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ABSTRACT 13 

Microorganisms produce and consume methane in terrestrial surface environments, sea 14 

sediments and, as indicated by recent discoveries, in fractured crystalline bedrock. These 15 

processes in the crystalline bedrock remain, however, unexplored both in terms of 16 

mechanisms and spatiotemporal distribution. Here we have studied these processes via a 17 

multi-method approach including microscale analysis of the stable isotope compositions of 18 

calcite and pyrite precipitated in bedrock fractures in the upper crust (down to 1.7 km) at three 19 

sites on the Baltic Shield. Microbial processes have caused an intriguing variability of the 20 

carbon isotopes in the calcites at all sites, with δ13C spanning as much as -93.1‰ (related to 21 

anaerobic oxidation of methane) to +36.5‰ (related to methanogenesis). Spatiotemporal 22 

coupling between the stable isotope measurements and radiometric age determinations 23 

(micro-scale dating using new high-spatial methods: LA-ICP-MS U-Pb for calcite and Rb-Sr 24 

for calcite and co-genetic adularia) enabled unprecedented direct timing constraints of the 25 

microbial processes to several periods throughout the Phanerozoic eon, dating back to 26 

Devonian times. These events have featured variable fluid salinities and temperatures as 27 

shown by fluid inclusions in the calcites; dominantly 70-85°C brines in the Paleozoic and 28 

lower temperatures (<50-62°C) and salinities in the Mesozoic. Preserved organic compounds, 29 

including plant signatures, within the calcites mark the influence of organic matter in 30 

descending surficial fluids on the microbial processes in the fracture system, thus linking 31 

processes in the deep and surficial biosphere. These findings substantially extend the space 32 

where, and time when, production and consumption of methane within the upper continental 33 

crust is recognized.  34 
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1. Introduction 38 

Microbial anaerobic oxidation of methane (AOM) in a variety of settings, such as 39 

marine sediments (Knittel and Boetius, 2009), the deep subseafloor biosphere (Inagaki et al., 40 

2015; Roussel et al., 2008), fresh water wetlands (Segarra et al., 2015) and at seeps, has been 41 

suggested to occur by a syntrophic two-membered microbial consortium, consisting of: 1) 42 

anaeorobic methanotroph (ANME) archaea; and 2) sulfate reducing bacteria (SRB) 43 

(Michaelis et al., 2002). This phenomenon occurs at the sulfate-methane transition zone 44 

(SMTZ), a discrete depth horizon where sulfate-rich water mixes with deeper-seated methane 45 

(Knittel and Boetius, 2009), and frequently results in precipitation of calcite and pyrite from 46 

the dissolved bicarbonate and sulfide produced during AOM (Campbell et al., 2002; 47 

Peckmann and Thiel, 2004). Methane generally has carbon isotope values (13C/12C expressed 48 

as δ13C) that are light (depleted in 13C), especially when it is microbial (Whiticar, 1999), 49 

although significant 13C-depletion has also been shown for abiotic methane of hydrothermal 50 

origin (McCollom et al., 2010), and hence, the related authigenic calcite is also commonly 51 

13C-depleted (Campbell et al., 2002; Peckmann and Thiel, 2004; Schrag et al., 2013). This 52 

calcite is therefore a frequently used tracer for AOM, in addition to diagnostic biomarkers of 53 

ANME and their SRB partner (Niemann and Elvert, 2008). Reports of fossil AOM from 54 

numerous sedimentary settings, mostly Cenozoic and rarely Mesozoic/Paleozoic (Peckmann 55 

and Thiel, 2004), show that microbial methanogenesis and oxidation have decreased the 56 

contribution of this greenhouse gas to the surface systems and atmosphere over geological 57 

eras.  58 

In the respect of microbial methane production and consumption over Phanerozoic 59 

time scales, the vast continental crust, dominated by fractured Precambrian crystalline 60 

basement, has largely been neglected. This continental subsurface system has a total estimated 61 

biomass corresponding to up to almost 20% of the Earth’s total (McMahon and Parnell, 62 
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2014). Pioneering investigations within the last decades confirm that microorganisms indeed 63 

thrive in this oligotrophic fracture environment (Pedersen, 1997). Although microbial cell 64 

densities in water filled fractures are very low (Wu et al., 2016), the vast area and surprisingly 65 

high metabolic activities (Onstott et al., 2014) result in microbial mediated redox transitions 66 

that significantly influence global carbon and energy fluxes (McMahon and Parnell, 2014). 67 

However, the knowledge about ancient life in this vast and difficult-to-reach environment is 68 

still very scarce. Basically, fractured crystalline rocks are overall untapped archives for 69 

ancient organic processes and materials (Peters et al., 2016). 70 

The presence of abiotic methane of deep crustal origin in fractured crystalline rocks is 71 

well known (Sherwood Lollar et al., 2008), and recent observations of highly 13C-depleted 72 

carbonates at Laxemar, Sweden (δ13C as light as -125‰ V-PDB, Drake et al., 2015) and at 73 

Olkiluoto, Finland (as light as -53.8‰, Sahlstedt et al., 2016) have shown that methane has 74 

been oxidised by microorganisms at several hundred meters depth in the Precambrian 75 

continental crust. These carbonates have been anticipated to be relatively recently formed 76 

(<10 Ma) (Drake et al., 2015; Sahlstedt et al., 2016), but no precise dating constraints have 77 

yet been presented. Ongoing AOM is anticipated at these sites by contrasting depth trends of 78 

methane and sulfate (Drake et al., 2015; Pedersen et al., 2008, 2014). Although the knowledge 79 

of hydrogeochemical and biogeochemical (Drake et al., 2015; Sahlstedt et al., 2016) temporal 80 

fluctuations in deep granitoid fracture systems have been significantly improved during recent 81 

years by application of microscale isotope techniques, the AOM process in this setting is still 82 

largely uncharacterised in terms of mechanisms and unknown in terms of spatiotemporal 83 

extent.  84 

The aim of the study was to decipher whether the recently discovered and young (<10 85 

Ma) AOM- and methanogenesis-processes in fractured bedrock (Drake et al., 2015) have been 86 

widespread in space and time. The spatial distribution has been assessed by extensive new 87 
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micro-analytical stable isotope investigations of minerals from several Precambrian 88 

crystalline rock sites over large depth range (0-1700 m), and the temporal extent has been 89 

targeted by utilizing new dating techniques with high spatial resolution and by focusing on 90 

minerals of several generations, indicatively formed in the Paleozoic era (or later) (Drake and 91 

Tullborg, 2009). These new isotope and geochronological analyses have been combined with 92 

comprehensive characterisation of biomarkers (and fossilised microorganisms) and fluid 93 

inclusions within the calcites, with an aim to decipher the fluid salinity and temperature as 94 

well as the origin of nutrient sources related to methane formation and consumption 95 

processes. 96 

 97 

2. Materials and methods 98 

2.1. Materials and sites 99 

 Samples were collected from boreholes at three sites dominated by Proterozoic 100 

crystalline rocks. These are Forsmark (rock crystallization age 1.89-1.86 Ga), Götemar (1.44 101 

Ga) and Laxemar (1.80 Ga) in Sweden (Fig. S1). Samples of calcite (and pyrite) were taken 102 

from dominantly open, but also semi-open and sealed fractures from 39 cored boreholes, one 103 

outcrop and one quarry. Paragenetic minerals include fluorite, adularia K-feldspar, quartz, 104 

asphaltite (Figs. 1 and S2).  105 

 106 

2.2. Microscale stable isotope analysis 107 

Following sample characterisation and mineral identification carried out directly on the 108 

uncoated fracture surfaces using a Hitachi S-3400N SEM equipped with an integrated energy 109 

dispersive spectroscopy (EDS) system under low-vacuum conditions, calcite and pyrite 110 

crystals were mounted in epoxy, polished to expose crystal cross-sections and examined with 111 



6 
 

SEM to trace zonations. Intra-crystal SIMS-analysis (10 μm lateral beam dimension, 1-2 μm 112 

depth dimension) of carbon, oxygen and sulfur isotopes were performed on a Cameca 113 

IMS1280 ion microprobe. Analytical transects of up to ten analyses were made within the 114 

crystals. In total 2465 analyses were made in calcite for δ13C and δ18O in calcite and 40 for 115 

δ34S of pyrite in samples with AOM-signature in the calcites. Settings follow those described 116 

in Drake et al. (2015). Influence of organic carbon was avoided in the SIMS-analyses by 117 

careful spot placement to areas in the crystals without micro-fractures or inclusions. The 118 

uncertainty associated with potential organic inclusions and matrix composition is therefore 119 

considered to be insignificant compared to the isotopic variations. 120 

Calcite results are reported as per mil (‰) δ13C and δ18O based on the Pee Dee 121 

Belemnite (V-PDB)-standard value. Several analytical sessions were carried out running 122 

blocks of six unknowns bracketed by two standards. Spot transects were made from core to 123 

rim within the crystals (summarised in Table 1, with full data in Table S1). Corresponding 124 

analytical spots for C and O isotopes were closely placed within the crystals and analysed at 125 

separate sessions.  126 

Isotope data from calcite were normalised using 1) Brown Yule Marble (δ18O: 127 

24.11±0.13‰ V-SMOW, converts to 6.55±0.13‰ V-PDB, δ13C: -2.28±0.08‰V-PDB, 128 

derived from three replicate bulk analyses, J. Craven, Univ. of Edinburgh, pers. comm.), and 129 

2) calcite standard S0161, which comes from a granulite facies marble in the Adirondack 130 

Mountains, kindly provided by R.A. Stern (Univ. of Alberta). The values used for IMF 131 

correction were determined by conventional stable isotope mass spectrometry at Stockholm 132 

University on ten separate pieces, yielding δ13C = -0.22 ± 0.11 ‰V-PDB (1 std. dev.) and 133 

δ18O = -5.62 ± 0.11 ‰ V-PDB (1 std. dev.) Precision was δ18O:±0.2-0.3‰ and δ13C:±0.4-134 

0.5‰. 135 
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Pyrite results are reported as per mil (‰) δ34S based on the Canon Diablo Troilite (V-136 

CDT)-standard value. Blocks of six unknowns were bracketed by two standards (the Ruttan 137 

pyrite). Analytical transects of several analyses were made from core to rim in the crystals. 138 

Precision was δ34S ±0.13‰. 139 

 140 

2.2. Micro-scale radiometric dating 141 

2.2.1. U-Pb dating 142 

U-Pb geochronology is based on the two decay systems of U to Pb (238U to 206Pb and 143 

235U to 207Pb) and is commonly applied to silicate and phosphate minerals, i.e. zircon and 144 

monazite, but can also be applied to carbonate minerals (see Rasbury & Cole, 2009). Using 145 

the Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), which 146 

allows for micro-sampling on a fine-scale, has opened up geochronology of carbonate 147 

minerals to new applications (e.g. Roberts & Walker, 2016). 148 

U-Pb geochronology via LA-ICP-MS was conducted at the Geochronology & Tracers 149 

Facility, NERC Isotope Geosciences Laboratory (Nottingham, UK). The method utilises a 150 

New Wave Research 193UC excimer laser ablation system, coupled to a Nu Instruments 151 

Attom single-collector sector-field ICP-MS. The method is briefly described here and in detail 152 

in the supplementary material and in Roberts and Walker (2016). The laser parameters used 153 

are a 100μm static spot, ablated at 10 Hz for 30 s with a fluence of ~8 J/cm-2. Material is pre-154 

ablated to clean the sample site. Normalisation uses standard sample bracketing to NIST glass 155 

(for Pb/Pb ratios) and a carbonate reference material for Pb-U ratios (WC-1; see 156 

supplementary material). The proposed age presented in this study was analysed alongside 157 

another calcite material previously analysed by Isotope Dilution Thermal Ionisation Mass 158 

Spectrometry (ID-TIMS) that can be used as a check on accuracy of the normalisation. The 159 
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reproducibility of the primary WC-1 reference material is around 2-4% per session. An 160 

estimate of the session reproducibility is propagated (as excess variance) onto the sample 161 

data. The age quoted has additional systematic uncertainties propagated onto the final age 162 

(Horstwood et al., 2016), these include decay constant uncertainties, the laboratory-based 163 

long-term reproducibility of the method (~2%) and the uncertainty on the reference material 164 

age (~2.33%; based on in-house isotope dilution measurements). 165 

 166 

2.2.2. Rb-Sr dating 167 

The Rb-Sr dating system builds on the beta-decay of 87Rb to 87Sr in minerals. One or 168 

several Rb-rich minerals (showing increased 87Sr/86Sr and decreased 87Rb/86Sr with time) 169 

along with a co-genetic Sr-rich mineral (constant 87Sr/86Sr with time) are analysed and the age 170 

calculated based on the decay constant. The fine-grained and zoned nature of secondary 171 

minerals in crystalline-rock fractures has inhibited Rb-Sr dating using conventional 172 

dissolution techniques. Here we apply Rb-Sr geochronology via a newly developed high 173 

spatial resolution LA-ICP-MS method (Zack and Hogmalm, 2016), conducted at the Earth 174 

Sciences Centre, University of Gothenburg, Sweden. Adularia being co-genetic with the 175 

calcite analysed for stable isotopes with SIMS was searched for in detail using SEM directly 176 

on the fracture surfaces. Adularia from three samples where hand-picked and mounted in 177 

epoxy, polished and zonation was characterised using SEM. Discrete zones of secondary 178 

adularia in paragenesis with calcite (mineral relations in Figs. 1d and S4) were then analysed 179 

using micro-scale LA-ICP-MS. A brief method description is given here and a detailed in the 180 

supplementary material. Separation of 87Rb from 87Sr is achieved by producing oxide of 87Sr 181 

as the ablated material reacts with N2O (Hogmalm et al., 2017) or O2 (Zack and Hogmalm, 182 

2016) in a reaction cell sandwiched between two quadrupoles in an Agilent 8800QQQ ICP-183 

MS. N2O was utilised as reaction gas for analysis of all spots in samples KFM04A:306 m, 184 
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KFM08A:480 m and two spots in sample KLX01:220 m, while two spots in KLX01:220 m 185 

was analysed with O2 in a separate session. 87Sr/86Sr calibration of the raw ratios of samples is 186 

performed by using session-based means from repeated analysis of NIST SRM 610, which 187 

had a precision of 0.19% when N2O was utilized as reaction gas and 0.18% with O2. Mica-Mg 188 

is a pressed nanopowder pellet of a phlogopite separate that was used for 87Rb/86Sr calibration 189 

and had within-run precisions of 0.85% and 1.02% with N2O and O2, respectively. Within-run 190 

errors of standards and samples were below 2% for both 87Rb/86Sr and 87Sr/86Sr for each 191 

individual spot. The 87Sr/86Sr ratios of calcite from two of the dated samples were established 192 

by micro-scale MC-LA-ICP-MS analysis of the growth zone within the calcites that was in 193 

paragenesis with adularia. These analyses were carried out using a Nu plasma (II) MC-ICP-194 

MS, laser ablation was done using an ESI NWR193 ArF eximer laser ablation system and the 195 

analytical settings are described in detail in the supplementary material. 196 

 197 

2.3.Fluid inclusions 198 

Fluid inclusions were studied using microthermometry techniques for 24 samples of 199 

handpicked calcite crystals (0.5-1.5 mm in size) and of calcite double-polished thin sections 200 

(150 µm thick, including the same crystals analysed using SIMS). A conventional microscope 201 

was used to get an outlook of the samples and the distribution of the fluid inclusions. 202 

Microthermometric analyses of fluid inclusions were made with a Linkam THM 600 stage 203 

mounted on a Nikon microscope utilizing a 40x long working-distance objective. The 204 

working range of the stage is from -196° to +600°C (for details see Drake et al., 2015). The 205 

thermocouple readings were calibrated by means of SynFlinc synthetic fluid inclusions and 206 

well-defined natural inclusions in Alpine quartz. The reproducibility was ±0.1°C for 207 

temperatures below 40°C and ±0.5°C for temperatures above 40°C. In total 195 inclusions 208 

were measured. 209 
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 210 

2.4. Biomarkers 211 

Biomarkers were analysed in extracts from 16 of the calcite samples characterised for stable 212 

isotope composition using SIMS, and for one asphaltite sample and an alum shale reference 213 

sample. For very small samples, calcite with similar δ13C-values were combined. All samples 214 

and a sea sand blank reference sample were ground and extracted using the same 215 

methodology described in Drake et al. (2015) and references therein. The samples were dried 216 

with N2, redissolved with 200µl of n-hexane and analysed with GC/MS. For the analysis of 217 

the kerogen fraction ca 35 mg of sample extraction residues were mixed with sea sand 218 

(glowed for 2 h at 550°C) and a molybdenum-catalyst. Catalytic hydropyrolysis (HyPy) was 219 

conducted with a constant H flow at 5 l/min and a temperature program from 20 to 250°C for 220 

50 min and 250 to 500°C for 8 min using a device from Strata Technology Ltd. (Nottingham, 221 

UK). The generated pyrolysate was absorbed on silica gel in the dry ice cooled trap tube. The 222 

HyPy pyrolysates were separated into aliphatic, aromatic and polar fractions using column 223 

chromatography. To avoid any contamination, only pre-distilled solvents were used. All 224 

glassware used was first glowed at 500°C. Solvent blank extracts (with pre-heated sea sand) 225 

were performed concomitantly as contamination controls and measured together with the 226 

investigated samples. 1μL of each sample extract (500µl) was analysed with Thermo Trace 227 

1310 GC coupled to a Thermo TSQ Quantum Ultra triple quadrupole MS. The GC was 228 

equipped with a fused silica capillary column (5MS, 30m lengths, 0.25mm i.d., 0.1µm film 229 

thickness, with He as carrier gas). The temperature program of the GC oven was 80 to 310°C. 230 

The MS source was kept at 240°C in electron impact mode at 25eV ionization energy. Most 231 

calcites contained detectable organic matter, although in various amounts and compounds 232 

(Tables S8). The only exception was the deepest sample. Sample KFM06C:103 contained the 233 

most abundant organics detected with GC/MS (Table S9). 234 
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 235 

3. Results  236 

The sampled calcite and pyrite dominantly occurred as euhedral crystals grown from 237 

the walls of fractures formed in an extensional stress field. The calcite coatings were up to a 238 

cm thickness and typically consisted of scalenohedral crystals (Figs. 1a-c, S2). SEM 239 

investigations of polished crystal cross-sections showed overgrowths precipitated at different 240 

events (Fig. 2d-g) and paragenetic relations between calcite-adularia and calcite-pyrite (Fig. 241 

1d, f). Up to 10 different growth zones have been spotted (Fig. 2e) but generally they are 242 

much fewer and can, based on isotope signatures (see later sections), roughly be divided into 243 

an early phase with mm- to cm-sized crystals of scalenohedral calcite and cubic pyrite, and a 244 

later phase of calcite and pyrite overgrowths on the earlier crystals or smaller sized individual 245 

euhedral calcite crystals of various habit and pyrite crystals of cubic and framboidal habit. 246 

The micro-scale δ13C analyses showed substantial variability at all of the studied sites 247 

(Fig. 2a-c and Tables 1, S1). In total, the span was 130‰ V-PDB (site-specific spans between 248 

60.5 and 106.8‰). Extreme 13C-depletion occurred in all areas within the upper 800 m, with 249 

the minimum value as light as -70.3‰ (Forsmark), -73.9‰ (Götemar) and -93.1‰ 250 

(Laxemar). Pyrite in paragenesis with these 13C-depleted calcites showed considerable range 251 

in δ34S (-50.0 to +66.7‰ V-CDT; Table S2). Calcites with heavy δ13C values (>0‰) were 252 

particularly frequent at the Forsmark site, generally in the upper 400 m, but also in a sample at 253 

almost 700 m, with values as heavy as +36.5‰ (Figs. 2b, S3d). The latter are to the best of 254 

our knowledge the heaviest δ13Ccalcite value ever recorded. At Laxemar, heavy δ13Ccalcite 255 

occurred at more shallow depth, 37-239 m. On the grain-level scale, intra-crystal δ13C-256 

transects (Figs. 2d-g, S2) showed variations of up to 84‰ within single crystals. The 257 

formation of extremely 13C-depleted calcite can overall be linked to the two major calcite 258 

precipitation phases indicated above, with paragenetic minerals presented in Table 2; the early 259 
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phase related to e.g. adularia, asphaltite and fluorite, and the later typically forming 260 

overgrowths on the earlier calcite as well as generally showing heavier δ18Ocalcite (e.g. Fig. 2d-261 

g).  262 

The micro-scale LA-ICP-MS Rb/Sr-dating of a Laxemar sample (KLX01:220 m) with 263 

δ13Ccalcite values as light as -70.6‰ and paragenetic adularia gave a Devonian isochron age of 264 

394±14 Ma (Fig. 3c, the dated calcite has similar δ18O as the early phase of 13C-depleted 265 

calcite in Fig. 2e; paragenetic calcite-adularia relationship is shown in Figs. 1d and S4). Two 266 

samples of the same paragenesis from Forsmark (KFM08A:480 m, not showing 13C-depletion 267 

and KFM04A:306 m with δ13C values as light as -48.4‰) showed an age of 402±9 Ma that 268 

overlap with the Laxemar sample and an age of 355±14 Ma slightly younger than the other 269 

two, respectively (dating presented in Fig. 3a,b and Tables S4-S7, whereas SEM-270 

documentation of the paragenesis is in Fig. S4f). The heterogeneity and/or fine-grained/zoned 271 

nature of these minerals inhibits conventional bulk sample dating, such as 40Ar/39Ar (Fig. S4). 272 

Later overgrowths of a calcite sample from Forsmark (KFM06C:103 m), with δ13C as light as 273 

of -47.1‰, were dated to 173.2±7.6 Ma by micro-scale U-Pb LA-ICP-MS dating (Fig. 3d, 274 

appearance in Fig. 2g). The dated crystals had very unevenly distributed U-rich zones, 275 

inhibiting conventional bulk sample and isotope dilution dating techniques. 276 

In the Forsmark area, the 13C-enriched and 13C-depleted calcites of the early phase 277 

were in many fractures, but not always, related to asphaltite (Figs. 1a, S2a). The biomarker 278 

analyses and the maturity of the kerogen fraction in the asphaltite analysed with catalytic 279 

hydropyrolysis-GC-MS, showed n-hydrocarbon pattern (C14-C30), phenanthrene and its alkyl 280 

derivatives and naphthalene derivatives (Figs. S5a-c) similar to an analysed reference of 281 

Lower Cambrian alum shale (once covering the areas but now stripped off by erosion). In 282 

addition, the calculated vitrinite reflectance (Rc for phenanthrene/methylphenanthrene, see 283 

calculation in the supplementary text) of Rc=0.74-0.79 for the asphaltite is in accordance with 284 
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the vitrinite and graptolite reflectance (Ro=0.74-0.78) measured in a shale close by Petersen 285 

et al. (2013). Primary 5-15 µm sized fluid inclusions of the early phase of calcite showed 286 

homogenisation temperatures (Th) of around 70-85°C and ice-melting temperatures equivalent 287 

to brine type salinities (17-22 wt.% CaCl2, Table S3 and Drake and Tullborg, 2009; detailed 288 

information about the fluid inclusion studies are presented in the supplementary text). In the 289 

Laxemar and Götemar areas the calcites had detectable fatty acids (such as in a 13C-depleted 290 

calcite from Götemar, containing C16:0, C17:0ai; C17:0 and C18:0, Table S8) but lacked the typical 291 

aromatic asphaltite/shale-related biomarkers (Fig. S5). The younger calcite overgrowths in 292 

Forsmark and Laxemar (e.g. Fig. 2g) showed fluid inclusion Th of <50-62°C and salinities of 293 

typically c. 2.5-8 wt.% CaCl2 eq (Table S3). Preserved organic material was extracted from 294 

the calcite sample of Jurassic age and showed peaks for long chain hydrocarbons >nC22 and 295 

diterpenoid hydrocarbons like kaurene, abietadiene, ent-kaurane and dehydroabietane, which 296 

are characteristic for land plants (Fig. 5; Table S9). 297 

 298 

4. Discussion 299 

4.1. Calcite ages and relations to tectonic events  300 

The ages obtained for three samples of calcite-adularia of the early generation spanned 301 

between 402±9 Ma and 355±14 (i.e. Fig. 3a-c) and for one calcite sample of the later phase 302 

173.2±7.6 Ma (Fig. 3d) suggesting intermittent precipitation of 13C-depleted and 13C-enriched 303 

calcite over long time periods. The δ13C and δ18O compositions and parageneses of the dated 304 

samples are as a rule similar to the other samples with 13C-depleted and 13C-enriched calcite 305 

that could not be dated (of both generations), indicating that the obtained ages are 306 

representative for a large number of the samples. The micro-scale radiometric dating thus 307 

demonstrates that the early precipitation of 13C-depleted calcite in the Laxemar and Forsmark 308 
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areas occurred in Devonian-Carboniferous times and a later phase (the outermost parts of the 309 

crystals and small discrete individual crystals) occurred in the Jurassic period. The Devonian-310 

Carboniferous ages are consistent with fracture formation and fluid circulation related to the 311 

development and extension of a foreland basin (Cederbom, 2001) subsequent to the 312 

Caledonian orogeny in NW Scandinavia, having a main phase at 425 to 400 Ma (Fossen and 313 

Dunlap, 1998). At Götemar, determining the timing of the precipitation of the 13C-depleted 314 

calcites was hindered by the lack of Rb-bearing paragenetic minerals and unfavourable U/Pb 315 

compositions of the calcites. Calcite and fluorite of the early precipitation phase have, 316 

however, been dated previously, although not convincingly (very high MSWD and dated 317 

together with fluorite grains from other areas) to 420±35 Ma (Alm et al., 2005) (and without 318 

any report of δ13Ccalcite).  319 

In similarity with previous studies at Laxemar, the early (Paleozoic) calcite 320 

dominantly has lighter δ18O (e.g. the early parts of the crystals in Fig. 2e, g) than later calcite 321 

(Drake and Tullborg, 2009), by a couple of per mil, but there is large variation between 322 

different samples. This δ18O difference can be explained by the measured temperature 323 

differences between the generations (Th: <50-62 vs 70-85°C) because if the minerals in the 324 

different generations precipitated from a water with similar δ18O, the Paleozoic calcite should 325 

be 1-5‰ lighter than the Mesozoic, when applying laboratory derived fractionation factors 326 

between water and calcite (Kim and O'Neil, 1997). 327 

 328 

4.2.  A biogenic-methane origin of the extremely 13C-depleted calcites  329 

The extremely light δ13Ccalcite values point to AOM, and to a methane source of 330 

biogenic origin, because such light values (in the -93 to -70‰ range) are typical for biogenic 331 

methane, particularly for microbial origin (Reeburgh, 2007; Whiticar, 1999). The minimum 332 
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δ13Ccalcite values in each of the studied areas exceed the lightest value ever reported in other 333 

environments (-69‰) (Campbell et al., 2002), pointing to more or less exclusive 334 

incorporation of bicarbonate originating from methane, possibly due to very limited supply of 335 

other carbon sources in this oligotrophic environment (Drake et al., 2015). This is in contrast 336 

to observations in other highly saline and carbon-limited environments featuring heavier δ13C 337 

values of biogenic methane (up to -35‰) than previously reported (Tazaz et al. 2013). The 338 

δ34S of pyrite co-genetic with the AOM-related calcites is diagnostic for bacterial sulfate 339 

reduction (BSR, Fig. 4, Table S2). The very light δ34S values mark BSR at high sulfate 340 

concentrations at which the microbes are provided with a surplus of the required electron 341 

acceptor (SO4) and outcompete methanogenic archaea for H2 and thus limit methanogenesis 342 

(Hoehler and Alperin, 1996). The observation of increasing δ34Spyrite values with pyrite growth 343 

(Fig. 4) reflects the fact that the δ34SSO4 have increased with time in the decreasing sulfate 344 

pool due to faster turnover of 32SSO4 than 34SSO4 during BSR in combination with faster 345 

reduction than supply (by advection and diffusion) of sulfate, ultimately resulting in 346 

superheavy pyrite-S in some fractures (up to +66.7‰, V-CDT), a common feature during 347 

AOM (Borowski et al., 2013). Taken together, the superheavy S in pyrite and superlight C in 348 

calcite combined with preserved SRB-specific fatty acids in the calcites (Tables S8-S9, cf. 349 

Niemann and Elvert, 2008; Ziegenbalg et al., 2012) are strong support for syntrophic SRB-350 

ANME consortia which oxidised the methane, producing bicarbonate that ended up in the 351 

calcites, as shown at SMTZs in other environments (Campbell et al., 2002; Knittel and 352 

Boetius, 2009; Peckmann and Thiel, 2004). The two-phased fluid inclusions with Th up to 353 

62°C in the late calcite phase and even higher in the early phase supports the growth of 354 

thermophilic anaerobic methane oxidising archaea, such as those found in deeply buried 355 

oceanic crusts (Lever et al., 2013). It should be noted, however, that experiments on abiotic 356 

synthesis of CH4 have demonstrated isotope signatures down to -57‰, i.e. overlapping with 357 



16 
 

those traditionally associated with biogenic methane (Horita and Berndt, 1999; McCollom et 358 

al., 2010). Hence, δ13Ccalcite values heavier than this, occurring in several of the samples with 359 

13C-depleted calcite, cannot indisputably be argued to originate from biogenic methane. On 360 

the other hand, the upper δ13C limit of biogenic methane can be as heavy as -35‰ (Tazaz et 361 

al., 2013), inhibiting certain assessment of whether the observed δ13Ccalcite values in the -57 to 362 

-35‰ range originate from oxidation of abiotic or biogenic methane. 363 

 364 

4.3. Methanogenesis and organic-matter sources  365 

The evidence for a biogenic-methane origin of the superlight C in the calcites is 366 

supported by occurrence of other calcites with very heavy C (δ13C up to +36.5‰) in the 367 

system (Figs. 2a, b, f). This is because the latter calcites certainly represent a residual 368 

carbonate pool appearing after microbial methanogenesis that have preferentially incorporated 369 

12C into the forming methane, as shown for other systems elsewhere (Budai et al., 2002; 370 

Stevens and McKinley, 1995). Previous studies from the same boreholes studied here reported 371 

scattered elevated methane concentrations (Fig. 6) in deep water-conducting fracture zones, 372 

and high C1/(C2+C3) gas ratios supporting a microbial origin of the methane (Hallbeck and 373 

Pedersen, 2009, 2012) (unfortunately, isotopic composition of the methane has not been 374 

reported, and from Götemar, gases and waters have never been sampled). These waters 375 

contained cultivatable autotrophic and heterotrophic methanogens suggesting that microbial 376 

methanogenesis is also currently active at the sites (Hallbeck and Pedersen, 2012).  377 

The spatial relation between calcite of the early phase and solid asphaltite (Figs. 1a, 378 

S2a, as well as some apshaltite/shale specific biomarkers in the calcites, Table S8) in 379 

Forsmark, link the methanogenesis to Lower Cambrian alum shales from which the asphaltite 380 

originates. From these shales hydrocarbon mobilisation into the basement fractures in 381 
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Paleozoic was facilitated by elevated temperatures in the basal shale (>70°C, Sandström et al., 382 

2006) due to depression of the bedrock by several kilometres beneath a thick foreland basin 383 

(Cederbom, 2001). These temperatures are in line with the Th of the early calcite phase. The 384 

highly saline inclusions of this calcite reveal the presence of a widespread continental brine in 385 

the bedrock fracture volume at these times. The current groundwaters at the sites are less 386 

saline (Laaksoharju et al., 2008). The input of bituminous material likely provided a nutrient 387 

source for the microorganisms at Forsmark (in the form of decomposable organic-matter). 388 

The overall relatively higher AOM-related δ13Ccalcite values at Forsmark than at the other sites 389 

may be due to oxidation also of methane formed from thermogenic breakdown of organic 390 

matter, in addition to microbial methanogenesis, which typically yield lighter δ13Cmethane 391 

values than those of thermogenic methane (Whiticar, 1999). A single occurrence of fossilized 392 

filamentous casts of microorganisms in a vein at 300 m depth dated to 355±14 Ma is another 393 

line of evidence for Paleozoic microbial activity (Figs. 2a, S7, S8). Asphaltite was not 394 

observed in the Laxemar and Götemar fractures, and calcite from those areas did not contain 395 

any shale-specific biomarkers. Hence, a shale source of organic C is not considered crucial for 396 

methanogenesis within granite fractures, although it appears to have been the case in the 397 

Forsmark area. Similar hydrocarbon infiltrations as in Forsmark have been documented in 398 

numerous crystalline rock localities on all continents (Schutter, 2003).  399 

The later Mesozoic AOM-related calcite overgrowths (e.g. Figs. 2g, 3d) precipitated 400 

when the fractures were reactivated and circulated by less saline, colder fluids. At Forsmark, 401 

the frequent spatial and textural relation between heavy δ13C in calcite overgrowth and older 402 

asphaltite (Fig. 1d) suggests that the methane was formed by, but not restricted to, microbial 403 

degradation of the asphaltite and may explain why heavy δ13C is most common in this area 404 

(Fig. 2b). The fluid inclusion Th of up to 62°C indicates formation during a period when the 405 

bedrock was depressed by sedimentary rocks, which according to fission track 406 
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thermochronology points to Mesozoic origin (Cederbom, 2001), in line with our radiometric 407 

dating. The long chain hydrocarbons and the diterpenoids in the calcite sample of Jurassic age 408 

marks ancient, and previously unknown input from land plants to the deep biosphere (e.g. 409 

from conifers or angiosperms, e.g. Simoneit, 1977, compounds in Fig. 5; Table S9). 410 

 411 

4.4.Complex spatiotemporal relationships of methanogenesis and AOM in the Phanerozoic 412 

eon  413 

The depth distributions of the 13C-enriched and -depleted calcites show that 414 

methanogenesis and AOM have been scattered throughout the upper 700-800 m of the 415 

bedrock through the Paleozoic-Mesozoic. Below these depths, signs of methanogenesis and 416 

AOM are completely absent from the calcite record, and most δ13Ccalcite values instead point 417 

towards inorganic carbon (-6.5±1.9‰). The depth restriction of AOM-related calcite to the 418 

upper 800 m (Fig. 2) is in accordance with a previously reported depth limit of -730 m for 419 

<10 Ma AOM-calcites at Laxemar (Drake et al., 2015). There is thus evidence that the AOM 420 

process has been 1) widespread at this level (upper 800 m) in the crust and 2) intermittently 421 

ongoing throughout the Phanerozoic eon under a wide range of temperatures. 422 

Apart from the abrupt change at –800 m, the δ13Ccalcite values show no consistent depth 423 

trends (Fig. 2a-c). In Forsmark, the abundant methanogenesis-related calcites spatially overlap 424 

with the AOM-calcites, inhibiting any conclusions to be drawn about the location of any 425 

ancient SMTZ. This points towards temporal variations in the depth of the SMTZ, certainly 426 

related to fluctuations in the absolute and relative concentrations of dissolved sulfate and 427 

methane in the waters. This is accentuated by the local-scale heterogeneity in δ13Ccalcite values. 428 

For example, fractures at -35.8 m carry calcite with heavy δ13C (+2.7‰) whereas two nearby 429 

fractures (-36.43 and -37.08 m) carry AOM-calcite (as light as -68.5 and -70.3‰, 430 
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respectively). At current, the Forsmark fracture waters have high sulfate concentrations in the 431 

upper 500 m (up to almost 600 mg/L, Fig. 6) and very low concentrations at greater depth 432 

(~100 mg/L), and measurable elevated methane concentrations only at approximately –500 m 433 

(Hallbeck and Pedersen, 2012; Laaksoharju et al., 2008). These features are consistent with 434 

the fact that methanogenesis is inhibited at high sulfate concentrations (Hoehler and Alperin, 435 

1996), and is evidence that the spatial distribution of sulphate and methane concentration 436 

indeed have varied at this site over time. 437 

At Laxemar, the current hydrochemical conditions are reverse to those at Forsmark, 438 

with increasing sulfate concentrations with depth and scattered elevated methane 439 

concentrations at shallower depths (Drake et al., 2015, Fig. 6). At the depths of high dissolved 440 

sulfate concentrations, there is locally abundant fracture-filling gypsum related to the early 441 

calcite phase (Drake and Tullborg, 2009). This suggests that high sulfate concentrations have 442 

prevailed at these depths at this site for long time periods, which can explain why deep 443 

methanogenesis-signatures are absent at these depths in this area. Instead, methanogenesis 444 

seems to be restricted to shallow depths (37-239 m), and AOM may have occurred 1) in the 445 

upper part of this depth span during inflow of sulfate rich water (cf. the light δ13Ccalcite near 446 

the surface, Fig. 2a), in a manner similar to SMTZs in marine sediments (Knittel and Boetius, 447 

2009, and references therein) and as indicated also by the clusters of extremely light δ13Ccalcite 448 

at shallow depths in both Götemar and Forsmark (Figs. 2b, c), and 2) at greater depth 449 

where/when the dissolved sulfate concentrations increased due to dissolution of gypsum, in a 450 

process similar to that reported for AOM at the contact to deep brine incursions in sub-451 

seafloor habitats (Parkes et al., 2005). In a manner similar to Forsmark, large depth variations 452 

over time in the absolute and relative methane and sulfate concentrations between various 453 

isolated water-conducting fracture zones is expected, as can be seen in the current system in 454 



20 
 

terms of large variations in sulfate concentrations in neighbouring fracture zones at similar 455 

depths (Laaksoharju et al., 2008).  456 

The extreme variability of the intra-crystal δ13C-transects (Figs. 2d-g, S3) supports 457 

that methanogenesis and AOM have been episodic. In Forsmark, methanogenesis- and AOM-458 

related calcite is most common in the late generation (see outer part of crystals in Figs. 2e, f) 459 

but also exists in several of the crystal zones belonging to the earlier generation (Table S1, 460 

Figs. S3e, f). In Laxemar the AOM-related δ13C-signatures are found abundantly in both the 461 

old generation (Fig. 2d, whole crystal, and early 13C-depleted zone in Fig. 2e, both featuring 462 

relatively light δ18O) and in the latest overgrowths (outer 13C-depleted part of crystal in Fig. 463 

2e, with relatively heavy δ18O). Apart from these periods of 13C-depleted and -enriched calcite 464 

precipitation there are also abundant precipitation of calcite from other C-sources, including 465 

organic C, as shown by calcite with δ13C in the range of -30 to 0‰, which cannot be 466 

considered diagnostic for either AOM or methanogenesis without supporting evidence 467 

(although abiotic methane can have heavier δ13C than -30‰, Etiope and Sherwood Lollar, 468 

2013). Since no crystal features both heavy and very light δ13C, fracture scale interpretations 469 

of temporal depth evolution of the SMTZ is inhibited.  470 

Although our findings show that microbial methane formation and consumption have 471 

occurred over long time frames throughout the upper 700-800 m of the crystalline continental 472 

crust, these processes have obviously been episodic. Additionally, there is an abundance of 473 

fracture calcite formed from other C sources (Drake and Tullborg, 2009, Sandström and 474 

Tullborg, 2009), as well as calcites with δ13C values in the -57 to -35‰ range have an 475 

uncertain methane source. Taken together, these features make quantification of the total 476 

amounts of methane produced and consumed by microorganisms in the fracture network over 477 

time challenging and rather speculative. Ideally, corresponding studies in similar bedrock 478 

settings on other continents would be needed to make a thorough global budget assessment. 479 
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Nevertheless, methane-related microbial processes were identified at all three sites studied, 480 

and occurred throughout a vast bedrock volume (upper 700-800 m), and thus are potentially 481 

quantitatively important and deserve thorough attention in future studies of methane sources 482 

and sinks in the terrestrial environment. The 700-800 m depth seems to be a critical border 483 

below which microbial methane cycling has not occurred on any time throughout the 484 

Phanerozoic eon. The biomarker signatures preserved in the calcites reveal a surficial origin 485 

of the organic matter that is consumed by the subsurface microbes, and the dissolved organic 486 

carbon concentrations in the modern groundwaters show a significant decrease with 487 

increasing depth (Laaksoharju et al., 2009). Taken together, the 700-800 m level points to a 488 

terrestrial depth limit for microbial methane cycling influenced by descending surficial (or 489 

sedimentary) organic matter. 490 

 491 

5. Conclusions 492 

This study has identified the heaviest values and largest spans in δ13Ccalcite ever 493 

reported. In total a range of 129.6‰ V-PDB (-93.1 to +36.5‰) was detected within calcite 494 

from the fractured granitoid rocks of the upper continental crust. We propose that the 495 

astonishingly light δ13Ccalcite values formed due to incorporation of bicarbonate into the calcite 496 

with biogenic methane produced by methanogens more or less as the single C-source. These 497 

features are, in turn, undisputable evidence of microbial formation and consumption of 498 

methane within the upper 700-800 m of the continental crust.  499 

New dating methods with high spatial resolution were used to determine, for the first 500 

time, direct timing of ancient methanogenesis and methane oxidation in the crystalline crust. 501 

The results show that these processes date back in time at least several hundreds of millions of 502 



22 
 

years, covering several eras during the Phanerozoic eon. In Devonian-Carboniferous an early 503 

phase of these processed occurred, in the Jurassic a later phase. 504 

A biogenic origin of co-genetic pyrite supports a coupled bacterial sulphate reduction 505 

– methane oxidation process in the anaerobic fracture system. Organic compounds preserved 506 

within the minerals suggest a connection between the surficial and deep biospheres over 507 

geological eras. Considering that vast areas of similar crust as we have studied here occur on 508 

all continents of Earth, the observed processes can play an important part in carbon cycling 509 

within the upper crust, and have acted as widespread sources and sinks for methane over the 510 

Phanerozoic eon. 511 
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Figure captions 669 

Fig. 1. Mineral appearance. (a) Typical appearance of coarse-grained calcite (white), together 670 

with apshaltite (black) and pyrite (metallic cubic crystals) on the fracture surface of a fracture 671 

from Forsmark (KFM06C:103 m). (b) SEM-image of intergrowth of a pyrite-calcite aggregate 672 

(scalenohedral calcite) on the fracture surface of KAS02:802 m (Laxemar). (c) Scalenohedral 673 

calcite intergrown with cubic pyrite, both in an early generation of larger crystals (1) and a 674 

later of small cubic crystals (2) intergrown with the outermost growth zone of the calcite 675 

crystals (KSH03A:864 m, Laxemar). (d) SEM-image of intergrowth of calcite and adularia 676 

(polished crystal cross-section, KLX01:220, Laxemar). (e) SEM-image of a fracture surface 677 

coated by the later phase of framboidal pyrite grown on asphaltite and scattered occurrences 678 

of late stage calcite and cubic pyrite. Forsmark, KFM01B:24 m. (f) Cubic pyrite crystals 679 

intergrown with the outermost calcite growth zone (polished crystal cross-section, KKR02:52 680 

m, Götemar). 681 
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 682 

 683 

Fig. 2. Stable isotope inventory of calcite. (a-c) Depth distribution of δ13Ccalcite from each of 684 

the three study areas. Each spot represents one SIMS-analysis. Notable radiometric dating, 685 

biomarkers, fossilized microorganisms, and δ34S values of co-genetic pyrite are also indicated. 686 

(d-g) BSE-SEM-images of polished calcite crystals with SIMS analytical δ13C and δ18O spot 687 

transects below. (d) Crystal showing extremely light δ13C (-71.3 to -70.5‰) throughout the 688 

crystal and δ18O within -14.0 to -12.8‰, KLX01:220m, Laxemar. (e) Substantially zoned 689 
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crystal showing two episodes of AOM-related precipitation (δ13C depletion), characterized by 690 

different δ18O. Laxemar, KSH03A:863m. (f) Methanogenesis-related δ13C in outermost part 691 

of a zoned crystal. Forsmark, KFM05A:110m. (g) Dominantly AOM-related δ13C (-46‰). 692 

Forsmark, KFM06C:103m. Distinct difference in isotopic composition and in fluid inclusion 693 

signatures between the two calcite phases occurs in this sample (divided by the yellow line). 694 

Additional transects are shown in Fig. S3. Error bars are within the size of the symbols 695 

(except when shown). 696 

 697 

 698 
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Fig. 3. Direct microscale LA-ICP-MS dating of precipitation phases. (a-c) Rb/Sr isochrons of 699 

co-genetic adularia and calcite from (a) KFM04A:306 m, Forsmark (δ13C of calcite has a 700 

minimum of -46.3‰) (b) KFM08A:480 m, Forsmark area (δ13C of bulk sample: -21.6‰; 701 

Sandström and Tullborg, 2009), (c) KLX01:220 m, Laxemar (δ13C of calcite has a minimum 702 

of -70.6‰). Data point ellipses represent 68.3% confidence (the calcite ellipses are too small 703 

to be observed in the diagram, as a result of the small error of the 87Sr/86Sr calcite analyses). 704 

(b) U-Pb Tera-Wasserburg concordia diagram of calcite sample KFM06C:103 m, Forsmark 705 

(this calcite has a minimum δ13C value of -47.1‰).  706 

 707 

 708 

Fig. 4. S-isotope transects from core to rim of pyrite crystals, showing variable degree of 709 

increased δ34S values with growth indicating Rayleigh distillation during bacterial sulfate 710 
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reduction during semi-closed system conditions. From samples (a) KLX07A:883, (b) 711 

KFM08B:43, and (c) KFM06C:103.  712 

 713 

 714 

Fig. 5. Selected fragmentograms m/z 85 (hydrocarbons) for calcite from KFM06C:103 m 715 

(late calcite phase), asphaltite from KFM06C:103 m (related to early calcite phase) and alum 716 

shale. The long chain hydrocarbons nC22-C35 and diterpenoids (stars) in the calcite from 717 

KFM06C:103 m most likely derive from land plants and are not found in the asphaltite or 718 

shale. These are clear indicators, that the C in the fluids related to the late stage calcite had a 719 

different source than the asphaltite. Organic compounds detected in the calcite sample 720 

KFM06C:103 m are listed in Table S9. 721 
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Fig. 6. Methane and sulfate concentrations measured in the fracture waters at Laxemar (a,b) 724 

and Forsmark (c,d). Data from Drake et al. (2015), Hallbeck and Pedersen (2012), and 725 

Laaksoharju et al. (2008). 726 

727 
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