- 1 Identification of the Askja-S Tephra in a rare turlough record from Pant-y-Llyn, south Wales
- 2 Gwydion Jones a*, Siwan M. Davies a, Gareth Farr b, Jamie Bevan c
- ^a Department of Geography, College of Science, Swansea University, Singleton Park,
- 4 Abertawe, Cymru, SA2 8PP, UK
- ^b British Geological Survey, Cardiff University, Main Building, Park Place, Caerdydd, Cymru
- 6 CF10 3AT, UK.
- 7 ° Natural Resources Wales, Maes Newydd, Britannic Way West, Llandarcy, Neath Port
- 8 Talbot, Cymru, SA10 6JQ, UK
- 9 *Corresponding author <u>554654@swansea.ac.uk</u> / <u>gwyds91@hotmail.co.uk</u> (G. Jones)
- 10 Key words: cryptotephra, Askja-S Tephra, turlough, tephra dispersal, radiocarbon dating,
- 11 carbonates

13

Abstract

- 14 Tephrochronology and especially crypto-tephrochronology is an established chronological
- technique employed in a range of depositional environments in Europe and beyond. During
- the late Quaternary, Icelandic cryptotephra deposits are widely found in palaeorecords
- 17 across northern latitudes of Europe e.g. Scotland, Ireland, Norway, Sweden and the Faroe
- 18 Islands but are sporadic in southerly latitudes as distance from Iceland increases. As yet,
- very few Icelandic cryptotephras have been identified in Wales or southern England which
- 20 may well reflect the geographical limit of Icelandic tephra distribution. Here, however, we
- 21 report the discovery of an Icelandic cryptotephra deposit within a sediment sequence
- retrieved from the Pant-y-Llyn turlough (Carmarthenshire, south Wales), the only known
- turlough in Britain. Turloughs are groundwater-fed ephemeral lakes associated with
- 24 limestone bedrock and can accumulate sediments that may yield records suitable for
- 25 palaeoreconstructions. A discrete peak of glass shards originating from the Askja-S eruption
- 26 is identified in the sediment record. This discovery extends the distribution of this early
- 27 Holocene eruption giving new insight into its dispersal patterns and also indicates that
- sedimentary sequences from sites in these more southerly latitudes are valuable repositories
- 29 for ash preservation. Furthermore, its discovery within a carbonate-rich sequence provides a
- 30 minimum age constraint on the timing of sediment accumulation and provides an alternative
- 31 tool for what is typically a problematic dating environment.

32

33

1. Introduction

- 1 Tephrochronology is a powerful dating technique whereby geochemically distinct and well-
- 2 constrained ash deposits can underpin a chronological framework as well as allow precise
- 3 and direct synchronisation of geological records (Lowe, 2011). In recent years, this
- 4 technique has significantly progressed beyond the realms of visible or macro-ash deposits to
- 5 focus on cryptotephra deposits preserved in distal areas relative to the volcanic source
- 6 (Davies, 2015). Cryptotephra deposits are invisible to the naked eye and contain a low
- 7 concentration of volcanic glass shards that can only be detected by microscopy following a
- 8 series of extraction steps to isolate the shards from the host sediment. Discrete horizons
- 9 were identified in distal peat bog deposits as early as the 1960s, where stratigraphic
- information was employed to suggest the preservation of the Hekla 3, Hekla 4, Askia 1875
- and Öraefajökull 1362 cryptotephras in Swedish, Norwegian and Faroes peat bogs
- (Persson, 1966, 1971). It was the discovery of cryptotephra in Scottish peat (Dugmore,
- 13 1989), however, that instigated the recent advances in the search for ash deposits far
- 14 removed from volcanic centres.
- 15 Extensive employment of extraction techniques such as ashing (for organic rich deposits;
- Dugmore, 1989) and density separation (for minerogenic sediments; Turney, 1998) together
- with robust chemical characterisation of glass shards (Hayward, 2012) have given rise to an
- abundant European network of cryptotephra discoveries (Fig. 1). Traces of Icelandic
- eruptions spanning the last 15,000 years have been identified in depositional records across
- Europe (e.g. Wastegård and Davies, 2009; Lawson et al., 2012; Davies et al., 2012; Timms
- et al., 2016; Wulf et al., 2016). However, there are very few reported findings of distal ash
- deposits south of 53⁰ latitude and east of 6⁰ longitude and noticeable gaps in Wales,
- 23 southern England and large parts of France are evident on spatial distribution maps (Fig. 1).
- The density of cryptotephra discoveries is also skewed towards the sites located in northerly
- 25 latitudes with only the largest known eruptions such as the Vedde Ash and the Askja-S
- Tephra found in more southerly latitudes (e.g. Lane et al., 2011, 2012b). This apparent
- absence may be an indicator of the geographical limit of most Icelandic ash plumes but most
- 28 likely reflects a sampling bias with very few studies conducted in lowland areas of Wales and
- southern England. With the exception of a recent study by Watson et al., (2017), there have
- 30 been traces of potential cryptotephra deposits identified in sites in the Brecon Beacons and
- 31 mid-Wales but these findings have not been supported by geochemical characterisation of
- the shards themselves (Williams, 2001; Williams et al., 2007; Buckley and Walker, 2002).
- Here we explore tephra preservation in a sediment sequence extracted from the Pant-y-Llyn
- turlough in south Wales (Fig. 2). Turloughs are ephemeral water bodies associated with
- topographic depressions in karst and are periodically inundated mainly by groundwater.
- Turloughs are common in the Republic of Ireland (Skeffington et al., 2006; Naughton et al.,

- 1 2012), however, this is the only known turlough in Britain (Campbell et al., 1992; Hardwick
- and Gunn, 1995) and as such is a designated Annex I priority habitat under the EU Habitats
- 3 Directive 92/43/EC (McLeod et al., 2005). Turloughs do not have a true inflow or outflow
- 4 stream, and fill and empty either diffusely across their base or via estavelles, a karst feature
- 5 that can act as both a spring and a sink (Tynan et al., 2007). Sediments from turloughs are
- 6 rich in calcium carbonate (Coxon and Coxon, 1994) and an investigation of their infill can
- 7 provide insight into the development and formation of these rare features. Dating such
- 8 sedimentary sequences using the conventional radiocarbon method, however, is problematic
- 9 due to the erroneous effects of hard-water and contamination by old carbon (Lowe and
- Walker, 2000). Tephra deposits have huge potential as an alternative dating technique for
- such sequences (e.g. Candy et al., 2016; Timms et al., 2016) and we present the first
- positive findings in Wales to date a carbonate-rich record retrieved from a turlough.

14

2. Site Description and Methods

- The Pant-y-Llyn turlough is located in south Wales, UK (Lat: 51^o 49' 51" N, Long: 4^o 1' 26"
- 16 W) at an altitude of 150 m OD. The lake is small, just 160 m long and 60 m wide, and lies in
- a depression formed in the underlying Carboniferous Dowlais Limestone Formation (Fig. 2).
- Sediment cores were obtained on 28th August 2013 when water levels were sufficiently low
- to allow access into the turlough basin. A basin survey was conducted using a peat probe
- and hand auger at 10 locations to determine the area with the thickest sequence of soft
- sediment. Using a Russian corer (5 cm diameter, 50 cm length) a 550 cm core was obtained
- from the eastern part of the turlough basin, but the bedrock was not reached (Fig. 2). The
- core (British Geological Survey borehole reference SN61NW12) is comprised of a sequence
- of unconsolidated lake muds, silts and peat. Cores were wrapped in cling film and stored in a
- 25 cold room at <4 °C until sub-sampling was undertaken. Four 100 g bulk sediment samples
- from 200, 245, 395, 510 cm depth below ground level were sent to the ¹⁴CHRONO Centre at
- 27 Queens University Belfast for dating (Table. 1).
- Loss on ignition (LOI) was conducted on the core between 550-300 cm. LOI was performed
- at a 4-cm resolution between 550-530 cm and 490-300 cm and at a 2-cm resolution between
- 530-490 cm spanning the transition from the basal unit of reddish silty clay and organic lake
- mud unit. The standard protocol of Heiri et al., (2001) was followed with samples placed in a
- furnace at 550 °C for 2 hours to determine the organic matter loss by weight percent and a
- further 2 h at 1000 ^oC to determine the calcium carbonate (CaCO₃) loss by weight percent.

- 1 Tephra investigations focused on the 350-550 cm portion of the sequence with initial
- 2 searches conducted on 5-cm contiguous samples and followed the methodology outlined in
- 3 Turney, (1998). The samples were ashed at 550 °C for 2 hours and the remaining particulate
- 4 material was sieved at 80 and 25 μm. Due to the minerogenic nature of the sediment a
- 5 density separation was performed using sodium polytungstate and the 2.3-2.5 gcm⁻³ density
- 6 fraction was mounted onto microscope slides using Canada Balsam. A light-powered,
- 7 polarizing microscope was used at x100 and x200 magnification to identify and count the
- 8 glass shard concentrations. Where a distinct peak in tephra shard concentration was
- 9 present, 1-cm segments were sub-sampled from the core to pinpoint the position of the
- tephra isochron to the nearest cm. For geochemical analysis, samples were processed
- following the same methodology as outlined above, with the exception of the ashing step.
- Due to the low shard concentrations a micro-manipulator was used to extract individual
- shards for geochemical analysis. Shards were placed on a microprobe slide and embedded
- in epoxy resin. Glass shards were sectioned using decreasing grades of silicon carbide
- paper and polished using 9, 6 and 1 μm diamond suspension and 0.3 μm micro-polish.
- Geochemical analysis was undertaken at the Tephra Analytical Unit at the University of
- 17 Edinburgh using a Cameca SX100 wavelength dispersive spectrometer electron-probe micro
- analysis (WDS EPMA). Operating conditions are noted in the supporting information. A 3 µm
- beam set-up was used for some shards due to the small particle size (Hayward, 2012). No
- analytical offsets were observed between the 3 and 5 µm set-ups (see supporting
- information). Lipari and BCR2g secondary standards were analysed at regular intervals to
- 22 examine the accuracy of the instrument and the precision of the analysed tephra shards (see
- 23 supporting information).

25

3. Results

- 26 3.1. Lithostratigraphy, LOI and radiocarbon dates
- 27 The lithostratigraphy is shown in Fig. 3, and consists of a basal unit of reddish silty clay (550-
- 522 cm) overlain by grey silty clay (522-511 cm). An organic lake mud is present between
- 29 511 and 450 cm and is overlain by brown, carbonate-rich mud that shows some evidence of
- fine laminations (450-362 cm). These are not thought to be annually resolved. Organic fen
- 31 peat is found in the uppermost part of the sequence (362-0 cm). LOI values are low (~12 %)
- within the basal clay unit indicating a high minerogenic input which we suggest has been
- 33 deposited during the Loch Lomond Stadial. Calcium carbonate values also remain low (~5
- 34 %) within this unit. A sudden increase in LOI values is observed at 511 cm, reaching values

- of 50 % by 508 cm. We suggest that this may represent the early Holocene transition. The
- 2 highest LOI values (55-70 %) are observed between 500 and 466 cm with a shift towards
- 3 slightly lower values of around 50 % between 466 and 430 cm. Calcium carbonate values
- 4 begin to increase at around 480 cm but show marked fluctuations between 10 and 40 %
- 5 between 480 and 430 cm. A short-lived peak of 70 % in calcium carbonate content is
- observed at 422 cm and is accompanied by a dip in LOI at the same depth. Between 410
- 7 and 360 cm, low LOI values (10-25 %) are accompanied by higher calcium carbonate values
- 8 (60-76 %). The increase in LOI values and corresponding decrease in calcium carbonate
- 9 values observed 360 cm (47 % and 10 % respectively) coincides with a shift from lake mud
- to fen peat. In the uppermost part of the record, LOI increases to ~60 % at 335 cm and
- calcium carbonate content falls to ~10 % (Fig. 3). The overall calcium carbonate variations in
- this sequence may reflect periods of stronger groundwater influence in this turlough.
- 13 Radiocarbon ages obtained from four bulk samples are summarised in Table 1. The
- lowermost radiocarbon date lies stratigraphically at the base of the lake mud unit, which is
- assumed to represent the early Holocene. However, the radiocarbon age estimate reveals a
- much older age of 12958-12713 cal BP which is closer to the onset of the Loch Lomond
- 17 Stadial. Similarly, an age range of 12589-12105 cal BP is obtained for the sample at 395 cm,
- which lies 115 cm above the lowermost radiocarbon age, implying a relatively high
- sedimentation rate (7 yrs/cm) compared with other similar sediment deposits of this age (e.g.
- 20 Quoyloo Meadow ~46 yrs/cm: Timms et al., 2016). The uppermost ages at 200 and 245 cm
- 21 are also close in age (~8.7 cal BP and ~8.6 cal BP, respectively) and indicate a slight
- inversion with the former yielding an older age than the latter (Table. 1).

24

3.2. Tephra discoveries

- Low-resolution investigation of the tephra content revealed the presence of one distinct peak
- in shard concentration at 495-500 cm whilst the rest of the sequence revealed a low
- 27 background of ~ 2-3 glass shards per 0.5 gram dry weight (g dw) at intermittent intervals.
- Due to the low shard concentrations, no geochemical results were attempted and without
- this information, the significance of the apparent background in glass shards is uncertain.
- 30 The distinct peak in shard concentration between 495-500 cm was refined to 1 cm where a
- concentration of 72 shards per 0.5 gram dry weight (g dw) was established at 499-500 cm
- 32 (labelled PLL 500 in Fig 3 and 4). The shards were colourless and typically platy and fluted
- in morphology. Microprobe analyses confirm their homogenous rhyolitic composition with
- 34 SiO₂ values ranging between 72.24 76.4 wt%, K₂O values of 2.39 2.65 wt% and CaO
- 35 values of 1.5 1.75 wt% (Table 2). Major oxide biplots reveal a strong correlation with the

- 1 Askja-S Tephra (Fig. 4) which can easily be distinguished from other early Holocene age
- 2 tephras such as the Hässeldalen Tephra on the basis of higher FeO and CaO values (Fig.
- 3 4). The tephra at Pant-y-Llyn is also geochemically distinct relative to other early Holocene
- 4 tephras including the Suðuroy, An Druim, Breakish, Hovsdalur, Høvdarhagi, L274, Skopun,
- 5 Fosen, Ashik and Abernethy tephra (Fig. 4) (Wastegård, 2002; Ranner et al., 2005; Pyne
- 6 O'Donnell, 2007; Lind and Wastegård, 2011; Matthews et al., 2011; Lind et al., 2013). The
- 7 Askja-S geochemical signature can also be discriminated from older widespread tephras
- 8 such as the Vedde Ash based on higher SiO₂ and CaO values.
- 9 Whilst chemical similarity is shown between the Askja-S Tephra and the 499-500 cm
- deposit, the radiocarbon dates would suggest an older age than presently suggested for the
- 11 Askja-S Tephra. It is possible that PLL_500 could be a previously unknown tephra
- originating from the Dyngjufjöll volcanic system, given the closely timed tephra deposits of
- similar chemical signatures derived from Icelandic provenances, such as Katla (Lane et al.,
- 2012b) or the numerous Borrobol-type deposits discovered (Lind et al., 2016; Jones et al.,
- 2017). As yet, however, there are no reported findings of older Askja-S-type tephras in the
- literature. Guðmundsdóttir et al., (2016) have reported a younger tephra the Askja L–
- dated to approximately 9400 cal BP (Striberger et al., 2012) and the Askja H tephra dated
- to 8850 years old has been identified by Jóhannsdóttir, (2007). The former tephra reveals an
- identical chemical composition to Askja-S but the Al₂O₃ and FeO content for the latter differs
- from the Askja-S (Guðmundsdóttir et al., 2016). The Askja L and H have, however, never
- been discovered outside of Iceland making the Askja-S correlation most likely in Pant-y-Llyn.
- The lithostratigraphic information also supports this correlation to the early Holocene Askja-S
- Tephra in line with other studies (e.g. Davies et al., 2003; Wulf et al., 2016; Timms et al.,
- 24 2016).

26

4. Discussion

- 27 4.1. Askja-S Tephra dispersal and significance
- The identification of the Askja-S Tephra in the Pant-y-Llyn record, extends the geographical
- area of Icelandic ash deposition. Until now, very few Icelandic tephras have been found
- south of 53° latitude and east of 6° longitude (Fig. 1) and our new findings indicate that this
- 31 is not a reflection of the dominance of more northerly dispersal trajectories (see also recent
- 32 findings outlined by Watson et al., 2017). We propose potential dispersal maps based on
- reported Askja-S findings and, given the reported negative findings for this tephra (Table 3
- and Fig 5c), speculate that dispersal may have been characterised by more than one plume

- trajectory (Fig. 5c). Proximal deposits in Iceland, however, suggest the main axis of Askja-S
- dispersal was mainly to the NNE (Sigvaldason et al., 2002). We acknowledge that several
- 3 other factors may also account for the absence of the Askja-S Tephra in some records (e.g.
- 4 uneven ash distribution within sites, failure to pinpoint cryptotephra deposits in low-resolution
- searches; Pyne O'Donnell, 2011; Timms et al., 2016), however, we use our maps to
- 6 highlight geographical areas that are most likely to result in fruitful recovery of the Askja-S
- 7 deposit. In particular, the relatively high shard concentrations (72 shards per 0.5 gdw)
- 8 highlight the tantalising possibilities of tracing the Askja-S Tephra, as well as other Icelandic
- 9 tephras, further south in the British Isles and perhaps France.

11

4.2. Askja-S age estimate

- 12 The Askja-S Tephra is considered to be a key isochronous marker for the early Holocene
- and its extensive distribution from Arctic Norway (Pilcher et al., 2005) to Switzerland (Lane et
- al., 2011) and from northern Ireland (Turney et al., 2006) to north Poland (Wulf et al., 2016)
- now allows Pant-y-Llyn to be precisely integrated within a broad palaeorecord network (Fig.
- 5). One age estimate for the Askja-S Tephra is 10,830±57 cal BP, which was derived by
- age-modelling a range of radiocarbon dates (Bronk Ramsey et al., 2015 and references
- within), however, Ott et al., (2016) provide an older age of 11,228±26 cal BP based on a
- varve-interval from the Hässeldalen tephra in Lake Czechowskie, Poland. Based on the
- 20 relative stratigraphic positions of tephras in the Lake Hämelsee record, Jones et al (2017)
- 21 suggests that the Ott et al., (2016) age estimate is marginally too old than the age estimate
- outlined by Bronk Ramsey et al., (2015).
- 23 In the Pant-y-Llyn sequence, the radiocarbon date at 510 cm (10 cm below the Askja-S
- Tephra) has revealed an age range of 12,958-12,713 cal BP, almost ~2000 years older than
- 25 the Askja-S Tephra. A further date of 12589–12105 cal BP is obtained from the sample
- dated at 395 cm (Table 1 & Fig. 3). Given the hard-water error that affects sediments in
- 27 limestone terrain (Walker, 2005), we suggest that these ages cannot be used to obtain a
- 28 reliable age-model, especially the sample obtained from 395 cm where CaCO₃ content is 68
- 29 %. The discrete Askja-S peak, however, provides a well-constrained age marker for the
- 30 lowermost part of the sequence and constrains the brown gyttja to the early Holocene
- 31 interval. Although bedrock was not reached during coring, the Askja-S Tephra provides a
- 32 minimum age estimate for the sediment sequence and indicates that the underlying silty clay
- unit is likely to represent the Loch Lomond Stadial. Further work will need to ascertain
- whether a full Late-glacial sequence is preserved at the site; such records are limited in
- number in south Wales (e.g. Walker et al., 2003, 2009).

2

5. Conclusion

- The identification of the Askja-S Tephra in the Pant-y-Llyn turlough sediments extends the known distribution of this tephra further south and east in the British Isles and suggests that
- 5 sites south of 53° latitude and east of 6° longitude can be valuable repositories for ash
- 6 preservation. We compile positive and negative findings of the Askja-S Tephra and use this
- 7 distribution to propose a three plume trajectory. The independently dated age estimate for
- 8 the Askja-S Tephra (10,830±57 cal BP Bronk Ramsey et al., 2015) provides a crucial
- 9 chronological marker for this record and provides a minimum age estimate for the onset of
- sediment accumulation at Pant-y-Llyn. This study highlights the value of using cryptotephra
- deposits to overcome the problems of radiocarbon dating sediment in limestone terrain. The
- lowermost silty clay deposit at Pant-y-Llyn is likely to have been deposited during the Loch
- Lomond Stadial and highlights the potential of extracting a palaeoenvironmental record from
- this sequence that extends back into the Late-glacial period. Further analysis of this core
- sequence may yield information on the evolution and formation of this rare turlough.

16

17

Acknowledgements

- We would like to thank Natural Resources Wales who manage Pant-y-Llyn. Dr Chris Vane
- 19 and Dr David Scofield (British Geological Survey) for supporting the collection of the core
- 20 and radiocarbon dating. Gareth Farr publishes with the permission of the Executive Director
- of the British Geological Survey (NERC). We would like to thank Dr Chris Hayward for his
- 22 assistance with the use of the electron microprobe at the Tephrochronology Analytical Unit,
- 23 University of Edinburgh. Thanks also to Gareth James (Swansea University) for laboratory
- 24 assistance. Two anonymous reviewers are thanked for their constructive comments.
- 25 Funding: This work was conducted as part of a PhD study, supported by the Coleg Cymraeg
- 26 Cenedlaethol.

27

28

Appendix A. Supporting Information

29 Supplementary material related to this article can be found in the online version.

- 1 Table 1. Four radiocarbon dates measured from bulk sediment at 14CHRONO Centre at
- 2 Queens University Belfast. Ages were calibrated using OxCal and the IntCal13 calibration
- 3 set (Bronk Ramsey, 2009; Reimer et al., 2013). Acid-Alkali-Acid (AAA) pre-treatment was
- 4 undertaken on samples. Dates supplied by the British Geological Survey.

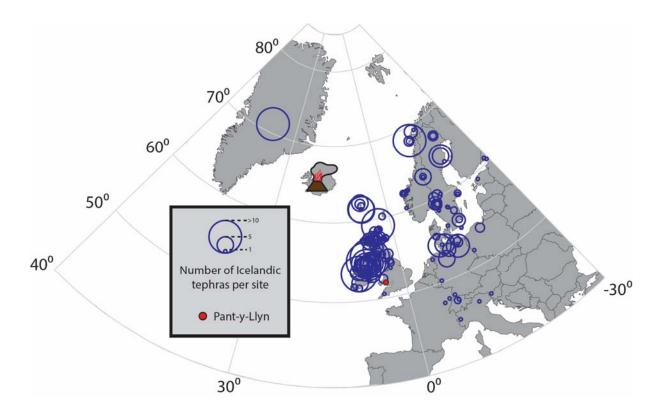

Laboratory ID	Depth	δ ¹³ C	14C age	Calibrated age range
code	(cm)	%	yrs BP	(cal BP)(95.4%)
UBA-26393	200	-25.4	7857±41	8932–8545
UBA-26392	245	-23.4	7833±37	8748–8541
UBA-26394	395	-26.8	10479±65	12589–12105
UBA-26391	510	-29.1	10953±47	12958–12713

Table 2. Summary geochemical data displayed as major oxide concentrations (average and standard deviation) for the tephra layer 499-500 cm (PLL_500). A complete list of analyses and full microprobe operating conditions can be found in the supplementary data.

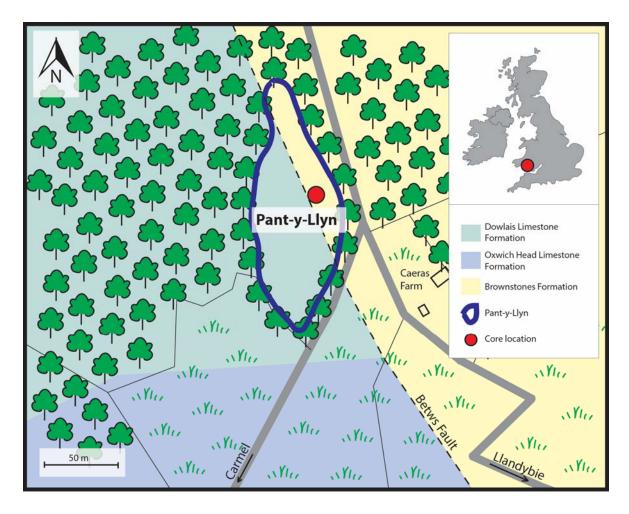
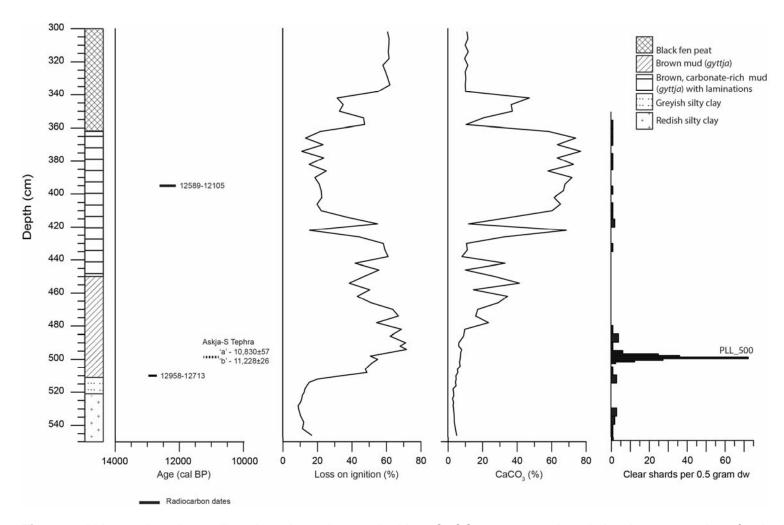
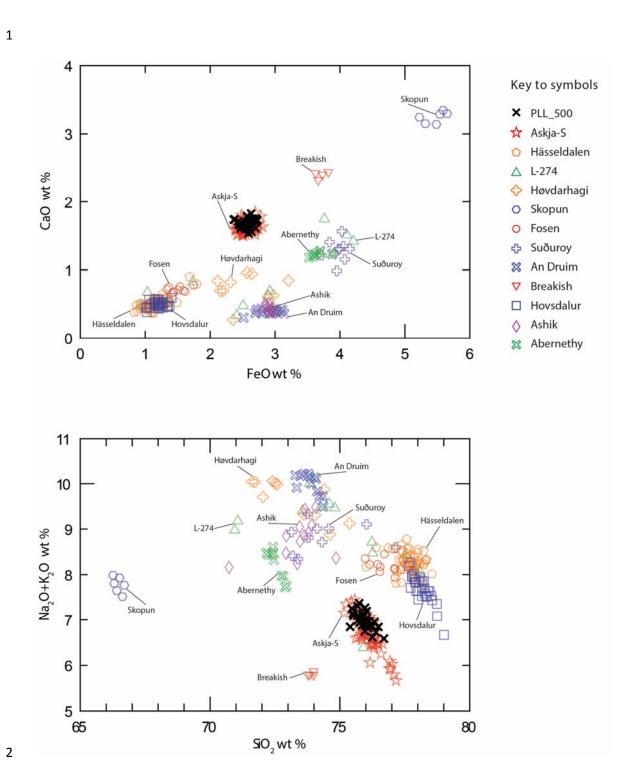

	SiO ₂	TiO ₂	Al ₂ O	Fe O	Mn O	Mg O	Ca O	Na₂ O	K ₂ O	P ₂ O ₅	Tota I
499-500 cm						wt %					
average	73.8	0.3	11.8	2.5			1.6		2.5		97.2
(n=33)	6	0	1	0	0.09	0.24	3	4.28	1	0.04	5
		0.0		0.0			0.0		0.0		
st dev	0.79	1	0.30	9	0.01	0.03	6	0.17	6	0.01	1.02

Table 3. A compilation of positive and negative findings of the Askja-S Tephra (ordered by publication date). Absences are noted according to the sampling interval, age models and the stratigraphic position of other tephras in the original studies


Site	Latitude and	Numer in Fig	Reference	Askja-S Tephra
	Longitude	5		present
Lake Hämelsee, Germany	52°45' N, 9°18' E	1	Jones et al., 2017	Yes
Turret Bank, Scotland	57°00' N, 4°44' E	2	Lowe et al., 2017	Yes
Inverlair, Scotland	56°52' N, 4°43' W	3	Kelly et al., 2016	Yes
Quoyloo Meadow, Scotland	59°03' N, 3°18' W	4	Timms et al., 2016	Yes
Lake Tiefer See, Germany	53°35' N, 12°31' E	5	Wulf et al., 2016	Yes
Lake Czechowskie, Poland	53°52' N, 18°14' E	6	Wulf et al., 2016	Yes
Meerfelder Maar, Germany	50°06' N, 6°45' E	7	Lane et al., 2015	No
Store Slotseng basin, SW Denmark	55°19' N, 9°16' E	8	Larsen & Noe-Nygaard, 2014	No
Grønlia fen, Norway	63°47' N, 10°28' E	9	Lind et al., 2013	No
Wegliny, Poland	51°49' N, 14°43' E	10	Housley et al., 2013	No
Mulakullegöl, Sweden	57°12' N, 13°25' E	11	Lilja et al., 2013	Yes
Tøvelde, Denmark	54°57' N, 12°17' E	12	Larsen, 2013	Yes
Endinger Bruch, Germany	54°14' N, 12°53' E	13	Lane et al., 2012	Yes
Havnardalsmyren, Faroe Islands	62°01' N, 6°84' W	14	Kylander et al., 2012; Wastegård pers comm	Yes
Abernethy Forest, Scotland	57°14' N, 3°42' W	15	Matthews et al., 2011	No
Soppensee, Switzerland	47°05' N, 8°05' E	16	Lane et al., 2011	Yes
Høvdarhagi bog, Faroe Islands	61°54' N, 6°55' W	17	Lind & Wastegård, 2011	Yes
Loch Achik, Scotland	57°15' N, 5°50' W	18	Pyne O'Donnell, 2007	No
Lough Nadourcan, northwest Ireland	55°03' N, 7°54' W	19	Turney et al., 2006	Yes
Long Lough, Northern Ireland	54°26' N, 5°55' W	20	Turney et al., 2006	Yes
Borge Bog, Arctic Norway	68°14' N, 13°44' E	21	Pilcher et al., 2005	Yes
Hässeldala port, Sweden	56°16' N, 15°03' E	22	Davies et al., 2003	Yes


Figure 1. Spatial distribution map of Europe including distal sites (outside of Iceland) that contain Icelandic tephra layers of Holocene and Lateglacial age (~15 ka yr BP to present). Circle size relates to the number of tephra layers found in each site. Data from published sources (Davies et al., 2012; Lawson et al., 2012; Wulf et al., 2016; Watson et al., 2017; and references within). The circle on Greenland corresponds to the SUMMIT cores and NGRIP (Grönvold et al., 1995; Mortensen et al., 2005). Only one record in Wales has reported geochemical results to support tephra findings (Watson et al., 2017).

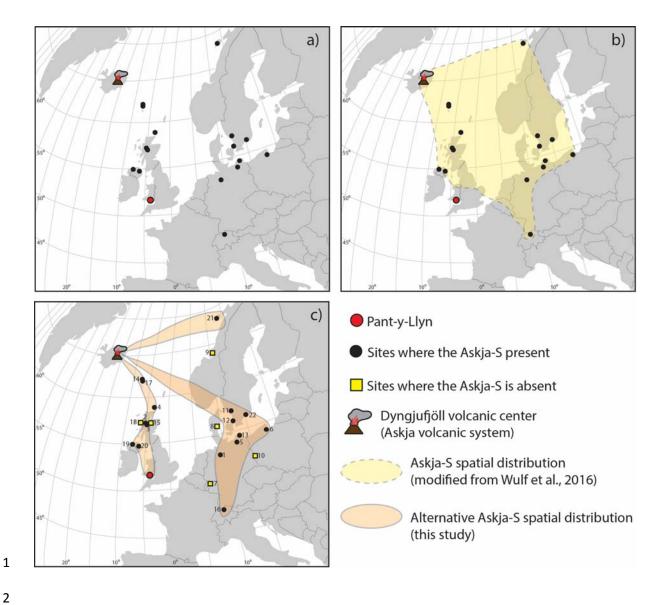

Figure 2. Location map of the Pant-y-Llyn turlough (Lat: 51° 49' 51", Long: -4° 1' 26"), coring location and local bedrock geology. 'Contains British Geological Survey Digi Map 1:50,000 Bedrock Geological Map and Ordnance Survey data © Crown Copyright and database rights 2017.

Figure 3. Lithostratigraphy, radiocarbon dates, loss on ignition, CaCO₃ content and total shard concentrations for the Pant-y-Llyn core (BGS Borehole reference SN61NW12). Radiocarbon dates are derived from bulk sediment samples. Calibrated age ranges are shown here and outlined in table 1. Askja-S Tephra age estimates are from Bronk Ramsey et al., 2015 (a) and Ott et al., 2016 (b).

Figure 4. Selected bi-plots showing tephra PLL_500 glass shard major element composition correlating to the Askja-S Tephra. Hässeldalen, L-274 ,Høvdarhagi, Skopun, Fosen, Suðuroy, An Druim, Breakish, Hovsdalur, Ashik and Abernethy Tephra data also shown for discrimination. Data have been normalised. Data from: (Wastegård, 2002; Ranner et al., 2005; Pyne O'Donnell, 2007; Lind & Wastegård, 2011; Matthews et al., 2011; Lane et al., 2011, 2012a; Lind et al., 2013; Lilja et al., 2013; Wulf et al., 2016; Timms et al., 2016 and Jones et al., 2017).

Figure 5. Spatial distribution maps for the Askja-S Tephra. a) Sites where the Askja-S Tephra is present. b) Current spatial distribution envelope for the Askja-S Tephra (modified from Wulf et al., 2016). c) Suggested plume trajectory, given the location of sites where the Askja-S is present and absent. Site numbers and details are provided in full in Table 3.

1 References

- 2 Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360.
- 3 Bronk Ramsey, C., Albert, P.G., Blockley, S.P.E., Hardiman, M., Housley, R.A., Lane, C.S.,
- 4 Lee, S., Matthews, I.P., Smith, V.C. & Lowe, J.J., 2015. Improved age estimates for key Late
- 5 Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews
- 6 118, 18-32.
- 7 Buckley, S.L., Walker, M.J.C., 2002. A mid-Flandrian tephra horizon, Cambrian Mountains,
- west Wales. Quaternary Newsletter 96, 5-11.
- 9 Campbell, S., Gunn, J., Hardwick, P., 1992. Pant-y-llyn-the first Welsh turlough. Earth
- 10 Science Conservation 31, 3-7.
- 11 Candy, I., Abrook, A., Elliot, F., Lincoln, P., Matthews, I.P. & Palmer, A., 2016. Oxygen
- isotopic evidence for high-magnitude, abrupt climatic events during the Lateglacial
- 13 Interstadial in north-west Europe: analysis of a lacustrine sequence from the site of Tirinie,
- 14 Scottish Highlands. Journal of Quaternary Science 31, 607-621.
- 15 Coxon, C.E., Coxon, P., 1994. Carbonate deposition in Turloughs (seasonal lakes) on the
- 16 Western limestone lowlands of Ireland: II: The sedimentary record. Irish Geography 27, 28-
- 17 35.
- Davies, S.M., 2015. Cryptotephras: the revolution in correlation and precision dating. Journal
- of Quaternary Science 30, 114-130.
- Davies, S.M., Abbott, P.M., Pearce, N.J.G., Wastegård, S., Blockley, S.P.E., 2012.
- 21 Integrating the INTIMATE records using tephrochronology: rising to the challenge.
- 22 Quaternary Science Reviews 36, 11-27.
- Davies, S.M., Wastegård, S., Wohlfarth, B., 2003. Extending the limits of the Borrobol
- 24 Tephra to Scandinavia and detection of new early Holocene tephras. Quaternary Research,
- 25 59, 345-352.
- Dugmore, A., 1989. Icelandic volcanic ash in Scotland. The Scottish Geographical Magazine
- 27 105, 168-172.
- 28 Grönvold, K., Óskarsson, N., Johnsen, S. J., Clausen, H.B., Hammer, C.U., Bond, G., Bard,
- 29 E., 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic
- and land sediments. Earth and Planetary Science Letters 135, 149-155.

- 1 Guðmundsdóttir, E.R., Larsen, G., Björck, S., Ingólfsson, Ó., Striberger, J., 2016. A new
- 2 high-resolution Holocene tephra stratigraphy in eastern Iceland: Improving the Icelandic and
- 3 North Atlantic tephrochronology. Quaternary Science Reviews 150, 234-249.
- 4 Hardwick, P., Gunn, J., 1995. Landform–groundwater interactions in the Gwenlais karst,
- 5 South Wales. A.G. Brown (Ed.), Geomorphology and Groundwater, John Wiley, New York
- 6 (1995), 75–91.
- 7 Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic
- 8 and carbonate content in sediments: reproducibility and comparability of results. Journal of
- 9 Paleolimnology 25, 101-110.
- Housley, R.A., MacLeod, A., Nalepka, D., Jurochnik, A., Masojć, M., Davies, L., Lincoln, P.
- 11 C., Bronk Ramsey, C., Gamble, C.S., Lowe, J.J., 2013. Tephrostratigraphy of a Lateglacial
- lake sediment sequence at Wegliny, southwest Poland. Quaternary Science Reviews 77, 4-
- 13 18.
- Hayward, C., 2012. High spatial resolution electron probe microanalysis of tephras and melt
- inclusions without beam-induced chemical modification. Holocene 22, 119-125.
- Jóhannsdóttir, G., 2007. Mid Holocene to Late Glacial Tephrochronology in West Iceland as
- 17 Revealed in Three Lacustrine Environments. MS Thesis in Geology University of Iceland.
- Jones, G., Lane, C.S., Brauer, A., Davies, S.M., de Bruijn, R., Engels, S., Haliuc, A., Hoek,
- 19 W.Z., Merkt, J., Sachse, D., Turner, F., Wagner-Cremer, F., 2017. The Lateglacial to early
- 20 Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the
- 21 European tephra framework. 10.1111/bor.12250.
- Kelly, T.J., Hardiman, M., Lovelady, M., Lowe, J.J., Matthews, I.P., Blockley, S.P.E., 2017.
- 23 Scottish early Holocene vegetation dynamics based on pollen and tephra records from
- 24 Inverlair and Loch Etteridge, Inverness-shire. Proceedings of the Geologists' Association,
- 25 128, 125-135.
- Kylander, M.E., Lind, E.M., Wastegård, S., Löwemark, L., 2012. Recommendations for using
- 27 XRF core scanning as a tool in tephrochronology. Holocene 22, 371-375.
- Lane, C.S., Blockley, S.P.E., Bronk Ramsey, C., Lotter, A.F., 2011. Tephrochronology and
- 29 absolute centennial scale synchronisation of European and Greenland records for the last
- 30 glacial to interglacial transition: a case study of Soppensee and NGRIP. Quaternary
- 31 International 246, 145-156.

- 1 Lane, C.S., De Klerk, P., Cullen, V.L., 2012a. A tephrochronology for the Lateglacial
- 2 palynological record of the Endinger Bruch (Vorpommern, north-east Germany). Journal of
- 3 Quaternary Science 27, 141-149.
- 4 Lane, C.S., Blockley, S.P.E., Mangerud, J., Smith, V.C., Lohne, Ø.S., Tomlinson, E.L.,
- 5 Matthews, I.P., Lotter, A.F., 2012b. Was the 12.1 ka Icelandic Vedde Ash one of a kind?
- 6 Quaternary Science Reviews 33, 87-99.
- 7 Lane, C.S., Brauer, A., Martin-Puertas, C., Blockley, S.P.E., Smith, V.C., Tomlinson, E.L.,
- 8 2015. The Late Quaternary tephrostratigraphy of annually laminated sediments from
- 9 Meerfelder Maar, Germany. Quaternary Science Reviews 122, 192-206.
- Larsen, J.J., 2013. Lateglacial and Holocene tephrostratigraphy in Denmark Volcanic ash in
- a palaeoenvironmental context. Unpublished PhD Thesis, University of Copenhagen.
- Larsen, J.J., Noe-Nygaard, N., 2014. Lateglacial and early Holocene tephrostratigraphy and
- sedimentology of the Store Slotseng basin, SW Denmark: a multi-proxy study. Boreas 43,
- 14 349-361.
- Lawson, I.T., Swindles, G.T., Plunkett, G., Greenberg, D., 2012. The spatial distribution of
- Holocene cryptotephras in north-west Europe since 7 ka: implications for understanding ash
- fall events from Icelandic eruptions. Quaternary Science Reviews 41, 57-66.
- Lilja, C., Lind, E.M., Morén, B., Wastegård, S., 2013. A Lateglacial–early Holocene
- tephrochronology for SW Sweden. Boreas 42, 544-554.
- Lind, E.M., Wastegård, S., 2011. Tephra horizons contemporary with short early Holocene
- 21 climate fluctuations: New results from the Faroe Islands. Quaternary International 246, 157-
- 22 167.
- 23 Lind, E.M., Wastegård, S., Larsen, J.J., 2013. A Late Younger Dryas-Early Holocene
- tephrostratigraphy for Fosen, Central Norway. Journal of Quaternary Science 28, 803-811.
- Lind, E.M., Lilja, C., Wastegård, S., Pearce, N.J.G., 2016. Revisiting the Borrobol Tephra.
- 26 Boreas 45, 629-643.
- Lowe, D.J., 2011. Tephrochronology and its application: A review. Quaternary
- 28 Geochronology 6, 107-153.
- 29 Lowe, J.J., Palmer, A.P., Carter-Champion, A., Macleod, A., Ramírez-Rojas, I., Timms,
- 30 R.G.O., 2017. Stratigraphy of a Lateglacial lake basin sediment sequence at Turret Bank,

- 1 upper Glen Roy, Lochaber: implications for the age of the Turret Fan. Proceedings of the
- 2 Geologists' Association 128, 110-124.
- 3 Lowe, J.J., Walker, M.J.C., 2000. Radiocarbon dating the last glacial-interglacial transition
- 4 (Ca. 14-9 14C ka BP) in terrestrial and marine records: the need for new quality assurance
- 5 protocols. Radiocarbon 42, 53-68.
- 6 Matthews, I.P., Birks, H.H., Bourne, A.J., Brooks, S.J., Lowe, J.J., Macleod, A., Pyne-
- 7 O'Donnell, S.D.F., 2011. New age estimates and climatostratigraphic correlations for the
- 8 Borrobol and Penifiler Tephras: evidence from Abernethy Forest, Scotland. Journal of
- 9 Quaternary Science 26, 247-252.
- Mcleod, C., Yeo, M., Brown, A., Burn, A., Hopkins, J., Way, S., 2005. The Habitats Directive:
- selection of special areas of conservation in the UK. Peterborough, Joint Nature
- 12 Conservation Committee. JNCC official website (www. jncc. gov. uk/SACselection,
- 13 23/09/09).
- Mortensen, A.K., Bigler, M., Grönvold, K., Steffensen, J.P., Johnsen, S.J., 2005. Volcanic
- ash layers from the Last Glacial Termination in the NGRIP ice core. Journal of Quaternary
- 16 Science 20, 209-219.
- Naughton, O., Johnston, P., Gill, L., 2012. Groundwater flooding in Irish karst: The
- hydrological characterisation of ephemeral lakes (turloughs). Journal of Hydrology 470, 82-
- 19 97.
- Ott, F., Wulf, S., Serb, J., Słowiński, M., Obremska, M., Tjallingii, R., Błaszkiewicz, M.,
- 21 Brauer, A., 2016. Constraining the time span between the Early Holocene Hasseldalen and
- 22 Askja-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland.
- Journal of Quaternary Science 31, 103-113.
- 24 Persson, C., 1966. Försök till tefrokronologisk datering av några svenska torvmossar.
- 25 Geologiska Foereningan i Stockholm Foerhandlingar 88. 361–395.
- Persson, C., 1971. Tephrochronological investigation of peat deposits in Scandinavia and on
- the Faroe Islands. Geological Survey of Sweden C 656.
- Pilcher, J., Bradley, R.S., Francus, P., Anderson, L., 2005. A Holocene tephra record from
- the Lofoten Islands, arctic Norway. Boreas 34, 136-156.
- 30 Pyne-O'Donnell, S. 2011. The taphonomy of Last Glacial-Interglacial Transition (LGIT) distal
- volcanic ash in small Scottish lakes. Boreas 40, 131-145.

- 1 Pyne-O'Donnell, S.D.F., 2007. Three new distal tephras in sediments spanning the Last
- 2 Glacial-Interglacial Transition in Scotland. Journal of Quaternary Science 22, 559-570.
- Ranner, P.H., Allen, J.R.M., Huntley, B., 2005. A new early Holocene cryptotephra from
- 4 northwest Scotland. Journal of Quaternary Science 20, 201-208.
- 5 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck,
- 6 C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason,
- 7 H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser,
- 8 K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M.,
- 9 Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 and Marine13
- radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869-1887.
- 11 Sigvaldason, G.E., 2002. Volcanic and tectonic processes coinciding with glaciation and
- crustal rebound: an early Holocene rhyolitic eruption in the Dyngjufjöll volcanic centre and
- the formation of the Askja caldera, north Iceland. Bulletin of Volcanology 64, 192-205.
- Skeffington, M.S., Moran, J., Connor, Á.O., Regan, E., Coxon, C., Scott, N., Gormally, M.,
- 15 2006. Turloughs-Ireland's unique wetland habitat. Biological Conservation 133, 265-290.
- Striberger, J., Björck, S., Holmgren, S., Hamerlík, L., 2012. The sediments of Lake
- 17 Lögurinn–A unique proxy record of Holocene glacial meltwater variability in eastern Iceland.
- 18 Quaternary Science Reviews 38, 76-88.
- 19 Timms, R.G.O., Matthews, I.P., Palmer, A.P., Candy, I., Abel, L., 2016. A high-resolution
- 20 tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: Implications for the
- 21 tephrostratigraphy of NW Europe during the Last Glacial-Interglacial Transition. Quaternary
- 22 Geochronology. http://dx.doi.org/10.1016/j.quageo.2016.06.004. (in Early View) (2016).
- Turney, C.S.M., 1998. Extraction of rhyolitic component of Vedde microtephra from
- minerogenic lake sediments. Journal of Paleolimnology 19, 199-206.
- Turney, C.S.M., Van Den Burg, K., Wastegård, S., Davies, S.M., Whitehouse, N.J., Pilcher,
- J.R., Callaghan, C., 2006. North European last glacial-interglacial transition (LGIT; 15-9 ka)
- tephrochronology: extended limits and new events. Journal of Quaternary Science 21, 335-
- 28 345.
- 29 Tynan, S., Gill, M., Johnston, P.M., 2007. Development of a Methodology for the
- 30 Characterisation of a Karstic Groundwater Body with Particular Emphasis on the Linkage
- 31 with Associated Ecosystems such as Turlough Ecosystems. Final Research Report to the

- 1 Environmental Protection Agency (Project No. 2002-W-DS-08-M1). EPA, Johnstown Castle
- 2 Estate, Wexford, Ireland.
- Walker, M.J.C., 2005. Quaternary Dating Methods, Chichester, UK, John Wiley and Sons.
- 4 Walker, M.J.C., Coope, G.R., Sheldrick, C., Turney, C.S.M., Lowe, J.J., Blockley, S.P.E.,
- 5 Harkness, D.D., 2003. Devensian lateglacial environmental changes in Britain: a multi-proxy
- 6 environmental record from Llanilid, South Wales, UK. Quaternary Science Reviews 22, 475-
- 7 520.
- 8 Walker, M.J.C., Davies, S., Hall, J., Sambrook, P., 2009. A Preliminary Palaeoecological
- 9 record from Llyn Llech Owain, near Gorslas, Carmarthenshire. Archeology in Wales 49, 53-
- 10 58.
- 11 Wastegård, S., 2002. Early to middle Holocene silicic tephra horizons from the Katla volcanic
- system, Iceland: new results from the Faroe Islands. Journal of Quaternary Science 17, 723-
- 13 730.
- Wastegård, S., Davies, S.M., 2009. An overview of distal tephrochronology in northern
- Europe during the last 1000 years. Journal of Quaternary Science 24, 500-512.
- Watson, E.J., Swindles, G.T., Lawson, I.T., Savov, I.P., Wastegård, S., 2017. The presence
- of Holocene cryptotephra in Wales and southern England. Journal of Quaternary Science
- 18 32, 493-500.
- 19 Williams, A.N., 2001. The Lateglacial record at Traeth Mawr, South Wales:
- 20 palaeoenvironmental reconstruction using pollen analysis and tephrochronology.
- 21 Unpublished MSc Thesis, Royal Holloway, University of London.
- Williams, A.N., Lowe, J.J., Turney, C.S.M., Woodcock, P., 2007. Preliminary
- 23 tephrostratigraphical investigations at Traeth Mawr. In. Quaternary of the Brecon Beacons
- Field Guide. ed. by Carr, S.J., Coleman, C.G., Humpage, A.J & Shakesby, R. Quaternary
- 25 Research Association.
- Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Guðmundsdóttir, E., van den Bogaard, C.,
- 27 Słowiński, M., Błaszkiewicz, M., Brauer, A., 2016. Holocene tephrostratigraphy of varved
- sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland).
- 29 Quaternary Science Reviews 132, 1-14.