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Abstract (231 words) 19 

Weather has often been associated with fluctuations in population sizes of species, however, it 20 

can be difficult to estimate the effects satisfactorily because population size is naturally 21 

measured by annual abundance indices whilst weather varies on much shorter timescales.  We 22 

describe a novel method for estimating the effects of a temporal sequence of a weather variable 23 

(such as mean temperatures from successive months) on annual species abundance indices.  24 

The model we use has a separate regression coefficient for each covariate in the temporal 25 

sequence and over-fitting is avoided by constraining the regression coefficients to lie on a curve 26 

defined by a small number of parameters.  The constrained curve is the product of a periodic 27 

function, reflecting assumptions that associations with weather will vary smoothly throughout 28 

the year and tend to be repetitive across years, and an exponentially decaying term, reflecting 29 

an assumption that the weather from the most recent year will tend to have the greatest effect 30 

on the current population and that the effect of weather in previous years tends to diminish as 31 

the time lag increases.  We have used this approach to model 501 species abundance indices 32 

from Great Britain, and present detailed results for two contrasting species alongside an overall 33 

impression of the results across all species.  We believe this approach provides an important 34 

advance to the challenge of robustly modelling relationships between weather and species 35 

population size. 36 

 37 

Key-words: Abundance index; climate change impacts; distributed lag models; population 38 

abundance models; population change, weather variables. 39 

 40 

1. Introduction 41 

It is important for ecologists to understand the relationships between species abundance and 42 

weather. These relationships matter in many applied situations, when knowledge is required of 43 
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the determinants of species distributions, changes to population sizes and distributions, and 44 

more recently the likely effects of climate change, particularly for those species identified as 45 

requiring protection at global (UN convention) and continental (e.g. EU directive) scales.  In 46 

many studies, spatial relationships between species abundance and weather are analysed by 47 

modelling species data from a large number of contrasting locations as a function of a few 48 

bioclimatic variables (e.g. Chen et al 2011, Bellard et al 2012, Warren et al 2013).  These 49 

approaches require extensive distributional data.  For many species there are not data from a 50 

enough sites across a sufficiently broad spatial extent and in such cases, longitudinal studies of 51 

population change in confined geographical areas may be used to infer potential sensitivities 52 

and responses to climate change (e.g. Martay et al. 2016).  However, these studies present 53 

challenges to inferring impacts of weather, due to population data that are at a coarse spatial 54 

extent, often aggregated to an annual estimate of the population index. We demonstrate a novel 55 

modelling approach that can extract more information from such longitudinal population 56 

change data than previous analytical methods. 57 

 58 

Estimation of the relationship between weather and annual species abundance indices is less 59 

straightforward than it might at first seem.  Sometimes there is a clear causal link between 60 

particular weather variables and species’ abundance (e.g. Pollard 1988; Roy et al. 2001; 61 

Pearce-Higgins et al. 2010), but often the nature and timing of the relationships are not known 62 

a priori.  This means that the weather from many different seasons may affect populations, 63 

leading to the number of potential explanatory variables being large relative to the number of 64 

years for which abundance indices are available.  Even if each weather variable to be 65 

considered is summarised across a time period of some suitable duration (which we take 66 

henceforth as being a calendar month), then there are still many potential combinations of types 67 

of weather variable (e.g. monthly minimum, mean and maximum temperature, frost days, 68 
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precipitation) and months in the years leading up to each abundance index record.  69 

Furthermore, a species abundance index may respond differently to the same weather variable 70 

(e.g. temperature) in different months (e.g. Pollard 1988, Pearce-Higgins et al. 2015), creating 71 

a tension between model flexibility and the avoidance of over-specification. 72 

 73 

The principal assumption underlying traditional approaches to modelling annual abundance 74 

index data is that any individual model can contain only a small number of covariates relative 75 

to the number of observations, often leading to construction and use of covariates at a seasonal 76 

(quarterly) level summarising individual weather variables (e.g. mean temperature) or weather 77 

patterns (e.g. winter North Atlantic Oscillation).  Whilst this assumption may hold when each 78 

covariate has its own regression coefficient whose value is free to vary independently of all 79 

other regression coefficients, it does not hold if the regression coefficients can be constrained 80 

in some manner.  A natural way of thinking about the problem is to consider that each index 81 

value yt for years t=1...T contained in the vector y, depends on the weather records xt1, xt2, xtM, 82 

from M successive past months, specified as the entries in the corresponding rows of monthly 83 

weather covariates, x1, x2 up to xM, each of length T.  Associated with each of these M 84 

covariates is a single covariate regression coefficient, bm, for m=1...M.  As successive 85 

covariates correspond to the weather in consecutive months, we may expect neighbouring 86 

covariate regression coefficients to be related, and we use these relationships to reduce the 87 

number of free parameters associated with the sequence of covariate regression coefficients, 88 

b1...bM.  The approach we have taken is to specify a parametric function, bm=f(m,θ), for the 89 

monthly covariate regression coefficients, in which the function f(m,θ) was selected to enforce 90 

what we considered to be ecologically reasonable constraints on the sequence of covariate 91 

regression coefficients through a low-dimensional vector, θ, of underlying parameters to be 92 

estimated. 93 
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 94 

Modern statistics offers a selection of alternative approaches to imposing the belief of similarity 95 

in successive values of the sequence of covariate regression coefficients, b1...bM.  Forms of 96 

penalised signal regression using as roughness penalty the squares of the first, second or third 97 

differences of the sequence b1...bM (Marx & Eilers 1999) have been used to model the effect of 98 

long sequences of weather variables on species traits other than population size (Sims et al. 99 

2007; Roberts 2008; Roberts 2012).  Alternatively, the problem can be treated as a particular 100 

case of a distributed lag model (e.g. Baltagi, 2008) in which the b1...bM are derived from a 101 

suitably flexible series of basis functions.  We shall use this latter formulation to compare our 102 

parametric specifications with a more flexible alternative. 103 

 104 

In this paper, we begin by describing the data sets available, including how these have been 105 

used to construct national species abundance indices and associated sequences of weather 106 

covariates.  We then define a parametric form f(m,θ) for the model of monthly covariate 107 

regression coefficients with what we consider to be the relevant desirable properties, presenting 108 

an approach to estimating the underlying parameters and constructing confidence intervals for 109 

both the monthly covariate regression coefficients and fitted values for the model of the 110 

abundance indices.  The final methodological element considered is how to summarise the 111 

model fits across a large number of species.  The methods, and their comparison with fitting a 112 

distributed lag model without such strong functional constraints, are illustrated using two 113 

contrasting species.  We conclude by discussing the merits of our approach, what has been 114 

learned and how it may be improved.  Throughout, the notation used omits reference to 115 

particular weather variables or species except where this is essential. 116 

 117 

2. Materials and methods  118 
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2.1 Derivation of annual abundance indices for each species 119 

We extracted site- and year-specific records of abundance for 501 species of butterflies, moths, 120 

aphids, birds, and mammals from the databases of various long-term monitoring schemes 121 

within Great Britain (see Martay et al. 2016 for details of all data sources).  For each species, 122 

these data comprised estimates of abundance from individual site by year combinations, using 123 

available years between 1966 and 2011.  Generalised linear models with Poisson errors and a 124 

log link function, including categorical variables for site and year, were fitted to the site-by-125 

year abundance data for each species.  The estimated year effects, yt, from theses log-linear 126 

models for t ranging from 1 (the oldest value) to T (the most recent), were taken as the annual 127 

population indices to be modelled, adopting the convention that yt=0 to resolve the aliasing in 128 

the full set of year-specific and site-specific parameters.  These estimated annual species 129 

abundance indices are therefore on a logarithmic scale, and their construction makes best use 130 

of the available data, in particular allowing for the fact that not all sites provide records for all 131 

years (Freeman & Newson, 2008).  Following existing protocols for bats (Barlow et al., 2015), 132 

survey-specific methodological and effort covariates known to strongly influence each 133 

abundance record (survey weather, type of bat detector, timing of survey) were included in the 134 

log-linear models leading to the derivation of the annual abundance indices adjusted for these 135 

survey-specific covariates.  136 

 137 

2.2 Weather data  138 

We chose to examine the effect of two key weather variables, precipitation and temperature, 139 

on the annual abundance indices, both having been found previously to affect population sizes 140 

of the species groups of interest (see, e.g., Huntley et al., 2007, or Johnston et al., 2013).  Data 141 

values for these weather variables were downloaded from the UK Met Office as national-level 142 

summaries for each month of all calendar years from 1910 to 2011 (Perry & Hollis, 2005).  A 143 
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comparison of mean, minimum and maximum temperature values indicated that these were 144 

highly correlated: consequently the corresponding fitted models in test runs were similar and a 145 

decision was taken to use only the mean temperature.  Thus models were fitted based on either 146 

precipitation or mean temperature data, using monthly total precipitation and the product of 147 

monthly mean temperature and number of days in the each month to equalise the influence of 148 

weather from individual days on the annual abundance indices.  Either UK or English weather 149 

data were used as appropriate for each species, given the geographical coverage of sampling 150 

locations. 151 

 152 

For each species, some care was needed to define the weather covariates to ensure the analyses 153 

were based only on months that could have influenced the response variable.  This required the 154 

identification of a reference month, r ranging in value from r=1 for January to r=12 for 155 

December, based on knowledge of the ecology and survey protocols for the species in question, 156 

such that only the weather up to and including month r, in year t could influence the 157 

corresponding index value yt.  The weather data wrt on either mean temperature or precipitation 158 

from month r in each of years t=1...T were used to construct the first monthly weather covariate, 159 

x1: thus x1t= wrt.  Successive weather covariates x2 up to xM were created by working backwards 160 

through the monthly weather data, one month a time: thus x2t= w r-1,t unless r=1 in which case 161 

x2t= w12,t-1  Since the entries in successive rows of x1 are separated by 12 months, the values in 162 

x1, x2 up to xM have a repeating structure in the sense that xm+12,t =  xm,t-1.  For simplicity, 163 

however, in the following sections we describe the models in terms of these derived covariates 164 

rather than the original sequence of weather data. 165 

 166 

2.3 Relating annual species abundance indices to weather  167 
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The general approach that we have taken allows data on a single weather variable from a large 168 

number of past months to be included in the model for the abundance index of some particular 169 

species, and is as follows.  Let yt be the national index of abundance on a natural logarithmic 170 

scale from year t for t=1...T.  In the absence of any weather effect, a simple model for yt showing 171 

a general trend with errors et would be defined mathematically as: 172 

 yt = a + ct + et , e1...T ~ Gaussian AR(1).      (1) 173 

In Equation 1, which defines our null model (denoted E0) for variation in the absence of any 174 

weather effect, (θ1, θ2)=(a, c) where a is some overall intercept, c is the regression coefficient 175 

of a year of survey covariate included to remove any linear trend, whether intrinsic to the 176 

population or arising from excluded effects.  The error terms et are assumed to come from 177 

normal (Gaussian) distributions through which both here and elsewhere we allow for temporal 178 

correlation by assuming the sequence of error terms e1 ... eT follows a first order auto-179 

regressive, AR(1), process. 180 

 181 

We extend the null model by inclusion of a sequence of monthly covariates, xm,t, as defined in 182 

Section 2.2, each with an associated covariate regression coefficient bm, giving rise to the 183 

expression: 184 

 yt = a + ct + ∑ 	         bm xm,t + et ,  e1...T ~ Gaussian AR(1).    (2) 185 

Rather than estimating each covariate regression coefficient bm independently, which in general 186 

is not possible since for large M the number of covariates exceeds T, the number of observations 187 

of the response variable, we specify a functional relationship bm=f(m,θ) for which the number 188 

of elements, P,  of the underlying parameter vector θ of length is sufficiently small to be well 189 

estimated.  The function f(m,θ) itself is selected to impose two beliefs in addition to smoothness 190 

about the sequence of regression coefficients. First, the covariate regression coefficients bm will 191 
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decay towards zero as m increases due to the declining influence of weather many years prior 192 

to any given abundance estimate.  Second, the covariate regression coefficients bm will show 193 

some periodicity with respect to m, in the sense that we might expect covariate regression 194 

coefficients lagged by whole calendar years (bm and bm+12) to take the same sign, whilst 195 

allowing for potential opposing effects within a year.  We enforce these two beliefs by writing 196 

f(m,θ) as the product of a decaying term, defined by a single underlying non-linear parameter, 197 

κ, which for purposes of exposition we replace by λ=exp(κ)/(1+exp(κ)) with 0 < λ < 1, and a 198 

periodic term defined by multiple underlying linear parameters.  By expressing the periodic 199 

term as a first-order Fourier series, we obtain: 200 

 bm = λm-1 (β1+ β2sin(2πm/12) +β3cos(2πm/12));         (3) 201 

with the combination of (2) and (3) defining our simplest alternative model, E1, for the 202 

covariate regression coefficients (bm) which thus enlarges on the null model E0 by the inclusion 203 

of four underlying parameters, (θ3, θ4, θ5, θ6)=(β1, β2 β3, λ).  The underlying parameter β1 204 

describes the average effect of the weather variable under investigation, regardless of time of 205 

year, and facilitates the possibility that all covariate regression coefficients may take the same 206 

sign.  The pair of underlying parameters β2 and β3 define the phase and amplitude of the sine 207 

wave, and both are required to ensure that the phase of the underlying sine wave is 208 

unconstrained by the allocation of calendar months to the integers from 1 to 12.  This allows 209 

the model to account for potentially contrasting positive and negative impacts of temperature 210 

and precipitation on the same population at different times of the year; for example accounting 211 

for potentially contrasting effects of summer and winter warmth within the same year upon 212 

butterfly populations (Long et al. 2016). Some examples of the sequences of covariate 213 

regression coefficients that can be generated from (3) are given as Supplementary Material.   214 

 215 
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This alternative model can be elaborated on in a number of ways, of which we consider two.  216 

The first elaboration, which we shall refer to as model E2, introduces a term of period six 217 

months into the cyclic part of the underlying model, leading to covariate regression coefficients 218 

defined by the following equation: 219 

 bm = λm-1 [β1+ β2sin(2πm/12) +β3cos(2πm/12) + β4sin(4πm/12) +β5cos(4πm/12)],    220 

            (4) 221 

for which P=8 and θT=(a, c, β1, β2 β3, β4 β5, λ).  The benefit of this first elaboration can be 222 

thought of as enabling two peaks per year in the series of covariate regression coefficients, and 223 

/ or removing the constraint under model E1 of symmetry in the periodic element either side of 224 

the peaks and troughs.  This can be important, for example allowing positive effects of both 225 

spring and winter temperature upon resident bird species within the same year (Pearce-Higgins 226 

et al. 2015). The second elaboration, which we shall refer to as model E3, introduces a term of 227 

period two years into the cyclic part of the underlying model, leading to covariate regression 228 

coefficients defined by the following equation: 229 

 bm = λm-1 [β1+ β2sin(2πm/12) +β3cos(2πm/12) + β4sin(πm/12) +β5cos(πm/12)]. (5) 230 

The benefit of this second elaboration can be thought of as allowing the sign of covariate 231 

regression coefficients to alternate between years, introducing the concept of differential 232 

lagged effects, for example as may occur as a result of contrasting direct effects of spring 233 

temperature upon chick growth rates, and indirect (lagged) negative effects of temperature 234 

upon the same species, mediated through reductions in prey populations (Pearce-Higgins et al. 235 

2010). 236 

 237 

2.4 Estimation 238 

We have fitted the four models described above, (E0, E1, E2 and E3), to annual abundance index 239 

data from all 501 available species, using as covariate sequences of either mean temperature or 240 
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precipitation either over the preceding single year or over the preceding 40 years as covariates, 241 

giving a total of 12 or 480 weather covariates respectively.  Estimation of the parameters in the 242 

four underlying models which defined the sequences of 480 covariate regression coefficients 243 

was implemented using the lme, gls and nlme functions in the nlme package (Pinheiro et al., 244 

2014) of the R software (R Core Team, 2015), making use of the fact that each regression 245 

model for the abundance indices can be expressed directly as a function of the underlying 246 

parameters, such as 247 

 yt = a  + ct + β1 ∑ 	       λm  -1  xm,t + β2 ∑ 	       sin(2πm/12) λm-1  xm,t +  248 

   β3 ∑ 	       cos(2πm/12) λm-1   xm,t  + et ,     (6) 249 

for E1.  Such reformulations demonstrate that, conditional on the value of λ (equivalently κ), 250 

the other underlying parameters in the model for the mean value of yt appear linearly 251 

(Ratkowsky 1983).  The model for the abundance indices corresponding to λ=1 (equivalently 252 

κ=∞) was fitted separately if required.  Estimation of the underlying parameters for models E1, 253 

E2 and E3 began with a grid search on values of κ from -3 to 9 in steps of 0.25, with each value 254 

of κ treated as fixed and optimising over all other underlying parameters to find the conditional 255 

maximum likelihood.  The resulting profile likelihoods were not necessarily unimodal: we 256 

present below the results of subsequent optimisations for all model parameters, performed 257 

starting from the optimum arising from the grid search for κ followed by conditional 258 

optimisation of remaining parameters.  To avoid over-fitting, the underlying models containing 259 

second-order Fourier terms, E2 and E3, were only fitted when at least 20 abundance index 260 

values were present.  During the implementation of the fitting procedure, we mean-centred 261 

each covariate x1...M before inclusion in the model to aid interpretation and to reduce the 262 

correlation between underlying parameters describing the periodic cycle and the overall 263 

intercept a. 264 
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 265 

2.5 Calculation of confidence intervals 266 

The presence of the non-linear parameter, κ, in the model for the mean value of yt not only 267 

complicated the estimation of the vector, θ, of underlying model parameters: it also caused 268 

added complications when calculating confidence intervals for the covariate regression 269 

coefficients, bm, and the fitted values in the model for the abundance indices, all of which are 270 

non-linear functions of κ.  We found the most satisfactory way of calculating confidence 271 

intervals was to use importance sampling, implemented as a two-step procedure: firstly, sample 272 

κ according to a quadratic (Gaussian) approximation to the profile log-likelihood; secondly, 273 

conditional on κ, sample the remaining parameters θ1...P-1 according to the quadratic Gaussian 274 

log-likelihood for (6) defined by the conditional estimates of θ1...P-1 and associated covariance 275 

matrix.  For each set of parameter values thus derived, the associated likelihood for (6) was 276 

calculated, and the ratios of these actual likelihoods to the product of the two importance 277 

sampling likelihoods (firstly for κ, secondly for θ1...P-1 given κ) were then used as importance 278 

weights.  Confidence intervals for the covariate regression coefficients, bm, and prediction 279 

intervals for the fitted values of the model of the abundance indices were formed from 280 

importance-weighted quantiles of the corresponding sets of values calculated from the 281 

underlying parameter values simulated as above.  Exact details for how this was done can be 282 

seen from the R code provided as Supplementary Material. 283 

 284 

2.6 Model summaries and comparisons  285 

We assessed the evidence for increasing model complexity by using F-tests to examine the 286 

statistical significance of changes in deviance when adding underlying parameters to the model.  287 

For these F-tests the numerator degrees of freedom was taken as the number of added 288 

parameters and the denominator degrees of freedom was calculated as the difference between 289 
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the number of index values and the number of parameters in the model for the mean value.   290 

This evidence is presented across species as histograms of p-values corresponding to the 291 

transitions between the different models.  Histograms of estimates of λ12 are shown also, to 292 

indicate the annual decay rate of the covariate regression coefficients determined by the 293 

periodic part of the model. 294 

 295 

For model E1, we summarised the covariate regression coefficients across species by presenting 296 

standardised weighted means of the covariate regression coefficients (SWMCRC).  297 

Augmenting the above notation so that the covariate regression coefficient for covariate xm for 298 

species i is bmi, we first normalised the covariate regression coefficients for any given species 299 

by dividing by max(|bmi|, m=1...12), then weighted the normalised values by 1- pi where pi 300 

indicates the significance of the transition from E0 to E1, giving Bmi = (1-pi)bmi / max(|bmi|).  Our 301 

standardised presentation for any group S of NS species all with the reference month, comprises 302 

two weighted means, AS+
m= ΣS+Bmi/ NS  and AS-

m= ΣS-Bmi/ NS, in which ΣS+ and ΣS- denote 303 

summation over species i in S for which Bmi is positive or negative respectively.  We calculate 304 

and present these for covariates m=1...12 only, since values for later months are necessarily 305 

smaller.  The net result of this combination of covariate regression coefficients is to produce 306 

AS+
m and AS-

m, bounded by 0 and +1 or -1 respectively, the extrema being approached only if 307 

the covariate regression coefficients for all species take their maximum absolute value in the 308 

same month, have the same sign in that month, and the transitions from model E0 to E1 are 309 

highly statistically significant for all species.  Where species in S do not all have the same 310 

reference month, an additional step is required to align the values of Bmi from different species 311 

so that the values of AS+
m and AS-

m are formed for each relevant calendar month, rather than 312 

according to lags from the differing reference months, the divisor for each month then being 313 
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the number of contributing species for that month rather than NS.  Statistical significance of 314 

SWMCRC was assessed using a sign test, considering the sign of each covariate regression 315 

coefficient bmi to be random under the null hypothesis of no effects of weather. 316 

 317 

2.7 Comparison with a less constrained alternative model 318 

We compare the sequences of covariate regression coefficients, b1...bM.with their counterparts 319 

estimated assuming linear dependence between the weather covariates and the population 320 

abundance indices by fitting distributed lag models (DLM) using the dlnm package (Gasparrini 321 

2011) of R.  Due to the oscillatory nature of the sequence, with each oscillation having period 322 

one year and so needing to be approximated by a cubic polynomial, we found it necessary to 323 

use a basis function with 3 knots per year.  The basis functions were created with the default 324 

knot locations using four years of monthly weather covariates (48 covariates and 12 knots in 325 

total) by the function crossbasis.  Parameter estimation used lme with a linear trend over years 326 

and auto-regressive, AR(1), errors to ensure equivalence to the fitting of models E1, E2 and E3. 327 

 328 

3. Results 329 

3.1 Results for two example species  330 

The wren (Troglodytes troglodytes) is a small songbird whose population abundance index is 331 

derived from the BTO’s Breeding Bird Survey (BBS) and Common Bird Census (CBC) (see 332 

Pearce-Higgins et al. 2015).  The species is found throughout the UK, but because of the higher 333 

density of sites in England our modelling uses only English abundance data and hence only 334 

English weather data.  The abundance index was assigned a reference month of June (r=6) 335 

since the latest of the two annual BBS site visits takes place then, and the time series used runs 336 

from 1966 to 2011, excepting 2001 when access to sites was restricted due to a national disease 337 

outbreak.  We report here the modelled response to mean temperature, the species having been 338 
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found to be much less responsive to precipitation.  The initial grid searches indicated well-339 

defined optima: the values of the transformed decay parameter κ most strongly supported by 340 

the data lay in the range from 2.5 to 3.5 for the models E1, E2 and E3  (Fig. 1, top).  Maximised 341 

log-likelihood values for the three models, along with the corresponding value for the null 342 

model E0, are given in Table 1.  These indicate that the transition from the null model E0 to the 343 

model in which the covariate regression coefficients are defined by a first order damped Fourier 344 

series E1 is highly statistically significant (F4,39=9.95; p < 10-4), whereas the evidence in support 345 

of an elaboration from E1 to either of the more complex models is much weaker (F2,37  = 2.12, 346 

0.97; p = 0.13, 0.39; for the transitions from E1 to E2 and E1 to E3 respectively).  Inspection of 347 

the plot of covariate regression coefficients bm against m for underlying model E1 (Fig. 1, 348 

middle) indicates that the signs of bm oscillate approximately about zero, with negative values 349 

in mid-summer (when higher temperatures correlate with lower abundance indices) and 350 

positive values in mid-winter (when higher temperatures correlate with higher abundance 351 

indices).  Values of the covariate regression coefficients decay by a factor of about 0.51 ( = 352 

λ12) between successive years.  Regression coefficients estimated using DLM follow a similar 353 

pattern to those estimated using model E1, comparison of the maximised log likelihoods 354 

indicating little evidence to justify the additional parameters required by the DLM (Table 1, 355 

column 1). The time series plot showing abundance indices and fitted values (Fig. 1, bottom) 356 

indicates broad agreement between observed and modelled series, although the sharp drop in 357 

log abundance in 1991 is not picked up well. 358 

 359 

The flounced rustic (Luperina testacea) is a univoltine, grass-feeding noctuid moth whose 360 

population abundance index is derived from adults attracted to light traps mostly in August and 361 

September, as recorded by the Rothamsted Insect Survey.  Our analyses used abundance and 362 
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weather data from all of the UK, with response data from 1975 to 2010, with a reference month 363 

of September (r=9).  We report here the modelled response to precipitation, the species having 364 

been found to be less responsive to temperature.  The initial grid searches indicated well-365 

defined optima for κ in the range from 3.0 to 4.0 for the models E1, E2 and E3 (Fig. 2, top).  366 

Maximised likelihood values (Table 1) indicate that the transition from the null model E0 to the 367 

model E1 is highly statistically significant (F4,30 = 8.82; p < 10-4), whereas the evidence in 368 

support of either elaboration from E1 is much weaker (F2,28 = 1.23, 1.80; p = 0.31, 0.18; for the 369 

transitions to E2 and E3 respectively).  Inspection of the plot of covariate regression coefficients 370 

for model E1 (Fig. 2, middle) indicates that the bm are universally negative (higher than normal 371 

precipitation in any month is associated with lower abundance indices) with the strongest 372 

influence of precipitation in mid-summer.  Values of the covariate regression coefficients decay 373 

by a factor of about 0.73 (= λ12) between successive years.  Regression coefficients estimated 374 

using DLM follow a similar pattern to those estimated using model E1, with no obvious benefit 375 

indicated by the maximised log likelihood (Table 1, column 2). The time series plot showing 376 

abundance indices and fitted values (Fig. 2, bottom) indicates broad agreement between 377 

observed and modelled series. 378 

 379 

3.2 Summaries of model fits across all species in the study 380 

The histograms of p-values for the augmentation from E0 to E1 have a more pronounced peak 381 

close to p=0 compared with either of the elaborations from E1 to E2 or E1 to E3 (Fig. 3).  This 382 

is true both when the covariates are based on mean temperatures and on precipitation: thus 383 

although there is certainly evidence to support the more elaborate models for some species (as 384 

evidenced by the non-uniform nature of the histograms), the main gain is to be had in inclusion 385 

of the first order Fourier terms in the underlying model. 386 
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 387 

Comparison across species of AIC values obtained from fitting model E1 with 480 monthly 388 

weather covariates (spanning 40 years) with values obtained from fitting model E1 with 12 389 

monthly weather covariates (spanning 1 year) strongly indicated support from the likelihoods 390 

for extending the series of weather covariates beyond the twelve most recent months at the cost 391 

of no extra parameters.  For mean temperature, the AIC values for using 480 covariates was at 392 

least 2.0 greater than the corresponding value using 12 covariates for 164 species, whereas AIC 393 

differentials exceeded 2.0 in the opposite direction for just 23 species.  The corresponding 394 

figures using the precipitation covariate were 176 and 11 respectively (histograms of AIC 395 

values provided as Supplementary Material). 396 

 397 

The histogram of annualised decay parameter values, λ12, has modes close both to 0 (only the 398 

covariates for the 12 months leading up to the abundance index are relevant) and to 1 399 

(covariates for the 12 months leading up to the abundance index are given little more weight 400 

than covariates for earlier years).  These modes are present for both temperature and rainfall 401 

covariates, and all three models (Fig. 4).  Hence, the observation from the two example species 402 

that the regression coefficients decay steadily towards zero over approximately five years is 403 

not generally followed. 404 

The SWMCRC values for temperature demonstrate a peak in positive values (AS+
m) 405 

corresponding to July of the year of the abundance index, the values for this and adjacent 406 

months substantially exceeding the critical value of a one-sided test at the 5% significance level 407 

(Fig. 5).  There is also some relatively weak evidence of an overall negative effect of 408 

temperature in January and February of the year of the abundance index.  Conversely, for 409 

precipitation, the SWMCRC shows a peak in the negative (AS-
m) values, again with a peak 410 

corresponding to July of the year of the abundance index.  There are no months in which the 411 
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positive SWMCRC values (A+
m) even come close to statistical significance for precipitation, 412 

reinforcing the overall negative effect of unusually high precipitation on abundance indices 413 

across species. 414 

 415 

4. Discussion 416 

The above analyses showed strong evidence for an effect of temperature upon wren abundance.  417 

There was a positive effect of warmer winter temperatures, peaking in January, and a weaker 418 

negative effect of summer temperature.  The effects of winter temperature support the results 419 

of previous studies of this species, whose populations are known to decline in response to cold 420 

winters (Greenwood & Baillie 1991, Newton et al. 1998, Morrison et al. 2016), due to reduced 421 

survival as a consequence of prolonged periods of frost and snow (Peach et al. 1995, Robinson 422 

et al. 2007).  The negative effect of summer temperature upon wren populations has not 423 

previously been reported although there is increasing evidence that hot summer weather can 424 

have a negative impact on bird populations in the UK (Pearce-Higgins et al. 2010, Pearce-425 

Higgins et al. 2015). 426 

 427 

Little seems to have been published previously about the sensitivity of flounced rustic 428 

populations to either temperature or rainfall.  The negative associations between abundance 429 

and rainfall, including timing of peak and least sensitivity, appear to be well aligned with the 430 

life history of the species: after hatching in early autumn, the larvae descend to the soil where 431 

they feed on stem bases and roots before pupating underground, usually in June (Waring and 432 

Townsend 2009).  The long period spent underground, when the larvae are susceptible to water 433 

logging, is a likely explanation for rainfall correlating negatively with abundance and may 434 

contribute to their preference for light, calcareous soils.  The period of peak sensitivity to 435 
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rainfall comes during pupation, whilst the period of least sensitivity occurs during mid-winter 436 

when the larvae are likely to be least active. 437 

 438 

The syntheses of results across all species in our study threw up some interesting generalities.  439 

 First, the lack of uniformity in the histograms of p–values provides evidence in support 440 

of all three models E1, E2 and E3, for both the weather variables considered.  Effects of 441 

temperature are more strongly supported by the data than effects of rainfall, and the evidence 442 

supporting the augmentation of the null model E0 to E1 model with the four additional 443 

underlying parameters was considerably greater than either of the elaborations considered (the 444 

additional two underlying parameters in the cyclic model that extend E1 to either E2 or E3). 445 

 Second, the benefit of including more than the most recent 12 months of weather data 446 

was often considerable, with AIC differences greater than 2.0 in favour of having 480 monthly 447 

weather covariates outweighing AIC differences greater than 2.0 in favour of having 12 448 

monthly weather covariates exceeding 5 to 1 for mean temperature and exceeding 15 to 1 for 449 

precipitation. 450 

 Third, the estimated annualised decay parameter values, λ12, are bimodal, and tend to 451 

be estimated approximately equally often in the intervals from 0 to 0.1, from 0.1 to 0.9 and 452 

from 0.9 to 1.  For example, with model E1 the percentage of species for which λ12 < 0.1 is 43% 453 

for mean temperature and 38% for rainfall, whereas the equivalent figures for λ12 > 0.9 are 24% 454 

and 32% respectively.  Having λ estimated as being close to 0 is an indication that the influence 455 

of the weather is confined to the 12 months leading up to the index value. Biologically, this 456 

would relate to a species with a low survival and high turnover of individuals and a strong 457 

effect of weather on productivity and or survival.  Conversely, having λ close to 1 means that 458 

the effect of any departure in the index value due to variation in the weather is long-lasting, 459 

and corresponds to the situation for which Freeman and Newson (2008) noted that models for 460 
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differences in log abundance with a single covariate are equivalent to models for log abundance 461 

using as explanatory variable the cumulative sums of the original covariate.  Biologically, this 462 

might relate to situations in which weather impacts productivity or juvenile survival, and in 463 

which individuals have high survival and long-life spans.  Therefore the impact on abundance 464 

of weather from 5 years ago is almost as great as the impact on abundance of weather from last 465 

year, because both years have contributed reasonably similar numbers to the current 466 

population.  It was precisely to provide a bridge between the use of a single covariate and its 467 

cumulative sum that we began considering the exponential decay term which forms an integral 468 

part of our models, hence by construction the models described cater for both situations and 469 

intermediates in a manner determined by the data. 470 

 Fourth, the SWMCRC values from the E1 model indicate that associations between 471 

abundance indices and temperature are on average consistently positive across species in the 472 

summer of the index year from May to August, whereas the associations with precipitation then 473 

are on average consistently negative across species.  Whilst this observation ignores the 474 

potential benefit of the more elaborate models and does not apply to those species with early 475 

reference months, the main benefits of including weather data in the models are derived from 476 

the step from E0 to E1and some 94% of species investigated had reference months of May or 477 

later: hence there is certainly a suggestion that variation between years in summer weather 478 

tends to be important for the species we selected for inclusion in this study. 479 

 480 

Although data for the two exemplar species were well-behaved in terms of underlying 481 

parameter estimation, fitting the models to data from all 501 species involved in our study was 482 

not always so straightforward.  To implement all model fitting in a single loop required a 483 

system to trap non-convergence errors and to follow these with conditional continuation steps 484 

so that parameter estimates were always obtained, albeit with some error flags.  There were 485 
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also difficulties with constructing confidence intervals for species when the plausible range of 486 

the decay parameter λ was not constrained both above and below by the likelihood, in which 487 

case confidence intervals could be calculated conditional on the value of the λ, but these need 488 

interpreting with considerable caution. 489 

 490 

The modelling approach described above can potentially be extended in many different 491 

directions. 492 

 One possibility is to investigate the use of error structures with more complex forms of 493 

long-range dependency than the Gaussian AR(1) relationships assumed here. 494 

 A second possibility is to return to the use of penalised spline regressions for defining 495 

the covariate regression coefficients, but doing so separately for the periodic term and the decay 496 

term.  Estimation of the two smoothing terms could either be performed simultaneously or 497 

using sequential iteration between each using the back-fitting algorithm (Hastie and Tibshirani, 498 

1990), allowing limited flexibility in the decay term to avoid overlap between the two terms. 499 

 A third possibility is to embed our models for abundance into a state space framework, 500 

thereby separating the effect of weather on population dynamics from the effect of weather on 501 

the observation process.  This distinction is most acutely required for abundance indices which 502 

are derived from a summation of records over a long period of the year and are hence most 503 

likely to be influenced by both population size and the longevity of adults. 504 

 A fourth possibility would be to take a multi-species approach to the analysis, in 505 

combination with a state-space population model in the manner of Mutshinda, O'Hara & 506 

Woiwod (2011).  Whilst multi-species modelling would have to be restricted to small numbers 507 

of species at a time, this would allow exploration of the extent to which changes in abundance 508 

are the result of species-weather interactions or due to inter-species interactions (Ockendon et 509 
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al. 2014), the latter having been postulated as a cause of lagged population responses to 510 

variation in weather variables (e.g. Pearce-Higgins et al. 2010). 511 

 512 

In conclusion, we believe that this paper represents a considerable advance on previous 513 

approaches to modelling the effect of weather on species abundance indices by making a more 514 

holistic use of historical weather records and relying less on potentially arbitrary a priori 515 

decisions about variable selection in the absence of much ecological information. 516 
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Tables and Figures 622 

Table 1 623 

Summary of results from the model fitting, indicating for each species and each model: the 624 

maximised log likelihood; the estimated AR(1) correlation coefficient; and twelfth power (ie 625 

annual influence) of the estimated decay rate parameter. 626 
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 627 

  Species 

Model 
(number of 
fixed effect 
parameters) 

Term 

Wren Flounced rustic 

E0 (2) 
log likelihood 10.09 -21.96 

AR(1) correlation   0.44   0.56 

E1 (6) 

log likelihood 29.99   -4.32 

AR(1) correlation   0.47   0.53 

λ12   0.51   0.73 

E2 (8) 

log likelihood 32.10   -3.09 

AR(1) correlation    0.44   0.52 

λ12   0.42   0.73 

E3 (10) 

log likelihood 30.95   -2.52 

AR(1) correlation   0.46   0.57 

λ12   0.59   0.69 

DLM (14) 
log likelihood 33.70 -0.48 

AR(1) correlation 0.38 0.57 

 628 

 629 

  630 
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 631 

Fig. 1 632 

Results of fitting the models to wren data: profile likelihood from initial grid search for the 633 

logit of the monthly decay rate parameter κ (top), for models E1 (solid line), E2 (dashed) and 634 

E3 (dotted); covariate regression coefficients bm (centre) in model E1 for 72 monthly 635 

temperature covariates up to the month to which the index relates (June, m=1, r=6) (with 95% 636 

confidence intervals), along with values derived from DLM (circles) using 48 monthly 637 

temperature covariates; observed time series, showing fitted values from model E1 with  95% 638 

confidence intervals for the fitted values (bottom). 639 

 640 

Wren, grid search results
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Fig. 2 641 

Results of fitting the models to flounced rustic data: profile likelihood from initial grid search 642 

for the logit of the monthly decay rate parameter κ (top), for models E1 (solid line), E2 (dashed) 643 

and E3 (dotted); covariate regression coefficients bm (centre) in model E1 shown for 60 monthly 644 

precipitation covariates up to the month to which the index relates (September, m=1, r=9) (with 645 

95% confidence intervals), along with values derived from DLM (circles) using 48 monthly 646 

temperature covariates; observed time series, showing fitted values from model E1 with  95% 647 

confidence intervals for the fitted values (bottom). 648 

 649 

Flounced rustic, grid search results
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Fig. 3 650 

Histograms of p-values across all species using mean temperature (left) and precipitation 651 

(right) as covariates, for augmentation from: the null to first order models (E0 to E1, top, using 652 

all 501 species); the first order to the second order model by addition of a periodic term with 653 

period 6 months (E1 to E2, middle, using those 484 species with at least 20 abundance index 654 

values); and the first order to the second order model by addition of a periodic term with period 655 

24 months (E1 to E3, bottom, same 484 species). 656 
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Fig. 4 658 

Histograms of estimated annualised decay coefficients (λ12) using mean temperature (left) and 659 

precipitation (right) as covariates for: the first order model E1 (top, using all 501 species); and 660 

the second order models with a periodic term with period 6 months (E2, middle, using those 661 

484 species with at least 20 abundance index values); and with period 24 months (E3, bottom, 662 

same 484 species). 663 
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Fig. 5 666 

Standardised weighted mean covariate regression coefficients (SWMCRC, see text for details) 667 

constructed across all 501 species for model E1 using mean temperature covariate data (top) 668 

and precipitation (bottom), showing calculated values for positive (AS+
m) and negative (AS-

m) 669 

coefficients (solid lines) and one-sided 95% confidence intervals (dashed lines).670 
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