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Abstract

Approximate Bayesian computation (ABC) is a powerful and widely used approach in

inference of population history. However, the computational effort required to dis-

criminate among alternative historical scenarios often limits the set that is compared

to those considered more likely a priori. While often justifiable, this approach will fail

to consider unexpected but well-supported population histories. We used a hierarchi-

cal tournament approach, in which subsets of scenarios are compared in a first round

of ABC analyses and the winners are compared in a second analysis, to reconstruct

the population history of an oak gall wasp, Synergus umbraculus (Hymenoptera, Cynipi-

dae) across the Western Palaearctic. We used 4,233 bp of sequence data across

seven loci to explore the relationships between four putative Pleistocene refuge pop-

ulations in Iberia, Italy, the Balkans and Western Asia. We compared support for 148

alternative scenarios in eight pools, each pool comprising all possible rearrangements

of four populations over a given topology of relationships, with or without founding

of one population by admixture and with or without an unsampled “ghost” population.

We found very little support for the directional “out of the east” scenario previously

inferred for other gall wasp community members. Instead, the best-supported models

identified Iberia as the first-regional population to diverge from the others in the late

Pleistocene, followed by divergence between the Balkans and Western Asia, and

founding of the Italian population through late Pleistocene admixture from Iberia and

the Balkans. We compare these results with what is known for other members of the

oak gall community, and consider the strengths and weaknesses of using a tourna-

ment approach to explore phylogeographic model space.
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1 | INTRODUCTION

Approximate Bayesian computation (ABC) provides a powerful

approach for assessing the fit of alternative models of population

history to observed genetic data (Beaumont, 2010; Bertorelle,

Benazzo, & Mona, 2010; Csill�ery, Blum, Gaggiotti, & Franc�ois, 2010;
Pelletier & Carstens, 2014). ABC allows comparison of support for

alternative models (combinations of population relationships and

prior distributions for population and genetic data parameters; Cor-

nuet et al., 2008; Lopes, Balding, & Beaumont, 2009; Pudlo et al.,

2016; Wegmann, Leuenberger, Neuenschwander, & Excoffier, 2010)

and assessment of confidence in model choice (Bertorelle et al.,

2010; Cornuet, Ravign�e, & Estoup, 2010; Hickerson et al., 2013).

Where the number of population scenarios to be compared is small,

support for all of them can be compared directly (e.g., Hearn, Stone,

Nicholls, Barton, & Lohse, 2014). However, it remains challenging to

compare the large numbers of alternative possible scenarios that

exist for even small numbers of populations when incorporating vari-

ation in population size, the topology and timing of population splits,

and patterns of gene flow or population admixture (Bertorelle et al.,

2010; Lombaert et al., 2014; Pelletier & Carstens, 2014). The chal-

lenge arises because of both the number of historical scenarios that

can potentially be compared, and the numbers of simulations neces-

sary to adequately explore prior distributions in parameter-rich mod-

els. Generation of a single very large ABC reference table for the

entire set of scenarios may be difficult (c.f. Lombaert et al., 2014) or

impracticable. One solution is to limit the set of compared models a

priori, based on knowledge of the biological system (e.g., Boehm

et al., 2013; Jacquet et al., 2015; Smith, Lohse, Etges, & Ritchie,

2012) or the specific hypotheses being compared (e.g., Fagundes

et al., 2007; Hickerson & Meyer, 2008). However, this approach nec-

essarily prevents detection of counterintuitive, but true scenarios

that would be revealed by a more complete exploration of model

space and it is hence vulnerable to preconception bias (Jackson,

Morales, Carstens, & O’Meara, 2017; Thom�e & Carstens, 2016). This

a key issue at the heart of debates over model-based methods in

inference of population history (Beaumont et al., 2010; Templeton,

2009). A second alternative is to use a stepwise procedure, in which

a subset of scenarios from initial analyses is included in one or more

later rounds of analysis (e.g., Estoup & Guillemaud, 2010; Konecny

et al., 2013; Lombaert et al., 2014; Pelletier & Carstens, 2014). The

hierarchical tournament approach is a specific version of such a step-

wise procedure, in which a set of scenarios is first divided into sev-

eral non-nested pools. A first round of ABC is applied to each pool

to identify the best-supported model(s). A second round then com-

pares support across the pool-winning scenarios. Such an approach

allows identification of a best overall model, or estimation of shared

model parameters from a joint posterior distribution (e.g., see Barr�es

et al., 2012; Kerdelhu�e, Boivin, & Burban, 2014; Wei et al., 2015).

Here, we use a tournament approach to infer the relationships

between putative Western Palaearctic glacial refugia for an oak-

feeding insect, Synergus umbraculus. We compare support for 148

alternative scenarios in eight non-nested scenario pools.

Many studies have addressed the influence of Quaternary glacial

cycles on patterns of intraspecific genetic diversity (e.g., Connord,

Gurevitch, & Fady, 2012; Hewitt, 2004). During periods of glacial

advance, most temperate western Palaearctic species were confined

to southern refugia in one or more of Iberia (� northwestern Africa),

Italy, the Balkans, Turkey, the Levant, Iran and the Caucasus (Hewitt,

1999, 2004). Prolonged reproductive isolation resulted in genetic dif-

ferentiation between refugial populations, which many studies have

exploited to identify the source population(s) for postglacial range

expansion during the Holocene (Hewitt, 1999; Schmitt, 2007) or

Anthropocene (e.g., Nicholls et al., 2010b). However, much less is

known about the older range expansions underlying the wide longi-

tudinal distributions of many western Palaearctic taxa (Flanders

et al., 2009; Hewitt, 1999, 2004; Krehenwinkel et al., 2016; Stone

et al., 2012; Taberlet, Fumagalli, Wust-Saucy, & Cosson, 1998). Very

few studies have explored relationships between putative southern

refugia across the region in a model-based framework. Likelihood-

based analyses to date have faced methodological constraints limit-

ing comparison to three refugial regions (Hearn et al., 2014; Lohse,

Barton, Melika, & Stone, 2012; Lohse, Sharanowski, & Stone, 2010).

The simulation-based framework of ABC allows exploration of more

complex models, which we here apply to analysis of relationships

between populations in Iberia, Italy, the Balkans and Western Asia.

We focus on the population history of a herbivorous wasp, Syn-

ergus umbraculus (Hymenoptera; Cynipidae). Synergus umbraculus is

an inhabitant of oak cynipid galls, natural microcosms that support

rich insect communities in three interacting trophic groups (Hayward

& Stone, 2005; Stone, Atkinson, Rokas, Cs�oka, & Nieves-Aldrey,

2001). One group of wasps (Hymenoptera: Cynipidae, tribe Cynipini)

induces the galls on oaks, within which they feed as herbivores.

These gall inducers are highly specific to particular oak taxa (Stone

et al., 2009). A second group of closely related wasps (Cynipidae,

tribe Synergini), which includes Synergus umbraculus, are termed

inquilines, and feed as herbivores within galls induced by other gall

wasps (Ronquist, 1994). Because they are associated with specific

host galls and can cause the death of the gall inducer, in some ways

inquilines resemble parasitoids (Ronquist, 1994; Sanver & Hawkins,

2000). Like their host gall inducers, inquiline gall wasps are also asso-

ciated with specific oak taxa (�Acs et al., 2010). Both inducers and

inquilines are attacked by parasitoids, which make-up the third

trophic group (Bailey et al., 2009; Stone, Sch€onrogge, Atkinson, Bel-

lido, & Pujade-Villar, 2002). Least is known about the inquiline

trophic level, in part because their taxonomy is currently only resolv-

able using DNA sequence barcodes (�Acs et al., 2010).

Multiple studies have addressed the Western Palaearctic phylo-

geography of the gall inducers (Challis et al., 2007; Hearn et al., 2014;

Mutun, 2010, 2016a; Mutun & Atay, 2015; Nicholls, Challis, Mutun, &

Stone, 2012; Rokas, Atkinson, Brown, West, & Stone, 2001; Rokas,

Atkinson, Webster, Cs�oka, & Stone, 2003; Stone & Sunnucks, 1993;

Stone et al., 2007) and parasitoids (Hayward & Stone, 2006; Lohse

et al., 2010, 2012; Nicholls et al., 2010a, 2010b). Both groups show

genetic structure compatible with Pleistocene refugia in the west (Ibe-

ria), centre (Italy and the Balkans) and east (Turkey and Iran) that
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broadly parallel those for deciduous oaks (Petit et al., 2003). Most spe-

cies in both groups sampled to date show an east-to-west decline in

population genetic diversity and are inferred to have spread west-

wards into Europe from Asia during or before the Pleistocene (the

“Out of Anatolia” hypothesis; Challis et al., 2007; Rokas et al., 2003;

Stone et al., 2009, 2012; see also Connord et al., 2012). The only

known gall wasp exception to this pattern is an inducing species, Bior-

hiza pallida, whose population history is inferred to have involved an

initial deep divergence between Iberia and the Balkans + Iran, fol-

lowed by migration from Iran to Iberia that bypassed central Europe

(Hearn et al., 2014), possibly via North Africa. Three parasitoid species

show a contrasting west-to-east “Out of Iberia” pattern for mitochon-

drial sequence (Stone et al., 2012). This raises the question of how

general the “Out of Anatolia” pattern is for all three trophic elements

of this community (Stone et al., 2009, 2012).

Synergus umbraculus is found throughout the temperate Western

Palaearctic, wherever suitable host galls are found. A previous analysis

of mitochondrial sequence data for populations from Morocco to Iran

(Bihari et al., 2011) found greatest haplotype diversity in Hungary, and

hypothesized that the Balkan region acted as a Pleistocene refuge for

this species. However, sampling in this study was biased towards cen-

tral Europe, and inferences from it are subject to the caveats inherent

in using any single locus to infer population history (Degnan & Rosen-

berg, 2006, 2009; Hurst & Jiggins, 2005). An alternative is that the

high-genetic diversity in Hungary is the result (wholly or in part) of

gene flow into this region from other centres of genetic diversity to

the east and/or west (Hewitt, 1999). This can result in higher genetic

diversity in nonrefuge regions than in contributing refugia (e.g.,

Comps, G€om€ory, Letouzey, Thi�ebaut, & Petit, 2001). Here, we revisit

the phylogeography of S. umbraculus, using a substantially enlarged

sequence data set (including six nuclear loci) spanning the longitudinal

distribution of the species and combining two different approaches.

First we reconstruct relationships between genetically distinct geno-

type pools identified using STRUCTURE (Pritchard, Stephens, & Donnelly,

2000). This allows inference of relationships between genetic units

that may be shared across geographic regions, and whose divergence

from each other could predate their current geographic distributions.

We then use tournament ABC to infer relationships between popula-

tions in four regions identified by previous research on oaks and asso-

ciated insects as putative Pleistocene glacial refugia. Our set of spatial

scenarios includes both “Out of the East” and “Out of the West” direc-

tional models, and an equivalent of the contrasting pattern found for

the gall wasp Biorhiza pallida. To allow the detection of counterintu-

itive but nevertheless well-supported scenarios, these models are

compared to all alternative arrangements of populations in eight pools

of topologically discrete (i.e., non-nested) scenarios.

2 | MATERIALS AND METHODS

2.1 | Sample selection

We sampled 98 individuals from 11 countries, spanning the full

western Palaearctic distribution of Synergus umbraculus from

Morocco to Iran, including putative western Palaearctic refugia (Ibe-

ria, Italy, the Balkans, Turkey, Lebanon and Iran; Figure 1, Table S1).

Specimens were reared from host oak galls under quarantine condi-

tions in Edinburgh, and stored in 99% ethanol on emergence. Syner-

gus umbraculus specimens were identified using the recently

established Synergus barcoding framework (�Acs et al., 2010). Only

specimens falling into a single monophyletic lineage (MOTU 19

sensu �Acs et al., 2010; hereafter referred to as S. umbraculus), which

includes over 90% of morphologically identified S. umbraculus, were

used for subsequent phylogeographic analyses. Individuals so identi-

fied originated almost exclusively from asexual generation galls of

host-alternating Andricus species (Table S1). The sampled individuals

include a subset of those sequenced for the mitochondrial cyto-

chrome b (cytb) gene by Bihari et al. (2011) (GenBank Accession nos

GU386377–GU386386, GU386389–GU386391, GU386394–

GU386400, GU386407, GU386426–GU386428, GU386430–

GU386433, GU386435–GU386442), selected to provide balanced

sampling across putative refuge regions and to capture cytb clade

diversity. Our analysis incorporates a further 19 individuals from

eight new sampling localities in Spain, Bulgaria and Iran.

2.2 | Molecular markers

We generated sequence data for seven markers, comprising fragments

of mitochondrial cytb and six nuclear genes, totalling 4,233 base pairs

(bp). One of the nuclear markers (ITS2) has previously been used in

analyses of cynipid phylogeography (Rokas et al., 2001), while five

EPIC (exon-primed, intron-spanning) markers for LWopsin, Ran, RpS4,

RpS8 and RpS23 (Lohse, Sharanowski, Blaxter, Nicholls, & Stone,

2011; Stone et al., 2009) are here used in this way for the first time.

Sample sizes for each region are given in Tables 1 and S2. GenBank

accession nos for all new sequences are provided for each specimen

in Table S1 (JQ752244–JQ752264 for cytb, JQ752265–JQ752405 for

ITS2, JQ752406–JQ752543 for LWopsin, JQ752544–JQ752668 for

Ran, JQ752669–JQ752779 for RpS4, JQ752780–JQ752916 for RpS8

and JQ752917–JQ753049 for RpS23). Male oak gall wasps are haploid

(Hearn et al., 2014), and where possible we selected male specimens

to minimize difficulties associated with determining the allelic phase

of heterozygous diploid females.

Sequence generation for the specimens in Bihari et al. (2011)

used the original DNA extractions. For the 19 additional specimens,

DNA was extracted following the chelex-based procedure described

in Nicholls et al. (2010a). A 697-bp fragment of the mitochondrial

cytb gene was amplified using the primers CP1B (50-AATTTTG

GATCTCTTTTAGG-30) and CP2C (50-ATAACTCCTCCTAATTTAT-30)

designed specifically for S. umbraculus (the CP2C primer sequence

given here is corrected from an error in Bihari et al., 2011). We

amplified six nuclear loci. A 572-bp fragment of the internal tran-

scribed spacer region (ITS2) of the nuclear ribosomal array was

amplified using primers ITS2f (50-TGTGAACTGCAGGACACATG-30)

and ITS2r (50-AATGCTTAAATTTAGGGGGTA-30) (Campbell, Steffen-

Campbell, & Werren, 1993). A 653-bp fragment of the long-wave-

length opsin gene (opsin) (incorporating a 258-bp intron) was
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amplified using the gall wasp-specific primers opsinGWF (50-CTC

CYTDTTCGGATGTGBHTCCATT-30) and opsinGWR (50-CCTTRGC

RAGYTTATGTTCRG-30) (Stone et al., 2009). The remaining EPIC loci

comprise ribosomal proteins (RpS4, RpS8, RpS23) and a regulatory

gene (Ran), primers for which have recently been developed for phy-

logeographic inference in chalcid parasitoids (Lohse, Sharanowski,

et al., 2011; Lohse et al., 2012). Due to low amplification success for

three of these loci (Ran, RpS4, RpS8) using the chalcid primers from

Lohse, Sharanowski, et al. (2011), we modified three primer pairs by

the addition of M13-tails to the 50 ends (M13F: 50-GTAAAAC-

GACGGCCAG-30 and M13R: 50-GTA

AAACGACGGCCAG-30) at positions indicated by asterisks below.

This facilitated subsequent sequencing using the M13 primer pair. A

563-bp fragment of the Ran gene (incorporating a 267-bp intron)

was amplified using M13-modified primers 32F (50-*TAYATT

CARGGMCARTGYGC-30) and 32R (50-*GGRTCCATTGTRACTTCT

GG-30). A 714-bp fragment of the RpS4 gene (including two introns

of 375- and 87-bp length) was amplified using M13-modified pri-

mers 11F (50-*BAARGCATGGATGTTRGACA-30) and 11R (50-*GG

TCWGGRTADCGRATRGT-30). A 675-bp fragment of the RpS8 gene

(incorporating a 444-bp intron) was amplified using M13-modified

primers 5F (50-*GAAGAGGAAGTWYGARTTRGGWC-30) and 5R (50-

*TTCRTACCAYTGBCTGAADGG-30). Finally, we designed new gall

wasp-specific primers, gwRpS23F (50-CACAGACGCGATCAACGA

TGG-30) and gwRpS23R (50-GGAATATCTCCWACGGCRTGACC-30)

to amplify a 359-bp fragment (incorporating a 100-bp intron) of the

RpS23 gene.

PCRs were performed in 20 ll reactions using conditions given

in File S1. PCR products were cleaned using a shrimp alkaline phos-

phatase and exonuclease I protocol, and sequenced directly on an

ABI 3730 capillary machine using BIGDYE version 3.1 terminator

chemistry (Applied Biosystems). Sequencing was performed in both

directions to minimize PCR artefacts, ambiguities and base-calling

errors. Chromatograms were checked by eye and complementary

reads aligned using SEQUENCHER 4.10 (Gene Codes). It was possible to

determine the allelic phase of heterozygous females by careful com-

parison with the phase of homozygotes, without the need for clon-

ing. The package DNASTAR (DNAstar Inc., Madison WI, USA) was used

to confirm open reading frames for mtDNA sequences and to create

alignments for each locus using the CLUSTALW algorithm (Thompson,

Higgins, & Gibson, 1994).

2.3 | Analyses of genetic diversity and population
structure

We assessed phylogeographic structure in S. umbraculus using the

program STRUCTURE 2.3.2 (Pritchard et al., 2000). Genetic variants for

each gene region were sorted into haplotypes based on shared

SNPs. The nonexistent second allele in haploid males and for mito-

chondrial genotypes was coded as missing. STRUCTURE assumes a

model in which a specified number (K) of discrete genotype pools

(populations) are characterized by a set of allele frequencies derived

from multilocus genotype data. Individuals are assigned probabilisti-

cally to populations (with or without admixture) under the assump-

tions of population Hardy–Weinberg and linkage equilibrium. We

assessed the evidence for structuring among individuals sampled

across all putative refugia (i.e., Iberia, Italy, the Balkans, Turkey,

Lebanon and Iran), without incorporating sampling location informa-

tion, for K = 1–10 for 2 million generations after a burn-in of

500,000 generations. Convergence in estimated parameter values

was confirmed for ten independent (and highly concordant) runs for

each value of K. STRUCTURE outputs were processed using STRUCTURE

HARVESTER (Earl and von Holdt 2012), and we identified the best-sup-

ported K value both by calculating the likelihood of each K value

(following Pritchard et al., 2000), and by calculating DK (following

Evanno, Regnaut, & Goudet, 2005). We compared the support for

models with/without admixture, and with/without correlated allele

frequencies (Falush, Stephens, & Pritchard, 2003) using Bayes

TABLE 1 Genetic variability for nuclear and mitochondrial sequence markers across regional populations

Iberia Italy Balkans Turkey Iran

Mean sample size/locus 19.7 � 0.8 26.7 � 0.3 38.7 � 3.1 17.7 � 0.5 34.7 � 0.7

Mean alleles/nuclear locus 2.8 � 0.4 5.2 � 1.3 7.8 � 1.2 3.8 � 0.5 6.7 � 1.6

Nuclear gene diversity 0.47 � 0.11 0.53 � 0.12 0.76 � 0.04 0.45 � 0.06 0.61 � 0.08

Nuclear nucleotide diversity 0.0035 � 0.0009 0.0029 � 0.0008 0.0061 � 0.0016 0.0025 � 0.0007 0.0033 � 0.0011

Number of cytb haplotypes 12 8 10 7 12

cytb gene diversity (�SE) 0.94 � 0.05 0.84 � 0.07 0.83 � 0.05 0.77 � 0.13 0.86 � 0.06

cytb nucleotide diversity (�SE) 0.023 � 0.012 0.0324 � 0.017 0.043 � 0.021 0.035 � 0.018 0.010 � 0.005

Sample size refers to the number of sequenced gene copies obtained. All diversities were calculated in ARLEQUIN and are corrected for between-sample

variation in sample size. Values for nuclear loci are means � 1 SE across six loci. Full summaries of diversity by locus are given in Table S2.

F IGURE 1 STRUCTURE analysis of Synergus umbraculus. (a) STRUCTURE results for K = 3. (b) STRUCTURE analysis for K = 7. In each of (a) and (b),
individuals are allocated to the genotype cluster for which they have the highest STRUCTURE assignment probability (given for each individual in
Table S4), while the relative numbers of individuals sampled at each site (n = 1–9, total n = 98) are shown by pie chart size. Numbers
correspond to the site locations given in Table S1. Insets in each map show the average STRUCTURE genotype cluster allocation for each native
range individual over 10 replicates as a thin vertical line, partitioned into coloured segments that represent estimated membership coefficients
in each genetic cluster. Individuals are grouped according to geographical region as labelled below the figure (Tur = Turkey, L = Lebanon)
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factors, following Kass and Raftery (1995). Assignment probabilities

(Q-values) of individuals to populations were averaged over replicate

analyses using CLUMPP (Jakobsson & Rosenberg, 2007) and repre-

sented graphically using DISTRUCT (Rosenberg, 2004). Genetic diversity

measures per locus and pairwise FST between the five putative refu-

gia were calculated using ARLEQUIN 3.5.22 (Excoffier, Laval, & Schnei-

der, 2005). Significance values for pairwise FST values were

estimated using the permutation procedure in ARLEQUIN, with 10,100

permutations. All molecular diversity measures were corrected for

sample size variation in ARLEQUIN.

We assessed the phylogenetic relationships between STRUCTURE

genotype pools using the hierarchical *BEAST model implemented in

BEAST version 1.6.1 (Heled & Drummond, 2010). *BEAST uses Bayesian

MCMC inference to co-estimate the species tree and its embedded

gene trees simultaneously, under a multispecies coalescent model

that incorporates incomplete lineage sorting (Heled & Drummond,

2010). The *BEAST model does not incorporate admixture, which was

supported for our data in STRUCTURE analyses. Because most individu-

als were assigned to one genotype pool with high probability in the

value of K chosen for the *BEAST analysis, we nevertheless consider

this approach likely tp provides a useful indication of population

relationships. In selecting appropriate models of sequence evolution,

we initially chose the most complex models possible given the sub-

stitution types present in each gene or partition. The cytb data were

partitioned by codon position, while low levels of sequence variation

made this unnecessary for the nuclear loci. The initial most complex

models were GTR + I + G for opsin, RpS8 and cytb third positions,

and HKY + I + G for all other genes and partitions. Support for

these and less parameter-rich models was assessed using Bayes fac-

tors, estimated as twice the difference in the natural logarithm of

the harmonic mean of model likelihoods of each model (2ΔlnHML)

(Kass & Raftery, 1995). As the harmonic mean estimator is unstable

and can vary considerably among MCMC samples (Ronquist &

Deans, 2010), we used a more conservative cut-off than Kass and

Raftery (1995), taking >20 to indicate strong support for the model

with higher likelihood (as in Lohse, Nicholls, & Stone, 2011). The

resulting best overall substitution models describing the data were

GTR + I for opsin and RpS8, GTR + G for cyt b third positions,

HKY + I for cyt b first and second positions and RpS4, HKY + G for

Ran, and HKY for ITS2 and RpS23. We then used these models to

assess Bayes’ factor support for alternative clock models (strict or

relaxed, Drummond, Ho, Phillips, & Rambaut, 2006) for each locus,

resulting in use of an uncorrelated lognormal relaxed clock for cyt b

and a strict clock for all nuclear loci. We then used the same

approach to assess support for alternative species tree priors (Yule

vs. birth/death) and population size models (piecewise linear, piece-

wise linear with constant root, or piecewise constant). Bayes factor

comparison supported a Yule tree prior and piecewise linear with

constant root population size model. This model allows linear popu-

lation size changes over a branch with the constraint (not imposed

in our ABC analyses below) that the summed population size of two

diverging lineages at their divergence time equals the population size

of the ancestral lineage (Heled & Drummond, 2010). For this final

model, we conducted two independent runs of 2 9 108 generations,

sampled every 2.5 9 104 generations, with parameter convergence

and effective sample sizes confirmed using TRACER version 1.5 (Ram-

baut & Drummond, 2009). The final 5 9 107 generations from each

run were used to assess tree topology and node support. To allow

comparison with previous work on the gall wasp system and the

ABC analyses below, we apply the calibration rate of 1.15% per lin-

eage per million years for cyt b (1.15 9 10�8; Brower, 1994) with

two generations per year.

2.4 | ABC inference of population history

We inferred relationships between sets of individuals using approxi-

mate Bayesian computation (ABC) incorporated in the software

DIYABC (version 1.0.4.46, Cornuet et al., 2008, 2010). The seven locus

data set is available from the Dryad Digital Archive, with https://doi.

org/10.5061/dryad.17rh3.

Previous ABC analyses have varied in the strategy used to iden-

tify population units for analysis, and while some use population

units identified by STRUCTURE or similar approaches, others select geo-

graphic regions. These two approaches address different questions,

and here we apply both. First, we reconstructed the relationships

between the population units identified by calculating DK in STRUC-

TURE, ignoring information on the spatial location of samples and

comparing seven alternative scenarios (including different population

arrangements of each topology) shown in Figure 2. This approach

allows inference of the relationships between population units that

may be shared across geographic regions, and whose divergence

could predate the current geographic distribution of populations.

Individuals were assigned to the genotype pool with the highest allo-

cation probability (Q value). For the relevant analysis, all but two of

98 individuals were assigned to a single population with Q ≥ 0.9,

and all but seven with a Q ≥ 0.95 (Table S4).
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F IGURE 2 Seven DIYABC scenario topologies compared for the
three populations identified by the STRUCTURE K = 3 analysis. Branch
colours indicate discrete population size parameters in the model,
and t1, t2 and tanc represent splitting times or times of population
size change. In topologies (e)–(g), one population is founded by
admixture in proportions r and 1 � r from the other two, and the
model incorporates a population size change after founding of the
admixed population
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Second, to understand the history of relationships between puta-

tive refugia, we reanalysed the data, allocating individuals to four

geographic regional populations—Iberia, Italy, the Balkans and the

East (Turkey, Lebanon and Iran combined). Italy was considered sep-

arately in this analysis given its demonstrated role as a Pleistocene

glacial refuge for the oak hosts of the galls attacked by S. umbraculus

(Petit et al., 2003). Turkey, Lebanon and Iran were combined into a

single eastern population given the results of our STRUCTURE analysis

(following Lombaert et al., 2014), and to make the number of alter-

native possible population topologies manageable given our hierar-

chical tournament approach. We return to this decision in the

Discussion. Our geographic analyses compared 148 competing mod-

els of population relationships (scenarios) in eight pools, each specifi-

cally demarcated to include the set of scenarios resulting from all

permutations of four sampled populations over a given topology of

relationships and pattern of admixture (Figure 3a–h, File S2) as fol-

lows: (i) Pool A (n = 16 scenarios) included a four-way polytomy and

all alternative bifurcating and ladderized topologies for four popula-

tions (Figure 3a), including simple “Out of the East” and “Out of the

West” scenarios (represented by branching topologies East[Balkans

[Italy, Iberia]] and Iberia[Italy[Balkans, East]], respectively). (ii) Pools B

(n = 12), C (n = 24), D (n = 12) include all scenarios in which one

population is derived by admixture from any two others (Figure 3b–

d). (iii) Because genetic contributions from unsampled populations

can influence understanding of relationships between sampled popu-

lations (Auger-Rozenberg et al., 2012; Lombaert et al., 2011), Pools

E (n = 24 scenarios), F (n = 12), G (n = 24) and H (n = 24) include all

scenarios in which one population is derived from admixture

between one sampled and one unsampled population (Figure 3e–h).

In each scenario, every population was allowed a separate popula-

tion size. Changes in population size were assumed to be instanta-

neous and to occur during population splitting events.

Because it is computationally unwieldy to compare all 148 sce-

narios in a single set, we used a hierarchical two-stage “tournament”

approach to simplify scenario comparison (Barr�es et al., 2012; Ker-

delhu�e et al., 2014). We first identified the best-supported scenario

in each of the eight model pools, and then compared pool-winning

scenarios in a further analysis. This approach assumes that ranking

of scenarios in ABC is transitive, that is if we can show that scenario

A is better than B, and also that scenario B is better than C, then

we can infer that A is also better than C without having to compare

these two directly. Because all scenarios were compared relative to

a single set of observed values in the same summary statistic space,

this assumption is sound. This hierarchical approach and our pooling

strategy allows full exploration of model space for a given topology

of scenario within each pool, and also allows topologically similar

models in different pools to achieve highest posterior probability

against alternatives without competing directly, a potential problem

where many similar models are being compared (see Pelletier & Car-

stens, 2014). It also ensures that the best scenario overall will always

be compared with the second best overall—either as two scenarios

in the same pool or as the winners of two different pools.

Genetic data for each scenario were simulated in DIYABC for 2 mil-

lion generations using sample sizes and sequence lengths identical to

those sampled (Table 1). Comparison of posterior probability support

for models in each pool found near-identical ranking and very similar

parameter estimates when using 1, 1.5 and 2 million simulations per

scenario (data not shown), suggesting adequate sampling from prior

(a) Pool A: Polytomy,  2 pairs (n = 3) and ladderized (n = 12)

(c) Pool C: Origin by 
admixture 2 (n = 24)

(f) Pool F: Admixture between
populations 2 (n = 12)

(g) Pool G: Admixture between
populations 3 (n = 24)

(e) Pool E: Admixture between
populations 1 (n = 24)

(b) Pool B: Origin by 
admixture 1 (n = 12)

(d) Pool D: Origin by 
admixture 3 (n = 12)

(h) Pool H: Admixture between
populations 4 (n = 24)
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F IGURE 3 (a)–(g) Eight pools of
population scenarios compared for
S. umbraculus using ABC. Branch colours
indicate discrete population size
parameters in the model, with orange
representing an unsampled population.
Horizontal lines linking branches indicate
founding of a population by admixture,
receiving proportions r and (1 � r) from
the populations shown. By convention, r
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the time parameter tanc represents the
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distributions. Because we compare a large number of scenarios and

support for any one model may be influenced by our choice of prior

distributions (Hickerson et al., 2013; Oaks et al., 2013), we used

ABC to compare the support for three contrasting prior sets differ-

ing in their upper prior bounds for population sizes and divergence

times in five contrasting scenarios (File S3). Our choice of priors for

subsequent analyses accommodates the most strongly supported

prior sets for all five models. The scenarios used in prior set selec-

tion showed no overlap with the eight class-winning models selected

by our procedure, suggesting that prior choice is unlikely to have

biased our final scenario choice. PCA analyses in DIYABC showed that

sampling from these prior bounds produced summary statistic distri-

butions including observed values for all scenarios.

Demographic priors were the same for all scenarios and were

drawn from uniform distributions summarized in the form U[A,B],C

where A and B are the upper and lower prior bounds and C is the sam-

pling interval. Population sizes were drawn from U[10–2.5 million],

1,000. Population divergence times in generations were drawn from U

[1–1 million], 1,000 for all but the most ancient divergence (tanc in all

pools, T3 in Pool H; see Figures 2 and 3), for which the prior was U[1–

1.5 million], 1,000. Models incorporating founding of one population

by admixture from two others drew admixture proportions (r) from U

[0.001–0.999], 0.001, with r by convention referring to the proportion

contributed by the westernmost source population.

Relative mutation rates for nuclear and mitochondrial sequence

were identified by sequence comparison between S. umbraculus and

the closely related species S. japonicus (�Acs et al., 2010) using PAUP*

version 4a (Swofford, 2003) (S. japonicus GenBank Accession nos for

cytb JQ752263, JQ752264; ITS2 JQ752404, JQ752405; LWopsin

JQ752542, JQ752543; Ran JQ752667, JQ752668; RpS4 JQ752778,

JQ752779; RpS8 JQ752915, JQ752916; RpS23 JQ753048,

JQ753049). Assuming a mitochondrial mutation rate of 1.15% per

lineage per million years (1.15 9 10�8; Brower, 1994), nuclear locus

mutation rates (excluding gap characters) ranged from 3.1 9 10�9

(ITS2) to 7.9 9 10�9 (RPS8). To incorporate uncertainty in absolute

and relative mutation rates, the six nuclear loci were assumed to

show gamma distributed variation in mutation rates (shape parame-

ter = 2) with a mean drawn in the range 10�10 to 10�8. Because of

uncertainty in assumed mutation rates (Ho et al. 2011), we empha-

size the relative (rather than absolute) age of events. The 1:3 ratio

of effective population size in mitochondrial and autosomal loci in

haplodiploid organisms was incorporated in DIYABC by coding the

nuclear loci as X-linked. In the absence of empirical information, the

sex ratio was assumed to be equal. Our analyses assumed an

HKY + I + G model of sequence evolution for both nuclear loci and

cytb, and we estimated the shape parameter of the gamma distribu-

tion and the proportion of invariable sites for these two locus sets in

PAUP*. Values for nuclear loci were alpha = 0.55 (range across loci

0.51–0.67) and I = 90% (range across loci 85–90%), and for mito-

chondrial cytb were alpha = 0.66 and I = 66%.

For each simulation, genetic variation within and among regional

populations was summarized using a suite of commonly used genetic

summary statistics and compared to observed values using Euclidean

distances in DIYABC. For comparison of STRUCTURE population scenarios,

we used two approaches. First, we used one set of summary statis-

tics in scenario choice, and a second set in model validation, follow-

ing the recommendation of Cornuet et al. (2010). Both sets involved

single-population and two-population statistics. For scenario choice,

we used (in single populations) the number of haplotypes, number of

segregating sites, mean number of pairwise differences, mean of

numbers of the rarest nucleotide and (in two populations) FST and

number of haplotypes. For model validation, we used (in single popu-

lations) variance of pairwise differences, Tajima’s D (Tajima, 1989),

number of private segregating sites, variance of numbers of rarest

nucleotide and (in two populations) mean of pairwise differences

and number of segregating sites.

Second, we examined the impact on scenario choice of using a

fuller range of available summary statistics, with the aim of making

maximal use of any signal in the data to discriminate among scenar-

ios. We found for the k = 3 STRUCTURE populations that using more

summary statistics showed similar type 1 and type 2 error rates

while substantially narrowing the 95% posterior probability bounds

of scenarios compared in a given analysis. We therefore used the

following extended set of 20 summary statistics in our tournament

comparison of geographical scenarios, for each of mitochondrial and

nuclear markers. Single-sample summary statistics incorporated num-

bers of haplotypes and segregating sites, the mean and variance of

pairwise differences, Tajima’s D and the number of private segregat-

ing sites. Two-sample summary statistics incorporated the numbers

of haplotypes and segregating sites, the mean of pairwise differences

between samples, and FST between all pairs of samples (Hudson,

Slatkin, & Maddison, 1992).

The posterior probability of each scenario in a given pool was esti-

mated using weighted polychotomous logistic regression on the 1% of

simulated data sets closest to the observed data (Cornuet et al., 2008,

2010). These posterior probabilities are equivalent to approximate mar-

ginal likelihoods (Boehm et al., 2013), allowing support for alternative

models in any given set to be compared using Bayes factors (Kass & Raf-

tery, 1995). Support for the strongest scenario was categorized as weak,

substantial or strong for Bayes factors in the ranges 1–3.1, 3.2–10 and

10–100 following Kass and Raftery (1995). We evaluated the power and

accuracy of our ABC model selection using simulation validation (Ber-

torelle et al., 2010; Cornuet et al., 2010; Csill�ery et al., 2010; Robert,

Cornuet, Marin, & Pillai, 2011). We simulated 200 test data sets (i.e.,

pseudo-observed data sets, PODs) under each competing hypothesis

and used DIYABC to estimate the posterior probability of alternative candi-

date hypotheses, using the same summary statistics, number of random

prior iterations, sampling threshold (closest 1%) and sample sizes used in

comparison between scenarios. We then calculated the probability of

type I and type II errors using the criteria of Cornuet et al. (2010).

Posterior parameter distributions for each pool-winning scenario

were estimated using local linear regression on the closest 1% of

accepted data sets, and suitability of our prior limits was checked by

confirmation that posterior parameter distributions for each scenario

produced a unimodal peak within selected prior bounds. Parameter

estimates are presented as median values (with 95% confidence
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intervals in brackets). We assessed the goodness of fit of a scenario

following Cornuet et al. (2010) by locating observed summary statis-

tic values within distributions generated using 10,000 simulations for

that scenario with parameter values drawn from the posterior distri-

bution. For analyses of the population groupings identified using

STRUCTURE, we used the second set of summary statistics for this step,

while for the geographic analyses, we used the same summary statis-

tics used in generation of the reference table, for reasons described

above. For the winning scenarios, we estimated precision in parame-

ter estimation (Cornuet et al., 2010) by computing the relative med-

ian of the absolute error for 500 pseudo-observed data sets using

values drawn from priors. Relative median of the absolute error is

the 50% quantile (over pseudo-observed data sets) of the absolute

value of the difference between the median value of the posterior

distribution sample (in each data set) and the true value, divided by

the true value (Cornuet et al., 2010).

3 | RESULTS

3.1 | Patterns of genetic diversity in S. umbraculus

All six nuclear markers showed informative sequence variation, with

allelic richness ranging from seven to 23 in 121–150 sampled gene

copies (Table S3), and with nucleotide diversities around 15% of that

seen in mitochondrial cytb (Table 1). All seven loci showed strong

longitudinal patterning, with alleles that were specific to one of Ibe-

ria, Italy, the Balkans, Turkey or Iran (Table S3). Pairwise FST values

between putative refugial regions were significant for all pairs at

p < .002 (Table 2), with lowest divergence between Turkey and Iran

(FST = 0.093), and greatest divergence between Iberia and Turkey

(FST = 0.401). Nuclear and mitochondrial nucleotide diversities and

nuclear allelic diversity were all highest in the Balkans (Table 1), with

no significant longitudinal trend in genetic diversity for either mito-

chondrial or nuclear markers.

Fitting of alternative STRUCTURE models strongly supported a model

with admixture and correlated allele frequencies over uncorrelated

allele frequency models with or without admixture (Log Bayes factors

>100 in each case), and we present results for this model here. For all

values of K, most individuals were nevertheless assigned to a single

genotype pool with high probability (Table S4). The K value with high-

est probability following Pritchard et al. (2000) was 7 (probabil-

ity = 1.0), while the approach of Evanno et al. strongly supported

three genotypic clusters (DK = 126) in preference to seven (DK = 3.4)

(Figure 4). Both outcomes show strong latitudinal population structure

in S. umbraculus (Table S4; Figure 1). The K = 3 analysis (Figure 1a)

divides S. umbraculus individuals into clearly separated western and

eastern genotype clusters, with a third-cluster spanning the distribution

from Morocco to Turkey. The K = 7 analysis (Figure 1b) splits each of

the three clusters in the K = 3 analysis into additional populations that

show strong (but incomplete) longitudinal separation. The single Leba-

nese sample shows greatest affinity to populations in eastern Turkey

and Iran. In the K = 7 analysis, Italy is genetically divergent from both

the Balkans and Iberia, while Turkey and Iran are more similar to each

other than any other pair of regions (as also shown by pairwise FST).

Comparison of analyses for K values from 3 to 7 (Fig. S1) shows that all

share (i) east–west divergence, but also genotype pools that span two

or more putative refugia, and (ii) presence of multiple genotype pools in

central Europe (Italy, the Balkans) that are shared with regions to the

west or east. The greatest diversity of genotype clusters for any single

region was found in the Balkans, with three of three genotype clusters

represented in the K = 3 analysis and four of seven genotype clusters

for the K = 7 analysis (Figure 1).

3.2 | *BEAST inference of phylogenetic relationships
between the K = 7 STRUCTURE populations

Phylogenetic analysis of the K = 7 STRUCTURE populations (Figure 5)

shows a deep divide between primarily eastern (clusters 5,6,7) and

western (clusters 1,2) lineage groups. The cluster restricted to Italy

(cluster 3) is inferred with strong support to have diverged from a

common ancestor in the eastern lineage, while the dominant cluster

in the Balkans (cluster 4) is inferred with equally strong support to

have shared a common ancestor in the western lineage. Taken

together, these patterns suggest expansion of STRUCTURE populations

into central Europe from both east and west. These expansions into

central Europe are inferred to predate divergence of lineages found

wholly or predominantly in the West (clusters 1, 2) or the East (clus-

ters 6, 7). Assuming a mitochondrial mutation rate of 1.15% per lin-

eage per million years (Brower, 1994), the median divergence time

(and 95% confidence limits) between the eastern and western lin-

eages is 750 (310–1,775) thousand years (ky) ago.

3.3 | ABC inference of relationships between
STRUCTURE populations

Comparison of the seven scenarios for the K = 3 STRUCTURE popula-

tions yielded very similar results for each of the two summary statis-

tic approaches used (posterior probabilities and error rates of all

seven scenarios for each approach are given in Table S5a). In each

case, the most strongly supported scenario was a three-way poly-

tomy (Figure 2a) with a posterior probability (PP) of ca. 0.90. The

second-ranked scenario (Figure 2e, PP = 0.08 for both summary

statistic approaches) involved founding of Cluster 1 by admixture

from the other two. The latter model showed no evidence of a dom-

inant contribution from either of Cluster 2 or 3 during the founding

TABLE 2 Pairwise FST for S. umbraculus populations in five major
putative refugial regions of the Western Palaearctic

Region Iberia Italy Balkans Turkey Iran

Italy 0.248

Balkans 0.248 0.204

Turkey 0.401 0.367 0.232

Iran 0.254 0.259 0.150 0.094

All values are significant at p < .002 using the permutation procedure in

ARLEQUIN with 10,100 permutations and with threshold alpha values

adjusted for multiple tests using sequential Bonferroni correction.
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of Cluster 1, with the contribution from Cluster 2 estimated at 29%

(2%–88%). The remaining scenarios had very low posterior probabil-

ity support (upper 95% posterior probability bounds ≤0.08). The use

of the extended summary statistic set resulted in substantially nar-

rower 95% PP bounds for the winning scenario (0.695–1.0 for the

expanded set vs. 0.030–1.0 for the reduced), and very similar type 1

and 2 error rates (Table S5a).

Posterior predictive simulations for the polytomy scenario pro-

vided a good fit to observed summary statistics, regardless of the set

of summary statistics used in scenario choice and assessment of

model fit (Table S5b; Fig. S2). The polytomy model predicted nuclear

summary statistic values very well, with no significant mismatches

between observed and predicted values for the two summary statistic

approaches. In contrast, the best model underpredicted mitochondrial

sequence diversity for single and two-site summary statistics involv-

ing Cluster 2. Assuming two generations per year for S. umbraculus,

the three populations in the polytomy scenario diverged a median of

172 thousand years (ky) ago with 95% confidence limits of 40–

509 ky ago. Median population size estimates for Clusters 1–3 were

broadly similar, with medians in the range 230 to 966 k and widely

overlapping 95% confidence limits (Table S5c). Precision in ABC esti-

mation of parameters for the polytomy model, expressed as the rela-

tive medians of the absolute error (RMAE), was low enough for the

population divergence time (0.166) time and population size parame-

ters (0.147) to indicate significant signal for them in the data.

3.4 | ABC inference of refugial population history

3.4.1 | Selection of pool-winning scenarios

The winning scenarios for the eight ABC pools are shown in Fig-

ure 6. Posterior probabilities (PP) for the winner in each pool ranged

from 0.68 to 0.92 (for full individual pool level results, see

Table S5d). The winning scenario had substantial or strong Bayes

factor support and nonoverlapping 95% posterior probability limits

over the second-ranked model in seven of eight pools (Table 3). The

exception was pool G, in which Bayes factor support for winning

scenario 119 over the closest rival scenario 110 was weak (Bayes
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F IGURE 5 Relationships inferred
between the genotype clusters identified
in the K = 7 STRUCTURE analysis using
*BEAST. Colours associated with each
cluster match those in Figure 1b. The
values above branches are node posterior
probabilities, and numbers below are
median node ages in millions of years (with
95% highest posterior bounds) assuming a
calibration rate of 1.15% per lineage per
million years for cyt b (Brower, 1994).
Filled squares at right show the geographic
distributions of each genotype cluster
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factor 2.5). We therefore carried out parallel ABC analyses across

pool winners using either scenario 119 or 110 as the winner of pool

G. This had no impact on the overall winning scenarios in the second

round of ABC analysis. Analysis of pseudo-observed data sets

(PODs) showed false positive rates (Type 2 errors) for the pool-win-

ning scenarios to be ≤10% in >91% of cases (Table S5d; Fig. S3), giv-

ing high confidence in scenario choice. A feature of the pool stage

analysis is the strong agreement across pool-winning scenarios in the

timing and topology of key population events (Table 4; Figure 6): all

identify Iberia as the first-regional population to diverge from the

other three, and all have the most recent population divergence or

admixture event involving Italy and the Balkans.

3.4.2 | Rejection of “Out of the East” and “Out of
the West” scenarios

Neither of these directional scenarios in pool A was supported, with

posterior probabilities (with 95% confidence limits) of only 0.003

(a) Pool A Scenario 10

IB        EAST      BAL           IT

(e) Pool E Scenario 85

r1
IB                  IT      BAL    EAST

(f) Pool F Scenario 93

r1

IB       EAST      BAL         IT

(g) Pool G Scenario 119

r1IB        IT         BAL       EAST

(d) Pool D Scenario 59

 IB         EAST     IT           BAL

r1

(b)  Pool B Scenario 25

IB             IT        BAL      EAST
r1

(c) Pool C Scenario 40

  IB              IT      BAL        EAST
r1

(h) Pool H Scenario 139

r1
IB      EAST         IT     BAL
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F IGURE 6 The best-supported
scenarios in each of the eight ABC pools,
based on posterior probability. Parameter
values and confidence intervals for each
winning scenario are shown in Table 4.
Colours on branches indicate discrete
population size parameters in the model,
with orange representing an unsampled
population. Horizontal lines linking
branches indicate admixture. Vertical bars
show 95% confidence intervals on
divergence times. The time scale is in
thousands of years ky assuming a pairwise
divergence rate for mitochondrial sequence
of 2.3% per million years and two
generations per year for S. umbraculus

TABLE 3 Summary of scenario comparisons for the eight pools of models (A–H), and for the second analysis across pool winners (right
hand column)

Pool
Winning
scenario

Posterior probability
(and 95% confidence
limits)

Second-ranked scenario in the same pool,
with posterior probability
(and 95% confidence limits)

Bayes factor of pool
winner over runner up

Posterior probability in pool
winner comparison
(and 95% confidence limits)

A 10 0.75 (0.62, 0.88) 11/0.176 (0.07, 0.28) 4.3 0.051 (0.029, 0.074)

B 25 0.78 (0.63, 0.93) 27/0.21 (0.06, 0.35) 3.7 0.048 (0.020, 0.077)

C 40 0.73 (0.57, 0.89) 28/0.23 (0.08, 0.39) 3.2 0.28 (0.17, 0.40)

D 59 0.90 (0.80, 0.98) 63/0.06 (0.0, 0.18) 14.6 0.062 (0.038, 0.086)

E 85 0.85 (0.66, 1.0) 64/0.08 (0.00, 0.21) 10.6 0.35 (0.20, 0.51)

F 93 0.923 (0.86, 1.0) 92/0.064 (0.00,0.15) 13.9 0.004 (0.002, 0.005)

G 119 0.68 (0.00, 1.0) 110/0.268 (0.0, 1.0) 2.5 0.00 (0.0001, 0.0004)

H 139 0.67 (0.55–0.79) 133/0.18 (0.08–0.28) 3.5 0.20 (0.12, 0.27)

Posterior probabilities are based on 2 million simulations per scenario, using weighted polychotomous logistic regression on the 1% of simulated data

sets closest to the observed data (Cornuet et al., 2008, 2010).
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(0.0002–0.007) and 0.012 (0.001–0.0231), respectively. The stron-

gest support in Pool A was for scenario 10 (Figure 6a, Table 3;

PP = 0.75), in which the oldest divergence is between Iberia and the

other three regions, followed by divergence of the East, and recent

divergence between Italy and the Balkans. False positive rates for

scenario 10 for pseudo-observed data sets (PODs) simulated under

either an “Out of the East” or “Out of the West” scenario were low

(4% and 6.5% respectively), and we thus reject both scenarios for

S. umbraculus.

3.4.3 | Identification of the best scenarios overall

Among the scenarios involving only the four sampled populations

(pools A–D), scenario 40 (pool C, Figure 6c) received strongest sup-

port with a PP of 0.71 (0.59–0.82) and a Bayes factors ranging from

5.7 (scenario 25, pool B) to 8.8 (scenario 59, pool D) over the three

alternatives. The false positive rates (type 2 errors) for selection of

this scenario over the other three pool winners were 6% or less, giv-

ing high confidence in scenario choice.

Pools E–H incorporate founding of one of the sampled popula-

tions by admixture from one sampled population and a fifth, unsam-

pled, population. The winners in pools E–G are topologically similar

to the winning scenarios in pools B–D (compare scenarios 40 and 85

in Figure 6c,e; scenarios 59 and 93 in Figure 6d,f; and scenarios 25

and 119 Figure 6b,g). This provides confidence that scenario choice

in each pool is being driven by patterns in the data. Direct compar-

ison of the winners of all eight pools identified three most strongly

supported scenarios, each with Bayes factor support over the

remaining models of 3.2–97.5 and with nonoverlapping posterior

probability bounds (Table 3). The two most strongly supported sce-

narios were 40 and 85 (Figure 6c,e), with posterior probabilities of

0.28 (0.17–0.40) and 0.35 (0.19–0.50), respectively. These two sce-

narios are topologically very similar: each involves first divergence of

the Iberian population, followed by founding of the Italian population

by admixture from the Balkans and either Iberia (scenario 40) or an

unsampled population sharing common ancestry with Iberia (scenario

85). These two scenarios are substantially interchangeable, in that

exclusion of one of them from model comparison (leaving 7 scenar-

ios compared) resulted in substantially increased posterior probability

support for the other. Thus exclusion of scenario 85 increase poste-

rior probability for scenario 40 to 0.54 (0.41–0.67), while exclusion

of scenario 40 increased support for scenario 85 to 0.59 [0.39–

0.79). Similarly strong support for scenarios 40 and 85 suggests that

their fit to the data derives from their shared topologies of relation-

ships between sampled populations, with little or no significant

improvement associated with incorporating a fifth, unsampled popu-

lation. Given their similarity and uncertainty over which of scenarios

40 and 85 best fits the data, we estimated parameters jointly over

both models in DIYABC (Table 4). Assuming two generations per year

for S. umbraculus, these joint estimates infer Iberia to have diverged

from the other sampled populations 369 (132–700) kya, followed by

divergence between the East and the Balkans 99 (23–340) kya and

founding of the Italian population by admixture in approximatelyT
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equal proportions (r = .43, .02–.96) from Iberia and the Balkans

around 12.4 (2–48.5) kya. These estimates are very similar to those

for either model alone (Table 4).

The third supported scenario (139, Figure 6h), with a posterior

probability of 0.20 (0.12–0.27), also involves initial divergence of Ibe-

ria from other sampled populations, but involves founding of the

Balkans by admixture from Italy and an unsampled population.

Despite differences in topology and the presence and direction of

gene flow between Italy and the Balkans, all of the pool-winning

models show highly concordant median estimates for the timing of

Iberian divergence from the other populations (190–374 ky, parame-

ter tanc in Table 4), and the timing of gene flow or divergence

between Italy and the Balkans (5–18 kya, parameter t1 in Table 4).

3.4.4 | Goodness of fit and error estimation for the
best-supported scenarios

Posterior predictive simulations show that each of scenarios 40 and

85 can generate summary statistic values that closely match

observed values (Fig. S4). Location of observed summary statistics

within the simulated distributions for Scenarios 40 and 85 showed

only six and five significant differences, respectively, at p < .05

across the 96 observed single-sample and two-sample summary

statistics (Table S5e). Both scenarios underestimated pairwise FST for

nuclear markers between the Balkan and Eastern populations, and

overestimated single- and two-population mitochondrial sequence

diversity measures involving the Balkans (Table S5e). Precision in

ABC estimation of parameters for each of the two best models,

expressed as the relative medians of the absolute error (RMAE), was

low enough to indicate significant signal for them in the data

(Table S5f). They were lowest for the timing of divergence of Iberia

from the other populations (0.139 and 0.138 in scenarios 40 and 85,

respectively) and greatest for the most recent events (0.249 and

0.355 for the timing of founding of the Italian population by admix-

ture in the same models) (for comparison, see Barr�es et al., 2012;

Cornuet et al., 2010; Kerdelhu�e et al., 2014).

4 | DISCUSSION

4.1 | Phylogeographic structure in S. umbraculus

Many species have distributions that span the Western Palaearctic,

and almost all that are associated with temperate habitats show

strong longitudinal genetic structure associated with southern Pleis-

tocene refugia (Connord et al., 2012; Hewitt, 2004; Schmitt, 2007;

Taberlet et al., 1998). Synergus umbraculus is no exception, with STRUC-

TURE analyses for K values from 3 to 7 all showing substantial longitu-

dinal structure. STRUCTURE genotype pools in S. umbraculus are often

shared between putative refugia (Figures 1 and 5), and Central Euro-

pean regional populations involve contributions from east and west.

These patterns are compatible with divergence of genotype pools

before occupation of current geographic distributions, or divergence

during occupation of refugia followed by dispersal between them, or

both of these. The K = 3 ABC analysis showed a dominant signature

of divergence between three genotype pools, with no evidence for

founding of one by admixture from the other two. The *BEAST model

used to infer relationships between the K = 7 genotype pools lacked

admixture, and exploration of relationships between these popula-

tions (e.g., using ABC) may yet reveal it. However, the longitudinal

distribution and divergence history of genotype pools for K values 3

and 7 make it highly likely that admixture has been important in the

founding and development of regional populations.

The longitudinal patterns in S. umbraculus parallel those in other

members of the oak gall wasp community in showing strong genetic

differentiation between regions of southern Europe thought to have

acted as glacial refugia for oaks (Petit et al., 2003) and associated

organisms (Challis et al., 2007; Hayward & Stone, 2006; Lohse et al.,

2010, 2012; Nicholls et al., 2010a, 2010b; Rokas et al., 2001, 2003;

Stone et al., 2007, 2012). The Western Palaearctic oak gall wasp

fauna has many regionally endemic lineages, which are thought to

have diversified originally in Western Asia 5–7 million years ago

(Stone et al., 2009), before spreading westwards into Europe. Most

members of the oak gall community surveyed to date show east–west

declines in genetic diversity that are concordant with such an “Out of

the East” model (Challis et al., 2007; Mutun, 2016a; Mutun & Atay,

2015; Nicholls et al., 2012; Rokas et al., 2003; Stone et al., 2012).

This pattern is also shared by many other taxa (e.g., Connord et al.,

2012; Rossiter, Benda, Dietz, Zhang, & Jones, 2007; Wahlberg & Sac-

cheri, 2007). A small number of species in this community show con-

trasting patterns. Several parasitoid species show highest genetic

diversity in Iberia—a pattern compatible with an “Out of the West”

model (Stone et al., 2012), while one gall wasp (Biorhiza pallida, which

is a host gall for Synergus umbraculus) shows a deep split between

Iberia and regions further east (Hearn et al., 2014; Rokas et al.,

2001). Synergus umbraculus shows a similar pattern to B. pallida in this

regard, and in contrast to other community members, intraspecific

genetic diversity for S. umbraculus was highest in the Balkans. This

parallels patterns seen in some other taxa (e.g., Michaux, Libois, Par-

adis, & Filippucci, 2004; Ursenbacher et al., 2008), and confirms pre-

vious analysis of mitochondrial haplotypes by Bihari et al. (2011).

Model-based phylogeographic analysis has only been applied to a

subset of oak gall inhabitants—four parasitoid species (Lohse et al.,

2010; Lohse, Sharanowski, et al., 2011) and one gall wasp (Hearn

et al., 2014). Methodological limitations associated with use of a full

likelihood framework limited these analyses to consideration of only

three putative refuge populations (Iberia, the Balkans, and Iran). The

parasitoids showed patterns generally consistent with the “Out of

the East” range expansion, over a range of timescales. In contrast,

the gall wasp Biorhiza pallida showed divergence between Iberia and

populations in the Balkans and Iran ca. 150 kya, with subsequent

gene flow from Iran to Iberia ca. 40 kya without passage through

the Balkans. This seems implausible until we consider that North

Africa had more extensive oak forests over the timescale considered

(Lamb, Eicher, & Switsur, 1989; M�edail & Diadema, 2009), and so

could have provided an alternative, non-European, route for east–

west dispersal (Hearn et al., 2014).
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Our analysis differs from these in including four rather then

three putative refuge regions (with or without an additional unsam-

pled fifth population), and as far as we know it is the first to do so

in a fully explored, model-based framework. The patterns observed

in S. umbraculus show some parallels with those observed in Biorhiza

pallida, with deepest divergence between Iberia and other popula-

tions, and subsequent gene flow between these populations. These

aspects of the spatial history of S. umbraculus are supported by all of

the pool-winning ABC scenarios. The timings of events estimated for

these two species are broadly comparable, with Iberian populations

of both species diverging from others in the Late Pleistocene

(<400 kya), followed by at least one more much more recent gene-

flow event between established populations. Given the wide 95%

confidence intervals for divergence time estimates in S. umbraculus,

lack of robust time calibration for mutation rates in S. umbraculus,

and variation in rates across taxa (Papadopoulou, Anastasiou, & Vog-

ler, 2010), these timings must be considered approximate but cer-

tainly fall within the Pleistocene. Given the hypothesized role of an

unsampled African population in the history of B. pallida, our ABC

analysis included scenarios with a fifth, unsampled, population. We

found that inclusion of such a population provided no improvement

in model support, with an otherwise similar model lacking such a

population (scenario 40) receiving higher support relative to other

scenarios than one with (scenario 85). Thus while our results cannot

exclude the existence of other geographic populations of S. umbracu-

lus, their input is not required to explain the genetic make-up of

sampled populations.

Our inference of founding of the Italian population of S. umbrac-

ulus by admixture matches inference of close links between Italy and

each of Iberia and the Balkans for a gall-inducing oak gall wasp,

Andricus quercustozae (Rokas et al., 2003). For S. umbraculus, the

median estimate of the admixture proportion from Iberia to Italy was

0.40, suggesting relatively even contributions to Italy from both con-

tributing populations, although 95% confidence limits for the esti-

mate are wide (0.06–0.86). Strongest support for scenarios 40 and

85, together with identification of a predominantly Balkan genotype

pool in STRUCTURE, both suggest that the Balkans acted as a Pleis-

tocene glacial refuge, as argued for other species in the oak gall

wasp community and beyond (Comps et al., 2001; Hewitt, 1999,

2004; Petit et al., 2003; Stone & Sunnucks, 1993; Stone et al.,

2012). However, we did find support (albeit weaker) for a scenario

(139) in which the Balkan population was founded by admixture

from Italy and an unsampled population, and founding of the Balkan

population by admixture was inferred in two other pool-winning sce-

narios (even though these received little support in the second round

of ABC analysis) (Pools B and G; Figure 6b,g). The *BEAST analysis of

the K = 7 STRUCTURE populations (Figures 1b and 5) suggests that

each of Italy and the Balkans contain contributions from an older

more local genotype pool (3 and 4, respectively), with contributions

from additional, more recently diverging genotype pools to east and

west. Admixture is the most likely explanation for three individuals

identified in the K = 7 STRUCTURE analysis as having highest probabili-

ties of membership in primarily Iberian (2) or Eastern (7) genotype

pools (Figure 1b). It remains possible that comparison of more com-

plex scenarios, not included in our model set, could identify signifi-

cant signatures of admixture in both Italy and the Balkans.

One further aspect of our analysis requiring consideration is our

decision to focus on four regions in our geographic analysis. Selec-

tion of four regions was motivated by our requirement for full explo-

ration of model space, and guided by previous work on the

phylogeography of oaks and associated insects. However, the K = 7

STRUCTURE analysis suggests that both Iberia and the East comprise

more than one population unit. Previous work in Turkey and Iran on

a range of taxa (Bilgin, 2011; Davis, 1971) including oak gall wasps

(Mutun, 2016b; Rokas et al., 2003) has found that many show

genetic subdivision between populations either side of the Anatolian

diagonal, a mountain chain running across Turkey from the Taurus

mountains in the south towards the north east. More resolved mod-

elling of the population history of S. umbraculus could thus incorpo-

rate a larger number of populations, based on STRUCTURE analysis or

geographic regions. Such analyses would allow exploration of which

populations have contributed to longitudinal gene flow, and the flex-

ibility of the ABC framework could incorporate more complex pat-

terns of admixture and changes in population size. Our type 1 and

type 2 error rates, while acceptable for the current analysis, suggest

that more informative data would be required for parameter estima-

tion and model discrimination among a larger set of scenarios. While

modest increases in the number of loci sequenced may have little

impact (e.g., Pelletier & Carstens, 2014), in general model discrimina-

tion and parameter estimation are best improved by increasing the

number of loci in the data set (Jackson et al., 2017; Li & Jakobsson,

2012; Robinson, Bunnefeld, Hearn, Stone, & Hickerson, 2014; Smith

et al., 2017), and sequencing hundreds to thousands of loci is now

possible for nonmodel taxa through reduced cost of high-throughput

sequencing. The next logical step for S. umbraculus would be a popu-

lation genomic-scale analysis.

4.2 | Pros and cons of tournament ABC as an
approach to phylogeographic model selection

Model-based inference of regional population history requires at

least two major choices: which individuals to group into population

units, and which population demographic scenarios to compare. We

grouped individuals in two ways—into genetically coherent popula-

tions identified by the K = 3 STRUCTURE analysis, and into four geo-

graphic populations corresponding to putative glacial refugia through

the Pleistocene. For each set of groupings, our demographic scenar-

ios included all topologies for sampled populations and one unsam-

pled population, with founding of (at most) one sampled population

by admixture from two others. For the K = 3 STRUCTURE groupings,

this resulted in seven scenarios, while for the four regions this

resulted in 148 scenarios. As discussed above, scenario choice over

the two sampling regimes produced plausible historical hypotheses.

While the 148 geographic population models are a large set, they

are simple models, lacking more complex patterns of changes in

population size or directional gene flow between established
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populations, as explored, for example by Fagundes et al. (2007) for

emergence of human populations from Africa, and Pelletier and Car-

stens (2014) for a North American salamander. All models are wrong

to some extent (Box, 1979; Hickerson et al., 2013; Nielsen & Beau-

mont, 2009; Thom�e & Carstens, 2016), and the best model from

such a set should probably be considered a starting point for explo-

ration of more parameter-rich and realistic models. Given the com-

plex refugial history of the Palaearctic through the Pleistocene, it is

possible that the population history of S. umbraculus involves

repeated cycles of isolation and gene flow between refugia—a possi-

bility explored models by Jesus, Wilkins, Solferini, and Wakeley

(2006). Nevertheless, concordance in key events across pool-winning

scenarios, good fit of posterior predictive simulations to observed

summary statistic values, high precision/low bias for important

parameter estimates, and low type 2 error rates in model choice all

suggest that the winning models capture important aspects of the

true underlying population history.

Hierarchical approaches, adopted to varying degrees by previous

studies (Barr�es et al., 2012; Kerdelhu�e et al., 2014; Wei et al., 2015),

have some obvious drawbacks and advantages. One perceived draw-

back of including apparently implausible scenarios is that analysis is

prolonged. It could be considered more efficient to exclude implausi-

ble population topologies or parameter combinations a priori (for a

well-argued example, see Barr�es et al., 2012), and to focus on more

parameter-rich comparison of plausible models. However, apparently

implausible scenarios will sometimes be true, and if they are not

included, support for them can never be detected. The example

described above for the gall wasp Biorhiza pallida (Hearn et al.,

2014), involving westwards gene flow from Asia Minor to Iberia

without passing through central Europe, is a case in point. A corre-

sponding advantage of our approach (notwithstanding limitations of

the models themselves) is thus its lack of preconception bias and

comprehensiveness (see Pelletier & Carstens, 2014 for another

example).

A second drawback is that without a single reference table for

all 148 scenarios we could not estimate posterior probability sup-

port and error rates over the full ABC experiment. We were also

not able to explore the consequences of allocating scenarios to

pools in different combinations on overall scenario choice (we know

of no way to combine prior simulations for scenarios in DIYABC ref-

erence tables into new combinations). Because support for a sce-

nario is conditional on the set of models being compared, it is

possible that a model ranked second in one scenario pool could

provide a better fit to observed data than the winning scenario in

another pool. Were this true, the pool winners would not be the

best set of scenarios given the data, and parameters estimated

jointly over pool winners would not be the best estimates for the

whole scenario set. However, these issues should not influence

identification of the individual best scenario over the full set. This

is because this model will always be compared directly with the

second best model overall either within its own pool in the first

round of the tournament, or as the winner of another pool in the

second stage of the analysis. Given the high concordance across

pool winners in major aspects of population history inferred for

S. umbraculus, we consider our inferences robust. However, ranking

of models over the full set remains a problematic issue in a hierar-

chical model selection strategy. Alternative ABC approaches (e.g.,

Jackson et al., 2017; Pelletier & Carstens, 2014) do allow direct

comparison of similarly large numbers of scenarios, circumventing

these drawbacks. Alternative approaches to ABC model selection,

including random forest algorithms (Pudlo et al. 2016; Smith et al.,

2017) and approximate likelihood methods (Jackson et al., 2017),

can also compare large numbers of models and require significantly

less computing effort to identify best-supported models across the

full set than classic ABC approaches. Likelihood-based approaches

avoid the simulation step and can provide unambiguous ranking of

competing models (e.g., Lohse et al., 2010, 2012; Lohse and Frantz

2014) but are currently restricted in the complexity of scenarios

they can compare.

Our tournament approach combines the ability to incorporate

model complexity inherent in ABC with an analytical structure that

reduces the number of models compared at each step, and avoids

the crowding of model space that can occur when large numbers of

similar models are compared directly (Pelletier & Carstens, 2014).

Tournament approaches may be useful where large numbers of pop-

ulations and parameters increase the challenge of fully exploring

model space, with the aim of minimizing preconception bias in sce-

nario choice.
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