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Abstract

The enormous global burden of vector-borne diseases disproportionately affects poor peo-

ple in tropical, developing countries. Changes in vector-borne disease impacts are often

linked to human modification of ecosystems as well as climate change. For tropical ecosys-

tems, the health impacts of future environmental and developmental policy depend on how

vector-borne disease risks trade off against other ecosystem services across heteroge-

neous landscapes. By linking future socio-economic and climate change pathways to

dynamic land use models, this study is amongst the first to analyse and project impacts of

both land use and climate change on continental-scale patterns in vector-borne diseases.

Models were developed for cutaneous and visceral leishmaniasis in the Americas—ecolog-

ically complex sand fly borne infections linked to tropical forests and diverse wild and

domestic mammal hosts. Both diseases were hypothesised to increase with available inter-

face habitat between forest and agricultural or domestic habitats and with mammal biodiver-

sity. However, landscape edge metrics were not important as predictors of leishmaniasis.

Models including mammal richness were similar in accuracy and predicted disease extent to

models containing only climate and land use predictors. Overall, climatic factors explained

80% and land use factors only 20% of the variance in past disease patterns. Both diseases,

but especially cutaneous leishmaniasis, were associated with low seasonality in tempera-

ture and precipitation. Since such seasonality increases under future climate change, partic-

ularly under strong climate forcing, both diseases were predicted to contract in geographical

extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst

visceral leishmaniasis contracted slightly more under strong than weak management for

carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was rel-

atively insensitive to future alternative socio-economic pathways. Models parameterised at
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narrower geographical scales may be more sensitive to land use pattern and project more

substantial changes in disease extent under future alternative socio-economic pathways.

Introduction

Vector-borne diseases have globally significant impacts on public health and socio-economic

development. They make up around one-sixth of the illness and disability worldwide, causing

an estimated one billion human infections and one million human deaths each year [1]. Recent

changes in vector-borne disease patterns have been attributed to wide-ranging drivers, includ-

ing climate change, increasing rates of international trade and travel and human modification

of ecosystems through intensive farming, dams and irrigation, deforestation, human settle-

ment and urbanisation [2, 3].

The current global burden of vector-borne diseases falls disproportionately onto poor pop-

ulations in tropical, developing countries [4], and exposure is often linked to specific human

uses of ecosystems at the landscape level [3, 5]. Pathogens, hosts and vectors involved in vec-

tor-borne disease transmission cycles are all environmentally sensitive and vary in their associ-

ations with intact natural ecosystems. Impacts of ecosystem changes on vector-borne

incidence thus depend on a complex interplay between ecological factors such as the ratio of

competent to non-competent hosts and vectors (determined by species-specific responses to

biodiversity or ecosystem change) [6] and social factors that determine the contact rates

between humans and infected vectors [7]. This interplay is highly context dependent—in the

terminology of the ecosystem service concept, ecosystems may provide the “disservice” of

maintaining transmission cycles which may lead to infection of humans and/or the “service”

of regulating those cycles and controlling spillover into human populations [3]. Tropical eco-

systems are under huge pressure from competing land uses and deforestation [8]. They play a

critical role in supporting the livelihoods and economic development of large poor communi-

ties [9] but also in climate mitigation since they are key terrestrial carbon stores and biodiver-

sity hotspots [10]. For tropical ecosystems then, understanding trade-offs between vector-

borne disease “disservices” or “services” and other ecosystem services across heterogeneous

landscapes [11] is critical for (i) prediction of health impacts of environmental and develop-

ment policies that may alter ecosystems (ii) development of decision-support tools to target

such measures [4, 12].

A first step in understanding disease-ecosystem linkages is to integrate land use patterns,

ecosystem and social factors into interpretations of past disease patterns at a range of geo-

graphical scales [13]. Conditional on high explanatory power for past disease patterns, this can

facilitate the subsequent integration of these factors into projections of future disease risk

given alternative environmental and development policies, as recommended by [4]. Though

past vector-borne disease impacts are now quite routinely linked to non-climatic as well as cli-

matic drivers [14, 15], projections of future change in risk for specific diseases are still

restricted to climate change scenarios and neglect future socio-economic and public health

changes [4] [16] (but see [17]). Furthermore, projections tend to focus on temperature changes

rather than precipitation changes, that are easier to represent in global climate models and in

terms of mechanistic effects on disease transmission and are rarely validated with observed

disease patterns [4]. This study is one of the first to project future vector-borne disease patterns

at a continental scale, accounting for future policy-driven changes in land use as well as

climate.

Impacts of future climate change and mitigation options on leishmaniasis in the Americas
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Leishmaniasis is transmitted by the bite of Phlebotomine sandflies and is caused by obligate

parasite protozoa of the genus Leishmania [18]. These parasites have complex life cycles

involving multiple insect vectors and mammalian reservoir species [18, 19]. Infection results

in wide ranging symptoms, dependent on Leishmania species, with the two main outcomes

being cutaneous leishmaniasis (CL, 0.7–1.2 million annual cases, [20]) where skin lesions

develop around the bite site and visceral leishmaniasis (VL, 0.2–0.4 million annual cases, [20])

that affects the spleen, liver and other lymphoid tissues and can be fatal if left untreated. A par-

ticularly debilitating cutaneous form is mucosal or mucocutaneous leishmaniasis (~4% of

cutaneous cases in the Americas [21]) which attacks the mucous membranes of the nose,

mouth and throat cavities and surrounding tissues and can cause mutilation, disabilities and

livelihood impacts if not treated in a timely manner. Collectively, the leishmaniases have huge

impact, ranking ninth amongst individual infectious disease burdens globally, with around a

10% death rate [20]. In particular, VL ranks third amongst vector-borne diseases in the num-

ber of Disability Adjusted Life Years (number of years lost due to ill-health, disability or early

death from a disease) attributed to it (2005 and 2013, [22])

In the Americas, VL is linked with zoonotic peri-domestic cycles with dogs as the main res-

ervoir and foxes and jackals as a sylvatic reservoir [23] [24]. CL is linked to zoonotic, sylvatic

cycles involving a wide diversity of wild mammal reservoirs (rodents and large mammals) and

sandfly species [19, 23]. Socio-economic factors and ecosystem changes have been linked to

impacts of both disease forms, including urbanisation, deforestation, agricultural intensifica-

tion (dams and irrigation, new crops), human settlement (including migration from rural to

urban areas), poverty [15] and marginalisation [23, 25–30]. The precise roles of wild and

domestic hosts and different sandfly species in transmission is unquantified for most Leish-
mania parasites and contexts [18, 19]. However, Wood et al. [6] cite the New World Leish-
mania species causing the cutaneous disease form (e.g. Leishmania braziliensis, Leishmania
guayanensis, Leishmania. panamensis), as examples of parasites that are associated geographi-

cally with undisturbed ecosystems because they depend on reservoir mammal hosts that are

more abundant in undisturbed than in disturbed habitats. By contrast, the visceral leishmania-

sis parasite in the Americas, Leishmania infantum, was originally a zoonotic rural infection but

has spread into urban and peri-urban areas because of both domestic dog reservoirs and the

adaptable sandfly vector, Lutzomyia longipalpis, can utilise anthropogenic habitats [25]. Wood

et al. [6] thus predict that cutaneous leishmaniasis impacts will be positively associated with

intact ecosystems and biodiversity whilst the converse will be true of visceral leishmaniasis.

Working with wide-ranging stakeholders, detailed socio-economic policy scenarios have

been developed for this region, encompassing weak versus strong management for carbon,

biodiversity and ecosystem services, and mapped geographically from 2005 to 2050 using

dynamic land use modelling [31, 32]. This provides us with the opportunity to understand the

role of land use and ecosystem patterns alongside climate as drivers of two high-impact vec-

tor-borne diseases linked to tropical forests.

The aim of this study is to develop a novel framework for understanding vector-borne dis-

ease services and disservices in an ecosystem context by:

• Quantifying the relative role of climate, land use and ecosystem patterns, and mammal bio-

diversity in driving past distributions of cutaneous and visceral leishmaniasis

• Ranking potential socio-economic and policy scenarios, with weak and strong management

for carbon, biodiversity and ecosystem services, and climate pathways in terms of likely dis-

ease disservices from the leishmaniases

Impacts of future climate change and mitigation options on leishmaniasis in the Americas
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We hypothesise that human disease occurrence will be more likely where forest habitats are

fragmented by agricultural intensification or urbanisation, since this would either (i) newly

expose people to the leishmaniasis pathogen pool circulating in sylvatic cycles or (ii) perturb

pathogen-vector-host dynamics in the system, enhancing cross-species transmission rates

(two alternative mechanisms for impacts of land use change on disease emergence set out in

[7]). We expect the probability of leishmaniasis occurrence to increase with the availability of

human-modified habitats (crops, grazing, urban areas) and the density of forest and crop

edges (edge density metrics), indicative of interface habitats within which human exposure

could occur [23]. We expect these effects to be stronger for CL than VL given the wider range

of wild mammal reservoir species incriminated in transmission [23]. For similar reasons, we

expect CL, to be particularly influenced by mammal biodiversity.

Materials and methods

Leishmaniasis distribution data

For South and Meso America (including Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecua-

dor, El Salvador, French Guiana, Guatemala, Guyana, Honduras, Mexico, Nicaragua, Panama,

Paraguay, Peru, Suriname, Venezuela), point level occurrence of CL, (3338 records available)

and VL (859 records available) cases were obtained from the dataset compiled by [33]. This

included data from literature sources, from the HealthMap database (http://healthmap.org/en/

), from GenBank and Centre National de Référence des Leishmanioses (CNR-L) in Montpel-

lier, France. Disease presence was summarised at the study grid-square resolution of 5 arc

minutes (approximately 10 by 10km squares at the equator), giving 201 presence cells for VL

and 803 presence cells for CL (Fig 1). The resulting observed disease distribution was, there-

fore, independent of disease burden or case density. The dataset spans the period between

1970 and 2013, but the vast majority of squares (73.8% for CL and 74.1% for VL) in the disease

distribution have been recorded recently, since 1990.

CL and VL records from Brazil, between 2008 and 2011, were used to obtain an indepen-

dent estimate of disease incidence for model validation. These records of infection, at a

Fig 1. Map of study area indicating the distributional data for the leishmaniases (black circles) used to parameterise

environmental models (a) cutaneous leishmaniasis (n = 803 squares) (b) visceral leishmaniasis (n = 201 squares). Grey squares

indicate the locations of pseudo-absence data points for one iteration of the model. Tick marks on the x and y axes indicate degrees latitude

and longitude respectively and the study grain is 5 arc minute squares.

https://doi.org/10.1371/journal.pone.0183583.g001
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municipality level, were obtained from the Brazilian Ministry of Health; the Sistema de Infor-

mação de Agravos de Notificação (SINAN, http://dtr2004.saude.gov.br/sinanweb/) reporting

network. The average number of infections over these four years was calculated for each

municipality and divided by population size for 2000 from The Gridded Population of the

World version 3 (GPW3) population density database [34].

Socio-economic and climate change scenarios

We considered a matrix of six alternative future scenarios organised around two important

dimensions: the extent of climate change and possible future socio-economic conditions

(Fig 2). The Shared Socio-economic Pathway [35] framework depicts five different global

futures (SSP1-5) with different socio-economic conditions, reflecting different socio-economic

challenges to climate change mitigation and adaptation and encompassing possible trends in

agriculture and land use. Here, for Meso and South America, we developed storylines under

two SSPs; SSP1 represents Sustainability where there are sustained efforts to reduce resource

use intensity and fossil fuel dependency; SSP5 represents Conventional development, in which

the world focuses on economic growth and the energy system is dominated by fossil fuels

(rather than biofuels for example) and ecosystems are highly managed [31]. Within each SSP,

policies to manage carbon stocks and biodiversity can be strong (SSP1p and SSP5p), account-

ing for multiple ecosystem services, or weak, with high rates of deforestation and degradation

(SSP5s), making three alternative SSP/policy combinations in the matrix. The two contrasting

climate forcing scenarios in the matrix were the representative concentration pathways (RCPs)

RCP 2.6 and RCP 8.5 [36, 37].

Land use change under alternative SSP/policy combinations was modelled using the CLUE

(Conversion of Land Use and its Effects) model, which dynamically simulates competition

between land use types under different drivers of land use change [32]. This model was applied

Fig 2. The trajectory of changes in climate and land use under alternative future socio-economic storylines, climate change

pathways and policies. A matrix of six alternative scenarios is depicted, 3 SSPs in columns x 2 climate change pathways in rows. Each

scenario was realised in terms of mapped values of cover of CLUE land use categories and Worldclim climate variables in 2005 (to reflect

the recent past) and 2050.

https://doi.org/10.1371/journal.pone.0183583.g002
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to the study area at a grid-square resolution of 30 arc seconds. Scenarios of future urban

expansion were not considered, and the urban land cover was treated as a static land use cate-

gory. Data for climate conditions under the RCPs were obtained from Worldclim 2050 projec-

tions for HadGEM2-ES global circulation models (www.worldclim.org) at a resolution of 5 arc

minutes (0.0833 degrees latitude/longitude) for the climate predictors given in Table 1. Fig 2

summarises the trajectories of changes in land use and climate variables under the different cli-

mate change pathways and SSP and policy combinations (see Supplementary Information S2

File). The year 2005 represented the recent past, with all scenario combinations run to 2050.

Environmental predictors

A prerequisite to predicting the impact of future scenarios on leishmaniasis distribution was to

establish the strength of relationships between leishmaniasis and environmental factors in the

recent past. For both the 2005 and 2050 time points, a suite of gridded, biologically plausible,

correlates was generated within climate, landscape and host categories.

Climate. Temperature and precipitation have been found previously to be key predictors

of past sand fly and disease distributions [15, 30, 38–40]. Humidity and moisture levels deter-

mine the availability of breeding and resting sites of phlebotomine sandflies [18] whilst tem-

perature affects the development of the Leishmania parasite inside the sand fly [41, 42] as well

Table 1. Potential environmental predictors of leishmaniasis distribution.

Category Variable description (abbreviation)

Climate annual mean temperature (bio1)

Climate annual precipitation (bio12)

Climate precipitation seasonality (bio15)

Climate precipitation of driest quarter (bio17)

Climate temperature seasonality (bio4)

Climate maximum temperature of warmest month (bio5)

Landscape mean elevation (across 30 arc second cell in 5 arc minute cell) (elevation)

Landscape Forest cover (forest cover) and fragmentation (forest edge)

Landscape Flooded /wetland cover

Landscape shrubland cover

Landscape cover of cropland linked to food, feed and fibre products (crop FoodFeedFiber)

Landscape shrubland grazed cover

Landscape grassland grazed cover

Landscape grasssland cover

Landscape cover and fragmentation of cropland linked to perennial food crops FoodPerennial cover (crop

FoodPerennial cover and crop FoodPerennial edge)

Landscape sparse grazed cover

Landscape sparse cover

Landscape urban cover

Landscape cover and fragmentation of energy crops (crop energy cover and crop energy edge)

Landscape Global Irrigated Area

Host mammal species richness

Host Rodentia richness

Host Primate richness

Host Marsupial richness

Host Carnivoria richness

Host Chiroptera richness

https://doi.org/10.1371/journal.pone.0183583.t001
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as key sand fly life cycle parameters, including development and emergence rates, oviposition,

metabolism and adult mortality [18]. Six uncorrelated (r < 0.8) WorldClim seasonal variables

were selected amongst the nine used previously to model sand fly and Leishmaniases distribu-

tions [38, 39] (Table 1).

Landscape. Around 60 sand fly vector species are known to be involved in the transmis-

sion of multiple Leishmania pathogens to humans in South and Meso America [18] [43].

Though some sandfly vectors are forest specialists, other species utilise human-modified habi-

tats including cropland, coffee plantations, shrubland and peri-urban areas [44, 45]. Given this

inter-specific variability in habitat associations, we examined the importance of availability

and fragmentation of a wide range of CLUE land use classes that could contain sandfly and

human habitats and might be impacted by different climate mitigation options (Table A in S1

File). Fragmentation metrics such as the length of edge between anthropogenic and natural

habitats are increasingly being linked to higher vector-borne disease incidence or occurrence

[46, 47] because they reflect the amount of interface habitat where human exposure to patho-

gens occurs. The full rationale for selection among CLUE classes and processing of these frag-

mentation metrics is described in Supplementary Information S1 File.

Hosts. Human population density and urban land cover was considered as a predictor

because (i) for a subset of Leishmania pathogens, humans may function as reservoir of infec-

tion rather than an incidental hosts [48]; (ii) for the visceral leishmaniasis pathogen, L. infan-
tum, domestic dogs are important reservoirs [25, 48]. Since data on dog densities are not

available at a continental scale, we assume the incidence of dogs to scale with the incidence of

human populations at this study grain. The GPW3 human population density data and the

Urban Extents surface from the Global Rural–Urban Mapping were highly correlated with the

CLUE urban cover class, therefore only the latter predictor was included in models. The fact

that human case reporting may be less likely in rural areas with poor access to health care is

accounted for in the model pseudo-absence selection procedure (see later).

Sylvatic wild mammal species, spanning several orders, are widely implicated as reservoirs

of the Leishmania species that cause cutaneous leishmaniasis [19]. For the Leishmania species

causing visceral leishmaniasis in peri-domestic settings, it is possible that wild mammals pro-

vide a common source of infection to humans and dogs [19, 25]. Since the roles of wild mam-

mal species and assemblages in transmission are important but poorly quantified, and spatial

population data for individual wild mammal species are lacking at a continental scale, we

included available spatial patterns in mammal richness [49] as a predictor. Recent past models

were developed and compared using three suites of predictors: 1) abiotic (climate + land use)

only 2) abiotic + richness of all mammal species 3) abiotic + richness of individual mammal

orders (Primata, Chioptera, Marsupialia, Rodentia, Carnivora) that either have high numbers

of species already incriminated as reservoirs or that have high ecological diversity and overlap

with human habitation.

Modelling leishmaniasis distributions with boosted regression trees

A boosted regression tree (BRT) modelling [50, 51] framework was used to determine the

sensitivity of recent occurrence of CL and VL to land use, climate and host variability, and

to generate maps of recent distributions and future distributions under socio-economic pol-

icy and climate change scenarios. BRTs combine regression trees, which build a set of deci-

sion rules on the predictor variables by portioning the data into successively smaller groups

with binary splits [50, 51], and boosting, which selects the tree that minimises the loss of

function, to best capture the variables that define the distribution of the input data. BRTs

have been shown to have high performance amongst methods used to predict species

Impacts of future climate change and mitigation options on leishmaniasis in the Americas
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distributions [52], probably due to their ability to fit complex, non-linear responses to envi-

ronmental covariates.

Since boosted regression trees require both presence and absence data, a strategy was devel-

oped for selecting pseudo-absence data. Since, human cases were likely to be recorded more

intensively in urban than in rural areas, to mimic the process by which presence data are gen-

erated, the selection of pseudo-absences (equal in number to the presences after [53]) was

weighted in proportion to human density values in the GPW3 layer. Twenty different input

datasets were generated by repeating this process, and twenty BRT sub-models were fitted

using the gbm.step function of the dismo package in R [54]. Model settings were as follows:

learning rate = 0.05, tree complexity = 4, bag rate = 0.5. The gbm.step function automatically

identifies the optimum number of trees for a BRT model using ten-fold cross-validation,

selecting the number of trees that minimises hold-out deviance (cross-validation deviance)

across folds. In addition to the cross-validation deviance, gbm.step reports several metrics of

model performance in cross-validation across folds including (i) the Area Under the Receiver

Operator Curve Statistic (AUC) on hold-out dataset [55], or cross-validation AUC, where an

AUC value of 0.5 indicates no discriminative ability between presence and absence, and a

value of 1 indicates perfect discrimination; (ii) cross-validation coefficient, which is the Pear-

son’s correlation coefficient between the predicted probability of presence and the true pres-

ence/background for the hold-out dataset. We report the average of these metrics across the

twenty BRT sub-models. It should be noted that since the models are parameterised with pres-

ence-only data and the true prevalence of the disease across the study region is unknown, they

predict the relative rather than absolute probability of presence between cells.

Relative contribution statistics of predictor variables are reported only for the BRT model

with the optimum number of trees (not for the folds). Relative importance is defined as the

number of times a variable is selected for splitting, weighted by the squared improvement to

the model as a result of each split and averaged over all trees [56]. These contributions are

scaled to sum to 100, with a higher number indicating a greater effect on the response. Again

we report the average of these values across the twenty BRT sub-models. This model fitting

process was repeated for three different suites of environmental predictors as above.

To predict the distribution of leishmaniases under recent past and future land use and climate

change scenarios, each BRT-submodel (from the abiotic-only suite of predictors) was applied to

the prediction layers for a given land use and climate combination using the predict.gbm func-

tion of the gbm package [57] in R. The predicted relative probability of presence was averaged

across sub-models to produce an ensemble relative probability of presence (and standard devia-

tion). External validation of recent past models was achieved by correlating the average case rate

per municipality (2007–2011, see above) with the average predicted relative probability of pres-

ence across pixels in that municipality for each disease form. For each BRT model, the threshold

relative probability of presence that maximises discrimination between presence/background for

the hold-out dataset was calculated by gbm.step and averaged across folds (cross-validation

threshold). Occurrence patterns were compared between the recent past and the future pre-

dicted distributions by converting the recent past and future predicted distributions to binary

presence-absence maps per sub-model using the mean cross-validation threshold relative proba-

bility of presence for each recent past sub-model. The predicted extent of occurrence in terms of

number of study grid squares or pixels was calculated for the recent past and each future land

use and climate combination. The geographical extent of predictions was limited to the region

for which the environmental predictors were available (the most restrictive of these being the

land-cover metric) and of necessity omitted some adjacent areas of autochthonous leishmaniasis

transmission such as Argentina. As per the matrix in Fig 2, six different combinations of scenar-

ios were considered i.e. 2 RCPs x 3 SSPs x 1 circulation model (HadGEM2-ES).
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Results

Environmental predictors of the recent past distribution of leishmaniases

Tables 2 and 3 identify the top ten predictor variables for CL and VL respectively when abiotic

variables (here defined as climate and landscape) are considered alone or in combination with

mammal richness predictors. In the abiotic only models (left-hand columns, Tables 2 and 3),

for both disease forms, climatic predictors explain around 80% of the variance in distribution

and landscape predictors around 20%. For CL, temperature seasonality and precipitation sea-

sonality were key predictors, jointly explaining over 40% of the variance in distribution. CL

occurrence was favoured at low to medium levels of seasonality in both temperature and pre-

cipitation. For VL, annual mean temperature and temperature seasonality explained over 40%

of the variance in distribution and occurrence was favoured under warm annual temperature

conditions with low seasonality. The most important landscape predictor for CL was elevation

followed by grazed grassland cover, perennial food crop cover and the amount of irrigated

land. For VL, the amount of irrigated land was the key landscape predictor followed by eleva-

tion and grazed grassland cover. The edge landscape metrics did not rank amongst the ten

most important predictors for either disease form.

Table 2. Percentage contribution of top ten ranked predictors to models of cutaneous leishmaniasis where different sets of predictors were con-

sidered (averaged across 20 sub-models).

Abiotic predictors only Abiotic predictors and all mammal richness Abiotic predictors and mammal order richness

Predictor mean sd Predictor mean sd Predictor mean sd

temperature seasonality(bio4) 31.4 2.3 richness (all mammals) 23.0 2.9 richness primates 18.6 2.2

precipitation seasonality(bio15) 10.4 1.5 temperature seasonality(bio4) 17.2 2.0 temperature seasonality(bio4) 10.3 1.1

elevation 8.1 1.0 precipitation seasonality(bio15) 7.4 1.0 richness Chiroptera 8.0 1.3

precipitation driest quarter (bio17) 6.6 1.4 elevation 6.4 1.0 richness marsupials 7.9 1.3

temperature annual mean (bio1) 5.8 0.7 max. temp. warmest month (bio5) 6.0 1.0 precipitation annual mean (bio12) 6.4 1.6

precipitation annual mean (bio12) 5.7 0.8 temperature annual mean (bio1) 5.2 0.7 richness Carnivora 6.2 0.9

max. temp. warmest month (bio5) 4.9 0.9 precipitation driest quarter (bio17) 4.8 0.9 precipitation seasonality(bio15) 4.6 0.7

grazed grassland cover 4.0 0.6 precipitation annual mean (bio12) 4.6 0.6 elevation 4.4 0.5

cropland foodperennial 3.5 0.9 grazed grassland cover 4.0 0.7 max. temp. warmest month (bio5) 3.9 0.6

Irrigated land area 3.0 0.6 cropland foodperennial 2.7 0.7 richness (Rodentia) 3.2 0.6

https://doi.org/10.1371/journal.pone.0183583.t002

Table 3. Percentage contribution of predictors to models of visceral leishmaniasis where different sets of predictors were considered (averaged

across 20 sub-models).

Abiotic predictors only Abiotic predictors and all mammal richness Abiotic predictors and mammal order richness

Predictor mean sd Predictor mean sd Predictor mean sd

temperature annual mean (bio1) 28.8 3.4 temperature annual mean (bio1) 26.5 4.8 richness primates 20.6 5.4

temperature seasonality (bio4) 12.7 2.7 richness (all mammals) 17.2 3.6 temperature annual mean (bio1) 17.9 3.9

precipitation annual mean (bio12) 7.2 1.4 precipitation annual mean (bio12) 6.6 1.2 richness marsupials 9.1 2.1

irrigated land area 6.8 2.2 temperature seasonality(bio4) 6.3 1.5 richness Chiroptera 7.1 2.0

elevation 6.0 1.4 grazed grassland cover 5.2 1.5 precipitation driest quarter (bio17) 4.3 1.8

grazed grassland cover 5.7 1.5 elevation 4.8 1.3 precipitation annual mean (bio12) 4.2 1.3

precipitation driest quarter (bio17) 5.2 2.0 precipitation driest quarter (bio17) 4.7 2.0 temperature seasonality (bio4) 3.6 1.0

max. temp. warmest month (bio5) 4.1 0.9 irrigated land area 4.3 1.9 elevation 3.3 0.9

precipitation seasonality(bio15) 3.4 0.8 max. temp. warmest month (bio5) 3.4 1.1 grazed grassland cover 3.3 1.2

forest cover 3.3 1.1 forest cover 3.1 1.2 max. temp. warmest month (bio5) 3.0 1.5

https://doi.org/10.1371/journal.pone.0183583.t003
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When richness of all mammals is added to the models (middle panel, Table 2), it becomes

the most important predictor for CL, explaining 23% of the variance, and the second most

important predictor behind annual temperature for VL, explaining 17% of the variance in dis-

tribution. The response plots (predicted relative probability of presence plotted as a function

of environmental variables, not shown) reveal that the probability of occurrence of both VL

and CL increases as mammal richness increases. When the richness of individual mammal

orders are added to the models, these again outrank some climate and landscape variables as

predictors (right-hand panel, Table 2). However, models incorporating mammal richness vari-

ables were not found to have substantially higher accuracy than models excluding mammal

richness variables (Table 3), differing in AUC or correlation coefficients values by 0.01 or less,

and they produced similar predicted patterns of occurrence (Figure A and B in S3 File).

Internal validation statistics of all models were high—for CL mean AUCs were 0.82 or

higher (Table 4a) and the mean correlations were 0.56 or higher. For VL, mean AUC were

0.85 or higher and the mean correlations were 0.63 or higher (Table 4b). Predicted relative

probability of presence from models with abiotic predictors showed significant positive corre-

lations with independent municipality level data on the prevalence of CL and VL (CL:

r = 0.214, p<0.0001; VL: r = 0.217, p<0.0001).

Though forest cover was not a top predictor in models, the predicted distribution of CL

largely coincides with the Amazon Basin and other areas of rainforest (Figs 3 and 4). Addi-

tional areas of occurrence are along the east coast and south of Brazil. The highest uncertainty

in these predictions is found in the west of the region (Fig 3b). In contrast, VL is predicted to

be less extensive and to occur largely in the east of the region, in agricultural areas in east and

south Brazil, and in the north along the coast (Fig 5a). The model outputs for VL are more

uncertain in areas of predicted absence in the Amazon and other forested areas (Fig 5b). Both

disease forms are predicted to be absent from high mountain areas, where annual mean tem-

peratures are low (Fig 4). Compared to predictions from recent global models by Pigott et al.

Table 4. Mean accuracy statistics for models of cutaneous and visceral leishmaniasis for models considering only abiotic predictors versus

those considering mammal richness alongside abiotic predictors. A. cutaneous leishmaniasis. B. visceral leishmaniasis.

A

Abiotic predictors only Abiotic predictors + all mammal

richness

Abiotic predictors + richness

mammal orders

Statistic Mean sd mean sd mean sd

Total deviance 1.39 0.00 1.39 0.00 1.39 0.00

Residual deviance 0.82 0.04 0.79 0.04 0.73 0.03

Cross-validation deviance 1.03 0.02 1.02 0.02 0.98 0.02

Cross-validation correlation 0.56 0.02 0.57 0.02 0.59 0.01

Cross-validation AUC 0.82 0.01 0.82 0.01 0.83 0.01

Cross-validation threshold 0.53 0.01 0.54 0.01 0.56 0.01

B

Abiotic predictors only Abiotic predictors + all mammal

richness

Abiotic predictors + richness

mammal orders

Statistic Mean sd mean sd mean sd

Total deviance 1.39 0.00 1.39 0.00 1.39 0.00

Residual deviance 0.53 0.08 0.56 0.06 0.54 0.06

Cross-validation deviance 0.94 0.04 0.93 0.03 0.90 0.04

Cross-validation correlation 0.63 0.03 0.64 0.02 0.65 0.02

Cross-validation AUC 0.85 0.02 0.86 0.01 0.86 0.01

Cross-validation threshold 0.57 0.02 0.58 0.02 0.59 0.02

https://doi.org/10.1371/journal.pone.0183583.t004
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[15], this study predicts both disease forms to occur slightly more widely but in similar geo-

graphical hotspots.

When the bias in disease recording towards more populous areas is not accounted for in

models, urban land cover is selected as the dominant predictor (Table A in S4 File) and overall

land cover effects are of as much importance as climatic effects. However, these uncorrected

models vastly under-predict the distributions of both disease forms (Figure A in S4 File) with

the corrected models showing greater consistency with predicted distributions from other

environmental models and with expert opinion on the geographical variability in cases [15].

Impact of future land use and climate changes on the geographical

extent of leishmaniases

Both representative concentration pathways show increases in annual mean temperature

(bio1) (obviously more pronounced in RCP 8.5), mean temperature seasonality (bio4) and

maximum temperature of the warmest month (bio 5) (Figure A in S2 File). The area of crop-

land increases in all scenarios but is most pronounced in the SSP5 scenarios, particularly

SSP5s (Figures B to D in S2 File). The amount of forest cover is reduced on average in the SSP

5 land use scenarios but is similar to current day values in SSP 1 (Figure E in S2 File).

Fig 6 compares the predicted extent of each disease across the whole study region under

recent past conditions versus each of the alternative climate change pathways and socio-eco-

nomic storylines (for the HadGEM2-ES climate model). Both leishmaniasis disease forms are

predicted to decrease in extent into the future, possibly due to association of both diseases with

low seasonality in both temperature and precipitation (seasonality in both these climate vari-

ables increases into the future).

For cutaneous leishmaniasis, the geographical extent of disease is predicted to decrease dra-

matically under all future scenarios, with the extent of decrease being greatest under the rcp

8.5 climate pathway (almost 50% decrease in extent versus 35% under rcp 2.6). Predicted

changed extents of CL were relatively insensitive to different socio-economic storylines.

Although decreases in extent are predicted on average across the region, some recent presence

zones will be maintained under all future scenarios and may even increase slightly in favour-

ability for disease (Figure A in S5 File, Fig 7), namely along the east coast of Brazil and in the

west, in Peru, Colombia, Ecuador and west Brazil. Areas of recent presence inland in north

and west Brazil are lost in all scenarios (Figure B in S5 File, Fig 7).

For visceral leishmaniasis, the predicted decreases in extent into the future were less dra-

matic than for CL, ranging from a 15 to 18% decrease, and were much less sensitive to climate

pathway than CL was. VL was predicted to be slightly more extensive under the 5s or 5p

Fig 3. Predicted (a) mean and (b) standard deviation of the relative probability of presence of CL and (c) the sum of times CL is

predicted to be present, across 20 runs of models built with abiotic variables only.

https://doi.org/10.1371/journal.pone.0183583.g003
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Fig 4. Geographical variation in selected (a) climate and (b) landscape predictors of leishmaniasis distribution in the

recent past period (2005).

https://doi.org/10.1371/journal.pone.0183583.g004
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storylines than the 1p storyline. geographical distribution of favourable conditions for this dis-

ease form are relatively stable between recent past and future scenarios, with stable presence

zones in the east of the region, in agricultural areas in east and south Brazil, and in the north

along the coast (Fig 8, Figure B in S5 File).

Discussion

This study advances understanding of the geographical determinants of cutaneous and visceral

leishmaniasis in the Americas by considering wide-ranging climate, landscape and ecological

risk factors in the same analysis. We provide the first predictions of future change in CL and

VL distributions under alternative climate pathways and socio-economic scenarios (strong

versus weak management for carbon stock and biodiversity and multiple ecosystem services)

by applying disease-environment relationships from the recent past to projected, scenario-spe-

cific, climate and land use changes.

Our finding that climate dominates as a driver of recent past patterns in both CL and VL is

consistent with widespread findings of significant temperature and precipitation effects on dis-

ease and sandflies at similar study grain size (~ 1-10km) [15, 30, 38–40]. It is also consistent

with known climatic impacts on sandfly and leishmaniasis life cycles [18]. Few empirical stud-

ies have linked disease or sandfly patterns to climate seasonality, but we found both disease

forms to be commonest in areas with narrow seasonal ranges of temperature and precipitation

[58, 59]. In such areas, immature development and adult survival of sandflies may be less com-

promised by drying and high temperatures [18].

We hypothesised that disease impacts, especially of cutaneous leishmaniasis, would scale

with the fragmentation of forests by agricultural intensification or urbanisation due to the

increased availability of interface habitats where human exposure could occur [23]. By con-

trast, we found that land use factors explained a small proportion (~ 20%) of the variance in

disease patterns for both CL and VL at this study grain. Crop types and grazed grassland cover

were ranked in the top ten predictors for both diseases but edge metrics did not rank at all

amongst top model predictors. Stronger impacts of landscape factors on leishmaniasis pat-

terns, particularly forest proximity, have been detected in studies conducted within smaller

geographical regions (single country/district) at a finer spatial grain (municipality or village

level surveys) and where the dependent variable (e.g. annual disease incidence) contains infor-

mation about the extent of disease impact [27, 29, 60]. We attribute the weak landscape effects

detected in this study (despite spatially continuous, fine-scale land use data) to the continental

study scale and presence-only nature of the available disease data, common to many global

Fig 5. Predicted (a) mean and (b) standard deviation of the relative probability of presence of VL and (c) the sum of times VL is

predicted to be present across 20 runs of models built with abiotic variables only.

https://doi.org/10.1371/journal.pone.0183583.g005
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Fig 6. The predicted extent of (a) cutaneous and (b) visceral leishmaniasis under recent past conditions and under alternative

climate change pathways and socio-economic storylines. The heavy blacklines across the middle of the box indicate median

predicted extent across the 20 model runs; the box indicates the interquartile range of the data whilst the whiskers indicates the

extremes. Note that the threshold that best predicted disease presence in cross-validation across model runs was used to assign pixels

to presence or absence classes (values in Table 3).

https://doi.org/10.1371/journal.pone.0183583.g006

Impacts of future climate change and mitigation options on leishmaniasis in the Americas

PLOS ONE | https://doi.org/10.1371/journal.pone.0183583 October 11, 2017 14 / 22

https://doi.org/10.1371/journal.pone.0183583.g006
https://doi.org/10.1371/journal.pone.0183583


Fig 7. Change in the predicted presence of cutaneous leishmaniasis between the recent past and future (2050) conditions under

alternative climate change and socio-economic scenarios. This was calculated by subtracting the number of times a pixel was predicted

as present in the recent past (across 20 model runs) from the number of times a pixel was predicted as present in the future. Areas in pink

show areas that are likely more favourable for disease and areas in blue show areas that are less favourable for the disease in the future.

https://doi.org/10.1371/journal.pone.0183583.g007
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Fig 8. Change in the predicted relative probability of presence of visceral leishmaniasis between the recent past and future (2050)

conditions under alternative climate change and socio-economic scenarios. This was found by subtracting the number of times a pixel

was predicted as present in the recent past (across 20 model runs) from the number of times a pixel was predicted as present in the future.

Areas in pink show areas that are likely more favourable for disease and areas in blue show areas that are less favourable for the disease in

the future.

https://doi.org/10.1371/journal.pone.0183583.g008
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infectious diseases [61]. We expect impacts of landscape and social factors to be easier to detect

when modelling disease distributions using case incidence or prevalence data that correspond

more closely to the intensity of transmission than presence-only data.

When mammal biodiversity was incorporated into models, we found a positive impact of

richness on patterns in both leishmaniasis forms. This predictor explained a slightly high pro-

portion of variance in CL than VL distribution, consistent with the stronger links of CL to syl-

vatic cycles and a diversity of wild mammal species [23]. This finding initially seems consistent

with the prediction of Wood et al. (2014) that New World cutaneous leishmaniases should

respond positively to biodiversity. In terms of mechanisms, more diverse communities of syl-

vatic wild mammal hosts may increase the pathogen pool to which humans are exposed (via

infected sandflies) or may alter the cross-species transmission potential by increasing the

abundance, susceptibility or contact rates of important hosts [7]. However, models including

mammal biodiversity were similar in accuracy and predicted geographical disease extent to

simpler models containing only abiotic climate and land use predictors. Although predictors

were screened for collinearity by pair-wise correlation analysis between predictors, the mam-

mal biodiversity predictors may be strongly related to particular combinations of climate or

land-use predictors at a continental scale [62]. This collinearity between global climate and

biodiversity layers is a key wider impediment to attempts to understand the relative effects of

these factors on regional disease patterns.

Disease records are often biased towards more populous areas, regions with strong health-

care systems and funds for surveillance and control, and towards habitats or hosts in which

primary disease impacts are felt (e.g. livestock, crops, people [63]). In contrast with the field of

ecology [64], models of disease distributions rarely account for biases in disease recording

despite their impacts on model accuracy and inference [53]. In their study of global leishmani-

asis distribution [15], Piggott et al. built a spatial layer of leishmaniasis presence from expert

opinion and used this to stratify pseudo-absence (and pseudo-presence) selection. We selected

an approach which accounted for the process by which case data arise, namely the bias towards

more populous areas with improved access to health care. Our results from preferentially

selecting pseudo-absence data in more populous areas, highlight the importance of correcting

for recording bias when modelling disease distributions [63]. In models that ignored these

recording biases, the impact of urban land cover on the disease was over-estimated, and the

disease distribution was vastly under-predicted, being extremely focal around urban areas

(Figure A in S4 File, Table A in S4 File). Such focal urban distributions are implausible epide-

miologically—initially, both diseases were linked to smaller, rural settlements near primary

forest [28] and visceral leishmaniasis has only spread relatively recently into the margins of

urban areas [25]. The predicted distributions from the bias-corrected models were more exten-

sive and extended into rural areas and were therefore much more plausible.

Our study is the first to account for both climate change pathways and impacts of policy

and socio-economic changes on land use in forecasts of future leishmaniasis distribution. Pre-

vious studies have projected recent climatic niches of leishmaniasis vectors and/or hosts onto

future climates and inferred likely changes in human contact rates from the resulting patterns

but have neglected future land use dynamics [38, 39, 65]. Our main prediction is that the conti-

nental-scale geographical extent of both forms of leishmaniasis are likely to contract under

future climate change to 2050, but that key focal areas will be retained for both diseases. Inter-

estingly we found that the differential thermal and moisture sensitivities of CL and VL, quanti-

fied by our recent past models, translated into divergent responses of these diseases to future

climate pathways, with CL declining much more in distribution than VL, especially under

strong climatic forcing. These results reinforce the importance of considering the sensitivity of

vector-borne diseases to past and future environmental change for diseases and regions
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individually [4]. They highlight the importance of considering both temperature and moisture

related aspects of future environmental change when dealing with diseases transmitted by

arthropod vectors.

Projected disease impacts differed slightly between alternative socio-economic pathway and

policy scenarios with VL in particular found to be less extensive under strong versus weak

management for carbon, biodiversity and ecosystem services. This is expected given the lower

explanatory power of land use versus climate predictors of past distributions found at this

scale and does not indicate that future development and environmental strategies will have a

low impact on leishmaniasis disease outcomes. Our framework could be fruitfully applied

within eco-epidemiological regions or at narrower geographical scales (at which disease con-

trol decisions are often applied [4]) to link disease risk to land-use patterns and alternative

development and environmental strategies.

Our correlative methods for predicting future disease patterns from recent past disease-envi-

ronment relationships assume implicitly that these relationships will remain static into the

future [66]. For an ecologically complex system like leishmaniasis, there are likely to be ecologi-

cal and evolutionary means by which pathogens, vectors and reservoir hosts adapt to changing

environments. This is illustrated by the recent adaptation of several sand fly vectors in different

regions to peri-domestic habitats e.g. Lutzomyia longipalis and L. cruzi in Brazil [25] or new

cropping systems [26] with knock-on impacts on human transmission. Mechanistic approaches

such as explicit modelling of disease transmission dynamics to estimate R0 can accommodate

non-linear and often opposing impacts of temperature on transmission cycle parameters. For

zoonotic VL in the Mediterranean, R0, the risk of disease establishment once an infected host is

introduced, has been mapped [67] by linking spatial climate and landscape driven models of

sand fly vector distribution, to temperature impacts on sandfly mortality, biting and infection

rates and dog-host parameters. These frameworks are very powerful but difficult to apply when

vector and host roles and life cycles are poorly understood, as for the Leishmaniases in the

Americas. They cannot easily accommodate wide-ranging environmental drivers unless

responses to these drivers have been explicitly quantified. Recent novel correlative methods that

infer vector-host-pathogen networks from species co-occurrence data [68] and link these to

risk of human exposure particular land uses or zones [69] have a high potential for integration

of climate and socio-economic scenarios. Such correlative methods should be underpinned by

landscape-scale validation of vector-host-pathogen interactions and environmental responses.

Our study makes important advances towards frameworks for understanding disease dis-

services and services, their linkage to ecosystem characteristics, and for their prediction under

alternative climate change pathways and socio-economic scenarios. A critical component was

the consideration of spatially explicit land use and ecosystem patterns alongside climate at

every step of the process and their linkages to alternative climate change mitigation options

and policies. This is a pre-requisite of examining trade-offs between disease disservices/ser-

vices and other ecosystem services, the need for which is increasingly being recognised in

international policy [11].
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to deal with it and a simulation study evaluating their performance. Ecography. 2013; 36(1):27–46.

https://doi.org/10.1111/j.1600-0587.2012.07348.x

63. Purse BV, Golding N. Tracking the distribution and impacts of diseases with biological records and dis-

tribution modelling. Biological Journal of the Linnean Society. 2015; 115(3):664–77. https://doi.org/10.

1111/bij.12567

64. Stolar J, Nielsen SE. Accounting for spatially biased sampling effort in presence-only species distribu-

tion modelling. Diversity and Distributions. 2015; 21(5):595–608. https://doi.org/10.1111/ddi.12279
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