh water environments have also used salt tracers to artificially induce electrical
conductivity contrasts. For instance, Ward et al. (2010a) estimated the relative areas of the HZ by
comparing a pre-injection ER model with subsequent post-injection ER models (Figure 5). More
recently, Ward et al. (2013) monitored changes in the HZ finding that hydraulic gradients parallel and
perpendicular to the valley gradient had minimal influence on HZ extent and that the HZ extent
increased with decreasing vertical gradients away from the stream. Toran et al. (2012) compared ERI
data from before and after installation of a restoration structure; they found that the HZ immediately

upstream remained fairly constant but the HZ downstream decreased due to erosion and increases in
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fine sediments. Similarly, Toran et al. (2013a) found that persistence of the saline tracer was more
dependent on thickness and grain size rather than on the presence of restoration structures.
Recently, Houzé et al. (2017) used a 3D array to obtain 7 m x 1 m x 1 m resistivity images of the
subsurface following the injection of a tracer into the subsurface and note the importance of

characterising boundary conditions for inverse modelling.
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Figure 5: Electrical resistivity imaging of solute transport in subsurface of a stream during a 21 hour
injection. Transects run perpendicular to the stream, with flow direction out of the page. (A) Pre-
injection electrical resistivity model. (B) Model sensitivity based on the positions of electrodes in the
electrode array. (C-G) Time-lapse ERI results, at time elapsed after beginning the conservative solute
injection. Colour indicates percentage change in bulk resistivity from background conditions. (H)
Interpretation of resistivity images. Resistive feature in pre-injection model is interpreted to be an

abandoned cobble bed (Singha et al., 2015; adapted from Ward et al. 2010a).
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ERI and salt tracer studies have also been used to monitor processes in the riparian zone. To
investigate the importance of voids in the riparian zone Menichino et al. (2014) created an artificial
macro-pore and monitored intra-meander flow using ERI. They found that their open macro-pore
enabled more solute transport and increased solute tailing, both of which are likely to be important
in hydrological and biogeochemical processes. Whereas Doetsch et al. (2012b) used a 3D ERI
monitoring array to estimate riparian zone infiltration velocities and found agreement with

monitoring well data.

Similar to mapping zones of exchange, the natural conductivity contrasts in coastal environments
can be used to monitor GW-SW interaction processes. Swarzenski et al. (2007) investigated
bidirectional exchange between a coastal aquifer and sea water using ERI, electromagnetic seepage
meters and geochemical tracers. They found that the tide strongly influenced hydraulic gradients
such that during high tides GW discharge was reversed and sea water infiltrated into the coastal
aquifer. In a similar experiment, Henderson et al. (2010) found that their ERI also indicated
suppressed GW discharge, whereas temperature measurements indicated GW discharge continued
at high tide. Their sensitivity modelling indicated that during high tide electrical current was
preferentially focused in the conductive SW and that consequently, the resistive GW could not be
easily resolved. This demonstrates the issue of method sensitivity to the chosen set up or
environment, and also highlights the importance of forward modelling to realise the sensitivity of

geophysical data.

5. Discussion

Geophysical techniques have successfully provided information about processes and properties
relevant to the GW-SW interface, with research focusing on three key areas: (1) characterising
structure, (2) mapping zones of GW-SW interaction, and (3) monitoring dynamic processes. However,
studies of properties and processes in the GW-SW interface would benefit from continued

geophysical input, for which there are several avenues of potential research. In this section the
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strengths, challenges, and recent developments in geophysical techniques are discussed alongside

opportunities for the future.

5.1 Strengths of geophysics

It is convenient to organise geophysical techniques into more general themes to consider their
strengths as tools to: (1) guide more focused investigations, (2) supplement other data sets, and (3)
monitor dynamic processes. These strengths are also apparent in other fields of near surface
geophysics (e.g. Singha et al.,, 2015; Binley et al., 2015; Parsekian et al., 2015). Their presence
highlights the scope of geophysics for studies concerned with the GW-SW interface and more general

environmental applications.

5.1.1. Reconnaissance tools

Often the usefulness of data can only be appreciated following the instrumentation of a site. By
targeting specific sites based on preliminary geophysical investigations it may be possible to save
resources and obtain more representative and useful information. In addition, at catchment scales
the decision to select a particular site may be purely incidental to land access and prior
instrumentation. At local scales FD-EMI (e.g. Butler, et al. 2004; Binley et al., 2013) and ERI (e.g.
Mansoor and Slater, 2007; Nyquist et al., 2008) have been shown to be capable of identifying zones
of hydrological interest. However, geophysics has also been used to locate areas of biogeochemical
interest. For example, Uhlemann et al. (2017) used ERI to guide biogeochemical and hydrological
sampling of an arsenic contaminated aquifer in Cambodia (Richards et al., 2017) by characterising its
sedimentological setting. In this way, geophysics can also be used to improve the confidence that

intrusive data is representative or appropriate for characterisation of the site.

Additionally, geophysics has also been used as a reconnaissance tool at catchment scales; AEM has
been used for locating palaeochannels (Worrall et al., 1999; Abraham et al., 2012) and areas of GW-

SW connectivity (Jgrgensen et al., 2012; Harrington et al., 2014). As noted by Kruse (2013), there is
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significant potential for combining remote sensing data with aerial and land based geophysics. These
methods are highly complementary given that remote sensing data is typically sensitive to the
shallow subsurface (<1 m) whereas geophysical techniques may be sensitive up to depths of several
tens or hundreds of metres (Parsekian et al., 2015). Geophysics and remote sensing has been
combined in permafrost studies, for instance AEM (Pastick et al. 2013) and ground based ERI and
GPR (Yoshikawa and Hinzman, 2003) was used to assess the thickness and distribution of permafrost.
Approaches such as those employed by Wilson et al. (2016), whereby lakes were prioritised based on
their geological setting before thermal imagery was analysed, could be enhanced by inclusion of
geophysical data. The combination of remote sensing data and geophysics would be useful in linking
surface and subsurface properties and would be a powerful tool in GW-SW interaction studies.
Furthermore, these applications could provide additional constraints for catchment scale

considerations of HEFs (e.g. Kiel and Cardenas, 2014; Gomez-Velez and Harvey, 2014).

5.1.2. Supplementing other data sets

Geophysical measurements that are sensitive to geological, hydrological or biogeochemical
properties can be used to reduce interpolation uncertainty and increase the spatial coverage of
information. The combination of methods has additional advantages in that by combining different
data sources, poor sensitivity and other methodological limitations can be reduced. Combining data
sets is common in GW-SW interface research. For instance, Gonzdlez-Pinzén et al. (2015) combined
centimetre scale probes with chemical tracers, piezometers, fibre-optic distributed temperature
sensing, temperature sensors and electrical resistivity imaging to improve conceptual understanding
of a river reach at several scales. The development of integrated and standardised approaches may
also be beneficial for generating common data sets to compare field sites and improve conceptual
models. Multi-method approaches are similarly used in hydrogeophysical research to combine
geophysical techniques with hydrological and geophysical techniques (e.g. Moyse et al., 2005; Hinnel

et al., 2010). The grouping of traditional and geophysical applications can improve the spatial extent
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of available information across a range of scales and improve the quantative interpretation of
geophysical data. To date most geophysical studies of the GW-SW interface have focused on
characterising the geological structure. Future applications should endeavour to extract information

about the hydrological and biogeochemical properties of the subsurface.

5.1.3. Monitoring dynamic processes

Processes occurring at the GW-SW interface can be highly dynamic. It can be difficult to characterise
these processes with traditional methods as they can interrupt processes and continuous
measurements may not be possible. In this review, the ability of ERI to characterise dynamic
processes has been demonstrated (e.g. Ward et al., 2010a; Johnson et al., 2012; Wallin et al., 2013).
These strengths are also highlighted in related fields where ERI and IP have been used to monitor
contaminant transport, biological activity and biogeochemical processes (e.g. Michot et al., 2003;
Garre et al.,, 2011; Slater and Atekwana., 2009; Johnson et al., 2010; Flores Orozco et al., 2011; Chen
et al., 2012; Singha et al., 2015). It is anticipated that knowledge from these fields could be applied to
characterisation of the GW-SW interface. In addition, temporally distributed surveys of other
geophysical methods may be beneficial, for example FD-EMI could be used to extend the information
obtained in ERI monitoring studies and temporally distributed GPR, or seismic, surveys could be used

to better characterise the dynamic nature of river bed geomorphology.

5.2. Challenges of geophysics

Despite the progress made by geophysics it is also important to appreciate the challenges of
geophysical methods. These are related to geophysics in general and are on-going issues in
geophysical research. The principal challenges of geophysical techniques are that: (1) geophysics is
inherently uncertain, (2) site specific considerations are often needed, and (3) geophysics needs to
be processed and modelled for quantitative interpretation. These limitations greatly contribute to

the reluctance to adopt geophysical techniques in environmental studies. Here these challenges are
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discussed briefly but it is anticipated that by addressing the issues more thoroughly, application of

geophysics in environmental sensing will become more common.

5.2.1. Geophysical uncertainty

Geophysical data and modelling methods are uncertain. Despite the broad recognition of errors in
geophysical methods, they can be poorly dealt with and as a result, incorrect interpretations of
geophysical data can be made (Binley et al., 2015). For instance, GPR and EMI survey devices often
need to be corrected for instrument drift (Jacob and Hermance, 2004; De Smedt et al., 2016).
Particular interest has been given to errors in ERI data. Typically, stacked or reciprocal measurements
are used to assess the quality of measurements and weight them appropriately in inverse modelling
(Binley, 2015; Singha et al., 2015). Stacked errors are obtained from consecutive repeat
measurements for each current injection and reciprocal errors are obtained by reversing the
measurement sequence and conducting a second survey. Reciprocal measurements are typically
viewed as being more robust, as stacked measurements may underestimate measurement error (Tso
et al., in review). However, it should be noted that if the process of interest is occurring faster than a
direct and reciprocal measurement scheme, then reciprocal errors may not be so useful (e.g. Ward et
al.,, 2010a). Additionally, some studies have also looked at assessing the value of information in
geophysical images in order to assess how reliable geophysical models are (e.g. Oldenburg and Li,
1999; Daily et al., 2005). For instance, Oldenburg and Li (1999) use a depth of investigation method
to assess the vertical reliability of ER and IP models. More recently, JafarGardomi and Binley (2013)
investigated the information content of combined ERI, FD-EMI and GPR data sets, and Nenna and
Knight (2013) assessed the benefit of adding geophysical data to assess maintenance of a coastal
aquifer. Methods similar to these could assist in determining the value of data assimilation and help

to aid in survey design.

4.2.2. Site specific considerations
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In all applications, it is important to consider the target, scale of interest and the likely subsurface
properties in order to return the most beneficial information. For instance, larger electrode spacing
in ERI and IP or lower frequencies in GPR surveys will permit characterisation to deeper depths, but
will sacrifice resolution (Binley et al. 2015; van der Kruk et al., 2015). Forward modelling tools such as
Terry et al. (2017) can help to guide survey design based on the targets of interest and the expected
subsurface properties. In some cases, geophysical surveys may be optimised, for example in ERI
electrode number, position and measurement geometry can be designed to improve spatial
resolution whilst removing unnecessary measurements and consequently reducing measurement

time (Wilkinson et al., 2006; 2012; Loke et al., 2015).

It is useful to briefly note some of the considerations necessary to applications in SW bodies. The
water column can be problematic as it can create current focusing effects in methods influenced by
electrical conductivity (e.g. ERI, IP, EMI and GPR). For instance, in ERI of river beds the depth of
investigation required, the river level, and electrical conductivity of river water should be taken into
consideration when deciding the electrode spacing and whether to use floating arrays or bed
electrodes (Snyder et al.,, 2002). These measurements can also aid in interpretation of data (e.g.
Slater et al., 2010; Binley et al., 2013). However, it should be noted that additional constraints make
it more difficult to solve inverse problems and errors in measurements of water depth or in-stream
electrical conductivity may lead to significant inversion artefacts (Day-Lewis et al., 2006). ERI studies
in SW bodies have involved static arrays (Nyquist et al., 2008; Crook et al., 2008) and towed arrays
(e.g. Kelly et al., 2009; Slater et al., 2010). The latter methodology has benefits in that it can improve
survey productivity; however, it precludes error quantification (Slater et al., 2010) and requires
various electrode spacings to improve vertical resolution (Allen, 2007). In addition to resolution and
methodology considerations, some geophysical applications may not be appropriate for the setting.
For example, use of salt tracers and ERI may be prohibited in ecologically sensitive areas, or GPR

signals may be attenuated in highly electrically conductive areas.
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5.2.3. Extracting quantitative information

Recovering quantitative information from geophysics is a major challenge and has been the subject
of numerous reviews (e.g. Rubin and Hubbard, 2005; Singha et al., 2007; 2015; Loke et al., 2013).
Hydrogeological information can be extracted from geophysical data by using petrophysical
relationships, interpreting time-lapse data and through combination with other techniques.
Petrophysical models are commonly used due to their simplicity; however, their usage can be
problematic. As noted by Singha et al. (2015) translation of geophysical images with poorly resolved
heterogeneity or inversion artefacts will be erroneous, the support volumes of geophysical and
hydrological parameters are often different, meaning conversions can be poor, and the resolution of
geophysical images can be spatially and temporally variable such that petrophysical transformations
may be inconsistent. Geophysical information can also be interpreted temporally without the need
for petrophysical transformations. Johnson et al. (2012) and Wallin et al. (2013) used time-series and
time-frequency analyses of the Columbia River stage and ERI to reveal preferential pathways,
whereas Ward et al. (2010b) demonstrated that temporal moments of ER and solute transport data
were well correlated for diffusive transport in the HZ. Geophysical data may also be interpreted from
the combination with other techniques. For example, calibrating geophysical and hydrological data at
point scale and estimating the correlation at field scale (Day-Lewis and Lane, 2004), by using changes
in geophysical properties to calibrate hydrological models (e.g. Binley et al., 2002), or by coupled (e.g.

Hinnel et al., 2010) and joint inversions (Kowalsky et al., 2005; Johnson et al., 2009).

As noted, many applications to characterise the structure of the GW-SW interface (i.e. static surveys)
have been qualitative in that they are used to reveal geometry of geological deposits. Future
applications should aim to characterise properties such as permeability, surface area and cation
exchange capacity. Although petrophysical models are often used to translate static geophysical data
following inversion, in recent years there has been increasing interest in joint inversions. Joint

inversions use petrophysical relations to link multiple geophysical data sets with each other, or with
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hydrological data sets. They have demonstrated significant potential in recovering hydrological
properties (Kowalsky et al., 2005; Johnson et al., 2009; Jardani et al., 2013; Soueid Ahmed et al.,
2014; 2016) and are a promising direction for quantative interpretation of geophysical surveys of the

GW-SW interface.

5.3. Recent developments in geophysical applications

Since the advent of hydrogeophysics during the 1990s (Binley, 2015), geophysical techniques have
evolved from their traditional exploratory usage to being capable of characterisation of hydrological
states and dynamic processes. Additionally, in more recent years the field of biogeophysics, which
aims to relate the biological processes and modifications of the subsurface to geophysical properties,
has emerged (Atekwana and Slater, 2009). Biogeophysical applications have typically involved
characterising reactive conditions (e.g. Naudet et al., 2003; Sassen et al., 2012; Chen et al., 2013),
detecting biogeochemical by-products (e.g. Slater and Binley, 2006; Comas et al., 2007; 2014;
Parsekian et al., 2011), or detecting changes to physical structure as a result of microbial activity (e.g.
Williams et al.,, 2005; Slater et al., 2008). In addition, the usage of unmanned vehicles in
environmental research has vastly increased and it is expected that automated deployment of
miniaturised geophysical devices could become common in future years. In this section
developments in: (1) electrical resistivity monitoring, (2) induced polarisation, (3) self-potential, (4)
multi-coil electromagnetic induction, and (5) automated vehicles and their potential application in

GW-SW characterisation are discussed.

5.3.1. Electrical resistivity monitoring

ERI is one of the most commonly and widely applied geophysical methods. There has been
significant interest in developing low power, automated instruments for long term monitoring (e.g.
Daily et al., 2004; Kuras et al. 2009; Ogilvy et al., 2009; Chambers et al., 2015). These instruments

have the potential to provide spatially extensive data sets, with high spatial and temporal resolution.
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Moreover, instruments can also transmit data to high performance computers to allow for real time
monitoring of subsurface processes (Singha et al., 2015). For instance, computational advances in
inversion schemes, e.g. image differencing to avoid regularisation in the time dimension (Wallin et
al., 2013) or parameterisation based on the physics of plume shape evolution (e.g. Miled and Miller,
2009; Pidlisecky et al., 2011), are promising tools for extracting hydrological information from ERI
monitoring data. As noted, time-lapse ERI to monitor processes in the HZ typically do not use
reciprocal measurements as a more robust estimate of error as acquisition times are perhaps too
long for revealing processes of interest. ERI acquisition times could be reduced using multi-channel
systems, optimised electrode arrays (e.g. Wilkinson et al.,, 2012), or shorter current injection.
However, it should be noted that use of short injection times could result in unreliable
measurements of resistivity (Binley, 2015). Also, although most studies have been conducted over
periods of several hours, longer ERI monitoring studies such as that of Uhlemann et al. (2016) could

be used to aid in revealing seasonal variation in GW upwelling or river-riparian zone interactions.

5.3.2. Induced polarisation

Despite being less commonly used than ERI, many modern ERI instruments are also capable of IP
measurements. Although, ERI is more robust in that it has higher signal to noise ratios, the IP signal is
more closely related to geological characteristics and petrophysical relationships exist for relating IP
signal to surface area, permeability and cation exchange (Vinegar and Waxman, 1984; Borner and
Schon, 1991; Slater et al., 2007; Revil et al., 2012; Weller et al., 2015). These properties have clear
relevance to the GW-SW interface, however, IP studies of the GW-SW interface have been limited
(e.g. Slater et al., 2010; Mwakanyamale et al. 2012). The limited application, in comparison to ERI, is
probably due to the complexity associated with analysis of data and future applications should be
cautious in interpretation of IP data. Nonetheless, it is anticipated that IP would be beneficial in
revealing variability in permeability, surface area and cation exchange capacity, and potentially

biogeochemical processes (e.g. Flores Orozco et al., 2011; Chen et al., 2012), at the GW-SW interface.
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5.3.3. Self-potential

Similar to IP, usage of SP in GW-SW interaction studies has been less frequent; however, there are
several possible applications. The SP signal arises from electro-kinetic, electro-chemical, and thermo-
electric sources. SP has been used to characterise hydraulic conductivity during pumping tests (Rizzo
et al., 2004; Revil et al., 2008; Soueid Ahmed et al., 2014; 2016), through palaeochannels (Revil et al.,
2005), through fractures (Wishart et al., 2006; 2008), and in arctic hill-slopes (Voytek et al., 2016).
Applications in GW-SW interface research could involve assessing the spatial and temporal variability
of GW discharge (e.g. Colombero et al.,, 2014) or HEFs, or characterising hydraulic conductivity.
However, perhaps the most intriguing use of SP at the GW-SW interface would be to characterise the
variability in redox conditions. SP has been used to extend the spatial coverage of redox
measurements obtained from monitoring wells associated with a contaminant plume at the
Entressen Landfill in France (Figure 6) (Naudet et al., 2003; 2004; Arora et al., 2007; Linde and Revil,
2007). Naudet et al. (2004) removed the electro-kinetic contribution using piezometric head data and
found that the SP signal and redox potential values showed good correlation (R? = 0.85). It is however
important to note the differentiation of SP sources may be more complex in the GW-SW interface,
and the electro-kinetic effect may dominate the signal. Any work involving SP would need to account
for all sources of the SP signal appropriately in addition to adequate understanding of redox

chemistry.
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Figure 6: Map of self-potential obtained by linear interpolation of measurements made at 10 m
resolution in first 2 km from landfill site and 20 m elsewhere. Hydraulic gradients obtained from

piezometers (Naudet et al., 2004).

4.3.4. Multi-coil electromagnetic induction

In recent years FD-EMI instruments have been increasingly used in hydrological investigations due to
their improved reliability and stability (Boaga, 2017). Furthermore, FD-EMI methods have the
advantage over ERI in that they do not require contact with the ground and can therefore be more
productive. Modern FD-EMI instruments contain multiple coils and are more easily able to provide
information about vertical variability in addition to lateral variability. They therefore make it possible

to extend the application of FD-EMI beyond qualitative mapping of GW-SW interactions (e.g. Butler
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et al., 2004; Binley et al., 2013; Kinnear et al., 2013). In addition, as noted recently by Christiansen et
al. (2016), the majority of studies present apparent electrical conductivity, e.g. without appropriate
data processing or inverse modelling. Advances in data filtering and inversion schemes, such as
EM4Soil (EMTOMO, 2013), Aarhus Workbench (Christiansen et al., 2016) or FEMIC (Elwaseif et al.,
2017), permit more accurate modelling of subsurface conductivity structure and may lead to more

reliable subsurface characterisation using FD-EMI

Furthermore, temporally distributed FD-EMI surveys similar Robinson et al. (2012), Shanahan et al.,
(2015) Huang et al., (2017) could prove useful in GW-SW interface characterisation. For instance, FD-
EMI instruments could be used to investigate diurnal dynamics of salt water wedges in coastal
environments or seasonal changes in GW upwelling, provided there are substantial contrasts in the
electrical conductivity of GW and SW. It is important, however, to note that some authors (e.g.
Lavoué et al., 2010) argue for the need to calibrate FD-EMI with ERI, this may be particularly true in
time-lapse measurements where ambient conditions (e.g. air temperature), or the operator, may

influence the readings obtained.

4.3.5. Unmanned vehicle based data acquisition

Given the significant increase in the availability and application of automated ground-based,
waterborne and aerial technology in many aspects of environmental sensing, the translation to
geophysical sensing is inevitable. Automated aerial, terrestrial and waterborne vehicles offer the
ability for precise and repeatable data collection. Unmanned aerial vehicles have the ability to fly at
lower elevations (~30 m) than typical aircraft, and are therefore able to provide high resolution data
sets without sacrificing productivity. Geophysical applications using automated vehicles have
predominantly involved magnetic mapping to locate manmade features (Stoll, 2013; Phelps et al.,
2014). Automated vehicles may also be able to simultaneously process and contour data, and

transmit information in real time (Phelps et al., 2014). Furthermore, automated systems could be
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programmed in such a way that anomalous regions are re-surveyed in higher resolution

automatically.

The majority of unmanned aerial vehicles are small (<25 kg) and are limited to light weight
instruments, however larger vehicles capable of carrying heavier payloads are available (Whitehead
et al., 20144, b). It can be envisaged that miniaturisation (or weight reduction) of geophysical tools,
and the increasing pay loads of UAVs, could allow for increased collection of automated aerial
geophysical data. However, non-aerial geophysical applications could easily be adapted to use
automated vehicles, for instance roving surveys using plate electrodes for ERI (Christensen and
Sgrensen, 1998), large scale FD-EMI surveys (Christiansen et al., 2016) or waterborne surveys (Kelly
et al., 2009; Binley et al., 2013; Colombero et al., 2014) would not be difficult to automate and may

aid in collection of data across larger scale, e.g. to investigate parameters at catchment scales.

5. Summary

Geophysical tools have clear application in revealing geological, hydrological and biogeochemical
heterogeneity at the GW-SW interface. Geophysical tools are highly complementary to traditional
tools as they are sensitive to regions of the subsurface not reachable by direct measurements. The
majority of geophysical applications have focused on characterising subsurface structure, revealing
spatial variability in GW-SW interaction and imaging hydrological processes. Data sets obtained from
these field studies have significant potential to improve characterisation and modelling of
parameters at the GW-SW interface. Over the last 20 years geophysics has grown to be a powerful
tool in hydrogeological research, in part due to the view that geophysical tools be used to aid
hydrogeological problems alongside traditional methods. Geophysics provides valuable practical
tools for assessing many unknowns of the GW-SW interface. Moreover, although caution in
guantative interpretation of geophysical data is warranted, attempts at improving uncertainty
guantification, inversion routines and translating data are on-going. Efforts to provide solutions to

these issues can only continue to improve confidence in geophysics so that its potential can be more
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widely appreciated and applied across a variety of scales. In recent years, there has been significant
development in techniques and methodologies in parallel research areas, some of which would
enhance the information obtained in studies of the GW-SW interface. Continued integration of
geophysical methods would be beneficial in characterising hydrological and biogeochemical
heterogeneity in the GW-SW interface and understanding the implications for water quality and

ecological health.
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