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Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern 

elephant seals in East Antarctica. 
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Highlights  

 

• Unveil linkages between foraging trips of 46 southern elephant seals and sea ice  

• Females follow the seasonal ice edge extent; males remain on the continental shelf 

• Females exploit the under-ice ecosystem by foraging below high concentration sea ice 

• Males favour the least concentrated sea ice, probably in coastal polynyas and leads 

• High variability of sea ice around the seals is key to relax its breathing constraint 

 

Abstract 

Investigating ecological relationships between predators and their environment is essential to understand the 

response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where 

sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the 

whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both 

supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. 

Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals 

(Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East 

Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to 

the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: 

while females tended to follow the sea ice edge as it extended northward, the males remained on the continental 



  

shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving 

behaviour, was longer for females in late autumn in the outer part of the pack ice, ~150 - 370 km south of the ice 

edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea 

ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of 

low concentration sea ice around their position (either in time or in space; 30 days & 50km). The high spatio-

temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these 

concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic 

finfishes and squids that concentrate near the ice-water interface or within the water column (from diurnal 

vertical migration) in the pack ice region, likely attracted by an ice algal autumn bloom that sustains an under-ice 

ecosystem. In contrast, male foraging effort increased when they remained deep within the sea ice (420 - 960 km 

from the ice edge) over the shelf. Males had a longer foraging activity (i) in the lowest sea ice concentration at 

their position, and (ii) when there were more patches of low concentration sea ice around their position (either in 

time or in space; 30 days & 50km) presumably in polynyas or flaw leads between land fast and pack ice. This 

provides access to zones of enhanced resources in autumn or in early spring such as polynyas, the Antarctic shelf 

and slope. Our results suggest that some seals utilized a highly sea ice covered environment, which is key for 

their foraging effort, sustaining or concentrating resources during winter. 

 

1. Introduction 

 

 In recent decades, complex regional patterns of change have occurred in both the seasonality and extent 

of sea ice around Antarctica (Parkinson and Cavalieri, 2012; Stammerjohn et al., 2012), widely affecting the 

dependent Antarctic marine ecosystem (Massom and Stammerjohn, 2010). For predators, recent studies have 

highlighted clear relationships between population dynamics and broad-scale changes and inter-annual 

variability in sea ice concentration and extent – for both “sea ice obligate” seabird and seal species (e.g. 

Barbraud and Weimerskirch, 2001, 2006; Proffitt et al., 2007; Siniff et al., 2008; Massom et al., 2009; Forcada et 

al., 2012; Jenouvrier et al., 2012) and “non sea ice obligate” species such as chinstrap penguins (Pygoscelis 

Antarctica, Trivelpiece et al., 2011) and southern elephant seals (Mirounga leonina, Siniff et al., 2008; van den 

Hoff et al., 2014). However, populations have not responded in a uniform way around Antarctica, and 

contrasting trends are observed that reflect regional differences in climate-induced changes in sea ice properties 

and in species ecology and biological requirements (Massom and Stammerjohn, 2010; Constable et al., 2014; 

Southwell et al., 2015). Many studies exploring the links between sea ice changes and seals focused on the 

Bellingshausen and Amundsen seas sectors (e.g. Siniff et al., 2008; Forcada et al., 2012) or the Ross sea sector 

(e.g. Proffitt et al., 2007; Ainley et al., 2015) where strongly opposing trends in the extent and the seasonality of 

the regional sea ice, were observed (Stammerjohn et al., 2008). However, studies in East Antarctica where 

patterns of sea ice change and variability are quite complex, comprising mixed signals on regional scales 

(Massom et al., 2013), are lacking for marine mammals (Weimerskirch et al., 2003). A major current challenge 

involves establishing a better mechanistic understanding of the linkages between climate, sea ice and lower to 

upper trophic levels in the high-latitude Southern Ocean (Ducklow et al., 2007). Such information is crucial to 

allow better prediction of the future response of Antarctic predators to climate change and variability. Finally, 

while population demographic studies are essential when considering the links between sea ice and marine 



  

predators (e.g. in East Antarctica, Barbraud and Weimerskirch, 2001, 2006; Jenouvrier et al., 2012), they may 

not in themselves be sufficient to understand the precise nature of the linkages at play; inclusion of information 

of at-sea foraging behaviour relative to sea ice habitat is also necessary.   

 For seals, the ice supports a rich (under-ice) food resource because it provides both a substrate for the 

growth of ice algae and a refuge for herbivorous zooplankton such as juvenile krill and other crustaceans 

(Marschall, 1988; Flores et al., 2011, 2012b; David et al., 2016), which in turn attracts upper trophic levels such 

as pelagic fish and their predators (Eicken 1992; van Franeker et al., 1997; Reid and Croxall, 2001; Brierley and 

Thomas, 2002; Ainley et al., 2010b; Fraser & Hofmann, 2003). The access to under-ice food resource depends 

on local to regional sea ice coverage and conditions (Ainley et al., 2010b), thus there is a fine balance between 

sea ice being either beneficial as it provides access to a rich food source or an impediment for air-breathing 

marine predators, because of the physical barrier it builds between the ocean and air. The marginal ice zone was 

also found to be biologically active with concentration of krill, fishes and predators throughout the year (Lancraft 

et al., 1991; Bost et al., 2004). However, it is unknown which types of sea ice habitat are most used by deep-

diving predators such as southern elephant seals, how they might benefit from the under-ice resources, and how 

they might overcome the physical constraints associated with the presence of sea ice.  

 In this study, we combine animal telemetry (i.e. tracks and diving behaviour) and satellite-derived ice 

concentration data acquired over the different years covering the telemetry study period, with statistical 

modeling to analyse the interaction with, and reliance on, sea ice characteristics of a “non sea ice obligate” 

species – the southern elephant seal (SES). Specifically, we investigate the movements (horizontal and vertical) 

and foraging activity of SESs from the Kerguelen Islands as a function of gender and intra-seasonal variability in 

East Antarctic sea ice habitat, defined here by sea ice concentration, extent and spatio-temporal variability. 

While sea ice concentration and extent are critical to Antarctic ecosystems through a possible cascading effect 

from krill to upper predators (Loeb et al., 1997; Nicol et al., 2000; Brierley and Thomas, 2002; Fraser & 

Hofmann, 2003; Atkinson et al., 2004; reviewed by Flores et al., 2012a), the spatio-temporal variability of sea 

ice concentration gives important information on the capacity of a sea ice environment to sustain active under-

ice ecosystems (Eicken 1992; Brierley and Thomas, 2002; Ainley et al., 2010b; Nicol, 2006; Clarke et al 2008; 

Bluhm et al., 2010), and on the extent to which sea ice is a constraint for air breathing predators. 

Although considered to be “non sea ice obligate”, some SESs interact strongly with the sea ice 

environment during their long annual migrations from their breeding colonies on sub-Antarctic islands to their 

high-latitude foraging grounds (Bornemann et al., 2000; Bailleul et al., 2007; Biuw et al., 2010; Hindell et al., 

2016; Labrousse et al., 2015). Importantly for this study, there are two foraging strategies during the post-moult 

foraging trips of SESs from Kerguelen Islands; some individuals use the Kerguelen shelf or frontal regions of the 

Antarctic Circumpolar Current (ACC), while others travel south within sea ice covered areas to reach the peri-

Antarctic shelf (Bailleul et al., 2010). Moreover, as deep-diving, wide-ranging mesopredators (Hindell et 

al.,1991a, 1991b; McConnell et al., 1992) and major consumers of marine resources of the Southern Ocean 

(Guinet et al. 1996, Hindell et al. 2003), SESs depend upon an extensive set of trophic levels within the marine 

food web and their foraging and breeding performances reflect ecosystem status (Trathan et al., 2007). They also 

utilize different marine habitats depending on their sex (Bailleul et al., 2010; Labrousse et al., 2015) and 

breeding colony location (Biuw et al., 2007; Hindell et al., 2016). Among the main populations located in the 

South Atlantic, Southern Indian and South Pacific Oceans, contrasting demographic trends are observed, 



  

presumably in response to environmental variability (McMahon et al., 2005; Hindell et al., 2016). Studying how 

the environment will modulate the availability of resources for a demographically stable population, such as the 

Kerguelen Islands population, is essential to use to compare with and help to understand the increasing or 

decreasing trends observed in the other populations. 

 This study follows on from previous work on Kerguelen SESs during winter, showing that adult 

females were closely associated within the marginal sea ice zone, following the northward sea ice extension, and 

foraging in highly concentrated sea ice close to the sea ice edge (Bailleul et al., 2007; Hindell et al., 2016; 

Labrousse et al., 2015). In contrast, it was shown that sub-adult males remained deep within the sea ice foraging 

mainly over the Antarctic shelf or within the Antarctic Slope Front (ASF) in sea ice of intermediate 

concentration. The pattern of males diving in waters with low sea ice concentration while on the Antarctic shelf 

could be explained by either an early arrival in the season in the Antarctic region, movements restricted to 

sectors where sea ice extent is low, or potentially by use of coastal polynyas (Bailleul et al., 2007; Hindell et al., 

2016; Labrousse et al., 2015). This study builds upon this previous work by investigating sea ice habitat use 

using both sea ice concentration and for the first time the spatio-temporal variability of sea ice around the seals’ 

position using a long (i.e. 7 years) and consistent time-series of male and female SESs tracking data. We 

investigated both the habitat encountered along their tracks and the foraging habitat. However, unlike previous 

studies we took into account (in each of those linkages) the seals’ relative distance from the sea ice edge in an 

attempt to precisely define the change of sea ice conditions according to the seal movements in the sea ice zone. 

Finally, we investigated the seasonality of foraging activity when males and females were in the sea ice zone, 

which has not been previously reported in other studies.  

 

2. Material and methods 

 

 2.1 Animal handling, deployment, data collection and filtering 

 In this study, we use positional and dive pressure data from a total of 46 post-moulting SESs (23 

females and 23 sub-adult males) that were captured and instrumented with CTD-SRDLs (Sea Mammal Research 

Unit, University of St Andrews) between December and February in 2004, 2008-2009 and 2011-2014 on the 

Kerguelen Islands (49°20’S, 70°20’E) (details in Appendix A, Table A1). These animals were chosen from the 

larger dataset because they visited the area south of 55°S, which is equivalent to the maximum latitude of annual 

sea ice extent (in September). Unusual behaviour was observed with five animals (two females and three males) 

returning to the colony before heading back to sea again. For these individuals, the section of tracks where 

animals travelled again south within the sea ice region (one female and two males) after their return to the colony 

were removed from analysis. Details of the instrumentation, seal handling and data processing for filtering 

ARGOS positions are provided by Labrousse et al. (2015). An average of 18.1 ± 8.6 tag positions were 

transmitted via the ARGOS system each day. Tags were programmed to record dive depth and time every 4s, 

from which start time, end time, duration and post-dive surface interval were determined for individual dives. 

Four time-depth points were transmitted for each dive and were determined by a broken-stick algorithm that 

selects the largest inflection points in the fine scale trajectory of depth as monitored by the tag every 4 sec (Sea 

Mammal Research Unit). A zero offset surface correction was set to 15 m (Guinet et al., 2014). An average 



  

weight of 307 ± 52 kg and 559 ± 244 kg, and an average length of 245 ± 13 cm and 293 ± 39 cm were observed 

for females and males respectively.  

 

 2.2 Sea ice parameters 

 As in Labrousse et al. (2015), daily estimates of sea ice concentration were derived from satellite 

Advanced Microwave Scanning Radiometer (AMSR) data at 6.25 km resolution (University of Bremen, 

http://www.iup.physik.uni-bremen.de:8084/amsr/amsre.html). The data gap for the change from AMSR-E to 

AMSR-2 in 2012 was filled by data from the Special Sensor Microwave Imager/Sounder (SSMI/S) satellite 

instrument to provide a consistent and continuous time-series of daily Antarctic sea ice maps from 2004-2014. 

Although the SSMI/S observations used for 2012 were provided at a lower resolution (12.5 km) than the AMSR 

observations, the same sea ice concentration algorithm was applied and the grid spacing of 6.25 km was kept for 

consistency in our analysis. 

 The distance of seals from the sea ice edge was calculated as the minimum distance between seal 

positions and the sea ice edge contour, as defined by the 15% sea ice concentration isoline (following 

Stammerjohn and Smith, 1997). Contours corresponding to outlying floes or polynyas were removed to prevent 

bias in our sea ice edge distance computation.  

 Two variables representing the spatio-temporal variability of sea ice around the seal’s position were 

investigated, assuming that sea ice becomes a constraint when the concentration is high. These are: (i) the area 

covered by sea ice with a concentration of >80% within a 50 km radius around the animal (A
80%

; as a measure of 

the spatial variability of concentrated sea ice patches); and (ii) the number of days with a sea ice concentration of 

>80% at a given location within a 30 day window (T
80%

; as a measure of the time variability of concentrated sea 

ice patches). A schema illustrating these two variables is shown in Figure 1.  

 Finally, the spatial variability of concentrated patches (A
80%

) showed a strong seasonal signal from 

March to August-September. Thus, we computed the anomaly of the spatial variability from its seasonal cycle 

(denoted A’
80%

; Appendix B). It consisted of (i) computing the median of the observations from the time-series of 

A
80% for males and females (Appendix B, Figure B1A – B), (ii) removing this median from each observation to 

obtain the anomaly of the spatial variability from its seasonal cycle (hereafter denoted A’
80%

; Appendix B). 

 

 2.3 Proxy of foraging activity 

 Foraging activity of each SES was analysed at the dive scale using the methodology developed by 

Heerah et al. (2015), which estimates the time spent in segments with low vertical velocities (i.e. “hunting time”; 

vertical speed <= 0.4 m.s
-1

). This time spent at low vertical velocity has been shown to capture most of prey 

capture events in a separate validation study (i.e. hunting time segments were associated with 68% of all prey 

capture events inferred from acceleration data; Heerah et al., 2015). In the present study, a long hunting time 

within a dive does not necessarily mean foraging success or high prey availability, but enhanced foraging 

activity occurring during the dive. Heerah et al. (2015) found that segments with “hunting time” were associated 

with four times more prey capture attempts than other segments. 

 

 2.4 Statistical modelling of the influence of sea ice parameters on foraging activity 



  

 Linear mixed effects models (LMMs) were fitted to examine the statistical relationships between seal 

foraging activity (expressed by the hunting time per dive) and sea ice concentration, its spatial and temporal 

variability (A
80% 

and T
80%

) taking into account the influence of the season (expressed by the day of year). The 

different steps of the statistical approach are summarized in Figure 2. The distance of seals from the sea ice edge 

within the ice was binned in 6 quantiles for females and males using the R package Hmisc (from R Development 

Core Team, function cut2). This variable was then added as an interaction term for all variables. Given the 

different behaviour of males and females, we constructed a model for each sex. A subset of the data was 

extracted to only focus on parts of the tracks influenced by sea ice; for this, only positions inside the sea ice and 

from March (when the seasonal signal of sea ice concentration starts to increase; cf. Appendix C, Fig. C1) to the 

end of the post-moult trip were used for subsequent analysis. Models were computed with the R package nlme 

(from R Development Core Team, function lme; Pinheiro et al., 2015) using restricted maximum likelihood. The 

hunting time per dive (i.e. response variable) was centred and scaled for each seal prior to analysis to correct for 

non-Gaussian distribution. Outliers, homogeneity and collinearity in the variables were checked following Zuur 

et al. (2010). Season was highly correlated to A
80% 

(the later in the season, the higher was A
80%

), so we did not 

consider both A
80%

 and the season in a single model. To disentangle the effect of the season from the effect of A
80%

, 

we constructed three different model suites for each sex: (i) including A
80%

 but without the season (Fig. 2, model 

1), (ii) including the season but without A
80% 

(Fig. 2, model 2) and (iii) including the anomaly of the spatial 

variability from its seasonal cycle (hereafter denoted A’
80%

; Appendix B), (Fig. B2, model 3). We present below 

the model suite (1) including all the sea ice variables, while the two other model suites are presented in 

Appendix D. Among the different variables (SIC, A
80%, 

and T
80%

, and the position of seals within sea ice), some 

collinearities were observed however we did not remove any variables because of likely independent effects on 

hunting time (Freckleton et al., 2011). Explanatory variables were standardized (centered and scaled) to facilitate 

model convergence and to allow comparisons of the respective contributions of the predictors.  

 Model selection again followed Zuur et al. (2010). We first determined the optimal structure of each 

model by assessing the full model with fixed effects and their interaction term with and without individual seals 

as a random intercept term to ensure that this term contributed to the model fit. We then assessed the effect of 

including an autocorrelation term in the resulting optimal model by using the AR-1 autocorrelation (corAR1) 

argument. Finally, we tested the individual fixed and interaction terms by sequentially removing the least non-

significant terms from the model. Model selection was made using the likelihood ratio test, based on maximum 

likelihood (ML). Terms were only retained if they improved the fit (p < 0.05; Zuur et al., 2009; Bestley et al., 

2010). In all cases, models were ranked via Akaike Information Criterion (AIC) (Burnham and Anderson, 2002), 

to ensure that the most parsimonious (i.e. lowest AIC value) model was selected. The final model was then fitted 

using restricted maximum likelihood (REML). All variables were retained in each model. The interaction term 

corresponding to the distance of the animal from the sea ice edge was also retained in each model, suggesting 

that the relationship between hunting time and sea ice patterns was influenced by the position of the animal 

within sea ice at the dive scale. 

 Model validations were checked by plotting Pearson residuals against fitted values, and against each 

explanatory variable, verifying homogeneity and normality of residuals (Zuur et al., 2010). Finally, a marginal 

R-squared (i.e. variance explained by fixed factors only) and a conditional R-Squared (i.e. variance explained by 

both fixed and random factors) were calculated as described in Nakagawa and Schielzeth (2010; 2013).  



  

 

3. Results 

 

Data from a total of 286,843 dives were collected for 23 females and 23 males from 2004 to 2014. The 

combined migration tracks from the Kerguelen Islands in the seasonal sea ice zone are shown in Figure 3, and 

statistics and information on each seal are given in Table A1 (Appendix A). Collation of this information shows 

a number of gender-specific patterns in relation to their travel to and from, and time and behaviour within, the 

sea ice zone. Among the 46 individuals from 2004 to 2014, five individuals (four females and one male) did not 

go into the sea ice: two arrived on the shelf early in the season and left before sea ice formed, two lost their tag, 

had tag failures or died before they reached sea ice and the last individual did not go enough southwards to reach 

sea ice. These five seals were removed from subsequent analyses and the study was therefore based on 41 

individuals. Males and females left the colony between late December and early March. Females returned to the 

colony between September and October, and males between September and November (data from animals with 

active tag transmission, from their departure until return to the colony, 7 females and 8 males). Females travelled 

35 ± 28 km per day, and males 32 ± 35 km per day, however when seals were within sea ice, females travelled 

24 ± 18 km per day and males 17 ± 18 km per day. 

Males, on average, remained further within sea ice (337 ± 267 km from the sea ice edge; maximum 962 

km) than females (128 ± 195 km from the sea ice edge; maximum 745 km). Both sexes were the furthest within 

the sea ice zone during the months of May, June and July. The cumulative number of dives of male and female 

SESs relative to the sea ice extent and their distance from the sea ice edge is shown on Figure 4. While females 

tended to follow the sea ice edge as it moved northward (Fig. 4A) males remained mostly on the continental 

shelf (Fig. 4B). In these environments, the habitat available to seals and male and female preferences in terms of 

sea ice concentration are shown in Figure 5. Both males and females used all ranges of sea ice concentration but 

their habitat differed from the habitat available (Fig. 5), indicating potential preferences and choices made by the 

animals.  

The cumulative dive durations of male and female SESs relative to the 3 sea ice parameters and seal 

distance from the sea ice edge are shown on Figure 6. Close to the sea ice edge, both sexes strongly favoured the 

highest sea ice concentration (90 – 100 % concentration; Fig. 6A, B). This tendency was clearer for females than 

for males, and even clearer for females moving deeper into the sea ice zone (i.e., 100 – 200 km from the ice 

edge; Fig. 6B). Males, on the other hand, remained mostly on the continental shelf in regions of less 

concentrated sea ice i.e., coastal polynyas (Fig. 6A).  

On average (± one standard deviation), 37 ± 14 dives per day were collected for females, and 41 ± 19 

dives per day for males. For positions only inside the sea ice and from March, the mean time spent hunting per 

dive was 17 ± 11 min for females and 13 ± 10 min for males. The further poleward the seals were from the sea 

ice edge (per class of distance), the shallower their maximal diving depths i.e., from 446 ± 194 m to 347 ± 212 m 

for females and from 381 ± 215 m to 247 ± 176 m for males (Appendix E, Fig. E1-A, B). However, high 

individual variability does not allow us to conclude about the significance of the relationship between diving 

depths and the distance from the sea ice edge. Moreover, a southward decrease in dive depth may simply reflect 

the fact that the bottom topography becomes shallower on the shelf (Appendix E, Fig. E1-C, D), so we cannot 

conclude about the influence of the distance from the sea ice edge on seal diving depth. 



  

Within the sea ice region, 39 individuals (of the 46) performed some shallow dives (i.e. shallower than 

40 m) representing 10 ± 6% of the total dives for males and 4 ± 5 % for females (Appendix A, Table 1). For this 

specific diving behaviour, geographic repartition, frequency of distribution relative to the time of day and their 

characteristics in terms of sea ice concentration and distance from the sea ice edge are detailed in Figure 7. 

Interestingly, 72% of these dives happen during the night (solar angle <= -6°) compared to daylight (solar angle 

=> 0) and twilight (-6° < solar angle < 0). These dives were often close to the coast, among sea ice concentration 

of 92 ± 19% and 83 ± 25% for females and males respectively (Fig. 7) and at 133 ± 134 km and 258 ± 219 km 

from the sea ice edge for females and males respectively. It is the first time such specific behaviour under sea ice 

has been reported for SESs.   

 

3.1 Influence of sea ice variability on SESs movements 

 Close to the sea ice edge (from 0 to 100 km), females spent most of their time in transient patches of sea 

ice (T
80% 

~ 10–15 days per month; Fig. 6D) while males dived intensively in patches of both low and high sea ice 

persistence (low and high values of T
80%

; Fig. 6C). Females exploited a wide range of A
80%

, spanning both regions 

of spatially compact sea ice (up to A
80% 

of 80 %) and very sparsely covered by compact sea ice (A
80%

 of less than 

25%; Fig. 6F). Males mostly remained in regions sparsely covered by compact sea ice (A
80%

 of less than 25%; 

Fig. 6E). 

 Further investigation into the characteristics of high sea ice concentration sectors in which seals foraged 

reveals distinct differences. For instance, when females were into the pack (100 – 200 km from the ice edge), 

they encountered persistent and spatially compact sea ice i.e., T
80% = 

~ 25 – 30 days per month (Fig. 6D) and A
80% 

= ~ 30 – 70 % (Fig. 6F). In contrast, areas of concentrated sea ice encountered by males were more transient (i.e. 

low T
80%; 

Fig. 6C) but still relatively compact spatially (A
80% 

~ 30 – 70 %; Fig. 6E).   

Inside the sea ice zone (>100 km from the sea ice edge), both male and female dives tended to be 

associated with spatially compact sea ice covered areas (high values of A
80%

). However, A
80% 

had a strong seasonal 

signal, increasing steadily from summer to winter (Appendix B) and probably associated with the seasonal 

increase in sea ice concentration (the larger the sea ice concentration, the larger is A
80%

). This raises the following 

question: do seals really favour high values of A
80% 

(i.e. spatially compact sea ice patches) among regions of more 

or less spatially compact sea ice patches or do our results only reflect seals entering in the pack later in the 

season, when A
80%

 is high everywhere? To address this question in the following section, one has to consider the 

sea ice characteristics available to seals. We did this by considering different statistical models, and by seeking 

to statistically quantify how sea ice characteristics relate to seal hunting time. 

 

 3.2 Quantifying the influence of sea ice patterns on SESs foraging activity 

 A total of 41 individuals (19 females, 22 males) and of 84,964 dives (36,177 for females; 48,787 for 

males) was used to build the two models. Model results are shown in Table 1 and Figure 8; they were divided in 

different ranges of distance from the sea ice edge. For each variable considered in the model, we present the data 

that was used to produce the model in each of these ranges (Fig. 8C, D: boxplots for sea ice concentration; Fig. 

8G, H: boxplots for T
80%

; Fig. 8K, L: boxplots for A
80%

) and the regression lines fitted by the model (Fig. 8A, B: 

sea ice concentration; Fig. 8E, F: T
80%

; Fig. 8K, L: A
80%

). Finally, the influence of the interaction term (i.e. distance 

of seal from the sea ice edge) on the hunting time is described in Fig. 8M, N. 



  

 

  3.2.1 Summary of model statistics 

Both males and females had a longer hunting time when further inside sea ice within their respective 

regions: males hunted longer closer to the Antarctic continent (i.e. presumably in polynyas or in leads at the fast 

ice boundary) and females further away from the sea ice edge in the outer part of the pack ice. Habitat use and 

the relationship between hunting time per dive and sea ice patterns within these sectors are summarized on the 

diagram Figure 9. At a given position, females had a longer hunting time in concentrated sea ice while males 

used low sea ice concentration. Both males and females had a longer hunting time during the autumn season and 

high spatio-temporal variability of sea ice around their positions (low T
80%

 and low A’
80%

) positively influenced 

their hunting time (Fig. 9). 

 

  3.2.2 Model statistics for males and females 

Hunting time increased for males deep within the pack and fast ice (420 - 960 km from the edge) over 

the shelf (Fig. 8M) and for females when they were further than 150 km from the edge into the pack (Fig. 8N).  

Sea ice concentration had a negative influence on male hunting time and this negative influence was 

greater when males were deeper in the sea ice zone (Fig. 8A). In contrast, female hunting time was positively 

correlated with sea ice concentration further than 30 km from the sea ice edge. In these regions, females were in 

high sea ice concentrations (Fig. 8D) where they favored the highest sea ice concentration available for hunting 

(Fig. 8B). 

Males favoured the low values of T
80% 

for hunting (Fig. 8E), even though they had access to a wide 

range of different regimes of low to high values of T
80%

 (Fig. 8G). In contrast, females had access to only 

relatively high values of T
80%

 further than 30 km from the edge (Fig. 8H), but like male behaviour, females 

favored the low values of T
80%

 (Fig. 8F). 

 Interestingly, male and female hunting time was always longer for high values of A
80% 

(Fig. 8I, J). 

However, as noted above A
80% 

is correlated with the season, so it is unclear if this result is an indication of seals 

favouring high values of A
80%

, or if it reflects seals hunting longer later in the season for other reasons. Given 

their correlation (r ~ 0.8), it is impossible to clearly disentangle the influence of the two parameters. However, 

we repeated the same statistical models while removing the seasonal cycle to A
80%. 

For a given time of year, 

hunting was shorter when A’
80% 

increased (Appendix D, Fig. D2-I, J, K, L). One interpretation would be that 

hunting time is longer later in the season, but for a given season, it is even longer if seals find patches of sea ice 

more sparsely distributed (low A
80%

).   

Consistent with this, the statistical model considering season without A
80%

, indicated that hunting time 

increased with the day of year (Fig. D1-I, J). However, for males this relationship between hunting time and day 

of year became close to zero when males were further into the pack, i.e. later in the season from about July 

onward (Fig. D1-I and D1-K). Therefore, these results suggested that hunting time increased for males and 

females with the day of year from about April (day of year 90) to June (day of year 180). For males we found 

that the relationship with hunting time was lower with day of year from July (day of year 180) to October (day of 

year 270), suggesting seasonal variability with enhanced foraging conditions in austral autumn/early winter. For 

females, the lack of observations after July precludes evidence of a reversal after autumn. 



  

 Models that included season (Appendix D, Fig. D1) or A
80%

 (Fig. 9) explained 30% and ~20 % of the 

variance respectively (conditional R
2
). However, when seasonal cycle of A

80% 
was removed, the explained 

variance of the models dropped to 6 - 14% (conditional R
2
 for females and males respectively; Appendix D, Fig. 

D2). This points to the importance of seasonal variability; either the season itself or seasonally variable 

quantities, such as A
80%

. 

 

4. Discussion 

 

 In the present study, we chose to elaborate on the potential attractiveness of under-ice ecosystems for 

SESs in terms of resources to explain the strategy adopted by some individuals to forage within sea ice covered 

areas as opposed to those foraging in the vicinity of the Kerguelen Plateau in frontal zones. However, it is 

important to note that travelling south within sea ice covered areas may also be an avoidance response of 

predation by sub-Antarctic killer whales inhabiting the vicinity of the Kerguelen Plateau (Pitman, 2011). Further 

research is needed to measure the killer whale predation on SESs foraging in open waters versus in the sea ice 

zone, for example using life-history transmitters (Horning and Mellish 2009), in order to quantify the survival 

advantage that sea ice as an anti-predation refuge may confer to SESs. 

 Sea ice characteristics influence foraging behaviour of male and female Kerguelen elephant seals, in 

markedly distinct ways; here we confirmed the results observed in Bailleul et al. (2007), Hindell et al. (2016) and 

Labrousse et al. (2015). We also brought new insights by defining male and female habitat based on their 

distance from the sea ice edge and by quantifying the relation between foraging activity and sea ice 

concentration given their distance from the sea ice edge. While females tended to remain within 200 km of the 

sea ice edge (within pack ice) and foraged most intensively in high concentrations of sea ice (see example of 

tracks in Fig. 10), males tended to remain on the continental shelf (presumably in polynyas or leads at the fast ice 

boundary), foraging in low sea ice concentrations (see example of tracks in Fig. 11).  

 Hindell et al. (2016) described the change in broad-scale habitat use of Kerguelen post-moult SESs 

throughout the year, with females moving northwards with the growth of the winter sea ice, and males remaining 

over the shelf. However, our study is the first to quantify the seasonality in foraging activity (in terms of time 

spent “hunting” during a dive) throughout winter. There was a clear increase in foraging activity for both males 

and females with a peak in later autumn/early winter and this will be discussed later. 

 For the first time, we investigated the importance of the spatio-temporal variability of sea ice during 

SES foraging trips, which is a key factor enabling them to exploit these ice covered regions, as suggested in 

Labrousse et al. (2015). Acting as an ecological double-edged sword, sea ice provides and concentrates a rich 

ecosystem during wintertime, while also potentially representing a physical barrier for air breathing predators 

(Chambert et al., 2015). Several studies based on emperor penguin already suggested an optimum level of ice 

cover with neither complete absence of sea ice nor heavy and persistent sea ice providing satisfactory conditions 

for sea ice dwelling species (Ainley et al., 2010a; Barbraud et al., 2012; Jenouvrier et al., 2012). Moreover, the 

regionally complex patterns in sea ice trends observed in East Antarctica over the past 30 years with local 

variability of the marine “icescape” (Massom et al., 2013) might allow the SES Kerguelen population to exploit 

concentrated sea ice patches within pack ice or to remain deep into the sea ice zone in polynya areas. This 

contrasts with Macquarie Island where increasing sea ice extents in the western Ross Sea sector were negatively 



  

correlated with the number of breeding female SESs (with a lag of 3 years) presumably by limiting the access to 

profitable prey patches (van den Hoff et al., 2014).  

 The gender difference in the foraging areas visited is presumably in part explained by differences in 

energy requirements between sub-adult males and adult females and the distribution of their prey (Bailleul et al., 

2007). Small, schooling prey (e.g. Myctophids; Cherel et al., 2008) were likely to be targeted by seals foraging 

in pelagic waters (i.e. mainly females), larger prey items such as Nototheniids, Morids (Bradshaw et al., 2003; 

Banks et al., 2014) are probably more dominant prey items for seals foraging on the shelf (i.e. mainly males). 

However, a mix of finfish (Myctophids, Nototheniids), squid and krill is probably found in the diet of seals 

foraging in the pack ice region outside the shelf, i.e. mainly females, (Banks et al., 2014; Walters et al., 2014). 

 The difference in the foraging areas visited between sexes can also be explained by the timings of 

migration to and from the high latitudes; males in general arrive earlier than females on the shelf before sea ice 

forms probably allowing them to reach these remote areas without being constrained by sea ice. Moreover, 

because the males studied were sub-adult males, they may not prioritize returning to the colony for breeding 

because they were not sexually mature and thus they were able to stay longer within the sea ice region. In 

contrast females arrive later when sea ice is already formed and leave earlier as they may prioritize returning to 

the colony to give birth. Thus females might avoid being trapped by sea ice by foraging in the pack but by 

following the sea ice edge (Bailleul et al., 2007; Hindell et al., 2016; Labrousse et al., 2015).  

 Understanding these patterns requires also consideration of the resources available to the animals. We 

do this below in the context of different sea ice zones, which might aggregate specific resources, as well as in the 

framework of the seasonal cycle in ice and primary production.  

 

 4.1 Sea ice zones and associated resources  

 In East Antarctica, the sea ice cover is made up of three zones with distinct characteristics (Massom and 

Stammerjohn, 2010). These are (from north to south): i) the highly-dynamic “marginal ice zone” (MIZ), which 

typically extends 100 km or so south from the ice edge, and is generally made up of small floes and diffuse ice 

conditions (depending on wind direction); ii) the “inner pack ice” zone (PIZ) comprising larger floes separated 

by leads; and iii) a coastal zone comprising the band of compact “landfast (fast) ice” (FIZ) and persistent and 

recurrent areas of low-concentration sea ice in the form of polynyas and flaw leads. Females in our study mostly 

remained and foraged in the MIZ and the outer part of the pack ice, while males used all three sea ice zones. 

Below, we summarise female and male foraging behaviour in each of these zones in more detail. 

  4.1.1 Male and female foraging behaviour in the MIZ 

 Within the MIZ, both females and males encountered regions characterized by (i) relatively low to 

intermediate sea ice concentration; (ii) low T
80%

; and (iii) low to high A
80%

. The MIZ is characterized by high sea 

ice variability in time and space and enhanced biological activity due to sea ice melt and breakdown releasing an 

important quantity of food resources (i.e. ice algae) under a strong influence of wind action and ocean wave-ice 

interaction processes (Wadhams, 2000; Massom et al., 2006; Karnovsky et al., 2007; Squire, 2007; Massom and 

Stammerjohn, 2010). However, it is not in this region that seals had the longest hunting times per dive. 

  4.1.2 Female foraging behaviour in the PIZ 

 Within the PIZ, females mostly remained in the outer part of the pack (150 – 370 km away from the 

edge) and had their longest hunting times there compared to the MIZ. Within this region, generally characterized 



  

by persistent and compact sea ice, females foraged most intensively (i.e. longer hunting times) (i) in the highest 

sea ice concentration at their position, but (ii) their hunting time was longer in areas of low concentration sea ice 

around their position (either in time or in space; 30 days & 50km). The spatio-temporal variability of sea ice 

around female positions probably allowed them to exploit concentrated patches of prey without being trapped by 

the ice (Raymond et al., 2015). Heerah et al. (2016) observed similar results with Weddell seals hunting longer 

in more concentrated sea ice in regions with variable sea ice (e.g. Davis station) compared with areas where sea 

ice conditions were persistent and less variable (e.g. Dumont d’Urville), where the contrary was observed. 

 Despite a lack of information on prey, females are known to have a multi-species diet, (i.e. mix of 

finfish and squid) in the pack-ice habitat compared with shelf and pelagic habitats where females have a higher 

proportion of finfish (Banks et al., 2014). The study of Flores et al. (2008) provided evidence of a second major 

trophic pathway from phytoplankton to mesopredators in the pack ice region during autumn, via copepods and 

myctophids, comprising intermediate trophic steps via cephalopods and large finfishes. In high Antarctic pelagic 

waters, about 24 to 70 % of the biomass of the myctophid Electrona antarctica from 0-1000 m depth, was found 

to occur in the upper 200 m at night (Lancraft et al., 1989; Donnelly et al., 2006) and it was reported by 

Kaufmann et al. (1995) that mesopelagic organisms migrate closer to the surface beneath pack ice than in open 

water. Thus, concentration and/or availability of resources in the pack ice region near the ice-water interface or 

within the water column (from diurnal vertical migration) possibly makes it physiologically more rewarding to 

forage under-ice compared to the deep dives necessary to catch Myctophids in open waters or compared to the 

risk of being trapped by sea ice by foraging on Nototheniids (Bradshaw et al., 2003) in densely sea ice covered 

shelf regions. Unfortunately, there is so far only anecdotal evidence that important prey species of SESs are 

found in the ice-water interface layer, such as squid and finfish (Ainley et al., 1986, Kaufmann et al. 1995, Flores 

et al. 2011, David et al. 2016). 

  4.1.3 Male foraging behaviour in the PIZ and FIZ 

 The pack ice region for males represents both a transit and a feeding area. However, male hunting time 

was longer in regions close to the Antarctic coast, in the southern part of the pack and fast ice (420 - 960 km 

away from the edge). Within this environment, they foraged most intensively (i.e. longer hunting times) (i) in the 

lowest sea ice concentration at their position, and (ii) when there were more patches of low concentrated sea ice 

around their position (either in time or in space; 30 days & 50km) likely to be associated with polynyas, or 

recurrent flaw leads separating persistent fast ice from moving pack ice (Massom and Stammerjohn, 2010). In 

addition to relieving the sea ice constraint, these open water areas can sustain high biological activity in spring, 

persisting in time and maintaining rich ecosystems that may support populations of mammals being able to 

breathe and feed throughout the ice season (Ainley et al., 2010b; Arrigo and van Dijken, 2003; Karnovsky et al., 

2007; Tremblay and Smith, 2007; Arrigo et al., 2015). Polynyas also support rich benthic communities through 

enhanced vertical carbon flux (Grebmeier and Barry, 2007). Sub-adult male SESs may also benefit from this by 

feeding on the shelf or slope regions without being constrained by sea ice. They likely feed on the most abundant 

pelagic finfish in Antarctic shelf water, the Antarctic silverfish (Pleuragramma antarcticum), from surface to 

~900m (Daneri and Carlini, 2002; La Mesa et al., 2010) or on epibenthic Antarctic toothfish (Dissostichus 

mawsoni) (Bradshaw et al., 2003; Smith et al., 2007) with juvenile finfish principally found on the shelf while 

adults are found along the slope (Ashford et al., 2012) sometimes shallower than though within ~1000 m of the 

water column (Watwood et al., 2006) or under fast ice in mid-depths (12–180 m; Fuiman et al. 2002). Shallow 



  

dives observed in high sea ice concentration close to the Antarctic coast (10 ± 6% of the total dives for males) 

could correspond to specific foraging activity associated with the rich under-ice community of fish and 

invertebrates (Ainley et al., 1991). Moreover, these dives were mostly performed at night, where the diurnal 

vertical migration of adult krill (Euphausia crystallorophias), more pronounced in winter than summer (Siegel 

2012; Flores et al., 2012b; Cisewski and Strass 2016) might attract various preys, such as Pleuragramma 

antarcticum (Fuiman et al., 2002). 

   

 4.2 Seasonality in foraging activity  

 Our analysis highlights the importance of the seasonal cycle to the seal hunting time. For both males 

and females, we found that hunting time per dive increased from April to June. This is not surprising given that 

sea ice characteristics are intrinsically related to seasons, but whether the season itself (i.e. productivity of the 

ecosystem at a certain period) or seasonal changes in along-track sea ice habitat (i.e. access to favorable zones 

with prey availability later in the season) that affect seal foraging behaviour remains open to question.  

 When we considered the importance of A
80%

 on the hunting time, we found that both males and females 

favored high values of A
80%

. However, season was highly correlated with this variable. Is this result just reflecting 

that hunting time increases later on the season to fulfil ecological and/or physiological requirements or is it 

linked with changes in resources availability associated with high values of A
80%

? In an attempt to answer this 

question, we considered the anomaly (from its seasonal cycle) of the sea ice cover around seal position (A’
80%

). 

We found that years with positive values of A’
80% 

were associated with shorter hunting times. We therefore 

speculate that the season is key to understand seal hunting time, with longest hunting time associated with 

autumn. And, within a given season, both males and females hunt longer when they were more patches of low 

concentrated sea ice around their position, which might provide to the animals easier access to air for breathing 

and therefore easier environment to hunt. Thus, to answer the previous question, increased hunting times were 

not linked with high values of A
80%. 

 

 We hypothesize that the time available to hunt may in fact decrease when the sea ice environment is 

constraining due to the fact that the animals have to add an horizontal component to the distance needed to reach 

prey. Thus, dive physiological limits may reduce the opportunity to hunt (where the seal slows down its vertical 

speed under a threshold of 0.4 m.s
-1

). This is similar when prey is deeper, the seals have longer transit time to 

reach prey. The validity of hunting time is thus dependent on the sea ice constraint and diving depth, and above a 

certain depth (cf. Jouma’a et al., 2016) or a certain threshold of sea ice constraint, hunting time may be biased as 

shorter hunting times (reflecting the physiological dive limits) may be associated with good foraging success.

 The under-ice ocean seasonal cycle is characterized by the presence of an autumn (May–June) bloom in 

sea ice (Fritsen et al., 1994; Lieser et al., 2015). Based on our previous hypothesis that the season itself affects 

foraging behaviour, we conclude that such an autumn bloom could affect hunting time through ecosystem 

cascades. Ice algal autumn blooms are generally not intense, but they are biologically significant and could 

provide a readily accessible food source for pelagic herbivores such as krill, which may in turn sustain upper 

trophic levels in autumn/early winter season (Meiners et al., 2012). Regarding polynyas, primary production in 

early spring/summer appears to extend feeding and reproduction in zooplankton (such as copepods and 

euphausiids) into late summer and early autumn (Deibel and Daly, 2007). Similarly, middle to upper trophic 



  

levels might benefit from this secondary production and concentrated resources through the autumn/early winter 

season. 

 Finally, buoyancy of the seal may also play a role in the positive correlation between hunting time and 

season. At the start of post-moult foraging trips, SESs are negatively buoyant, but along their trip, when they 

acquire resources and get fatter, they get closer to the neutral buoyancy (a critical factor of the swimming effort). 

It was found by Jouma’a et al. (2016) that the closer the seal was to neutral buoyancy the longer was the bottom 

duration, and consequently the hunting time.  

 

 4.3 Limits  

 The relationship between hunting time, foraging success and patch quality is complex and depends on 

several factors such as prey size, energy content, distribution and environmental conditions. However, for some 

questions, such as this research, where a species has a reasonably stable habitat use within each sex, relative 

changes in hunting time still provide very valuable insights. We made the choice to not discuss the fact that some 

of the "habitat preference" or value here associated with ice cover may be driven at least in part by bathymetry 

and depth of prey. We choose to develop discussion about prey types or resources associated with specific sea 

ice conditions. The goal of this study was not to determine the driving factor of seal foraging activity (which is 

from our point of view and from our past study Labrousse et al. (2015) a combination of bathymetric features, 

water masses properties and sea ice conditions) but to identify the influence of the spatio-temporal variability of 

sea ice on the seal foraging behaviour in terms of constraint and benefit. Considerable effort should be made to 

deploy accelerometers over the long winter trips of post-moult elephant seals. These new sensors enable the 

estimation of energy expenditure and intake. Finally, the time-series of descent vertical speed on low resolution 

dive data may be promising in describing the change in body condition. 

 

5. Conclusion 

 

Understanding the linkages between predators and sea ice is essential to any attempt to make robust and 

reliable predictions about ecosystem responses to future climate related sea ice change. For “non sea ice obligate 

species” such as SESs, the importance of sea ice patterns along their winter foraging trips are not well 

understood. It is known, however, that high-latitude marine ecosystems exploited by SESs are extensively 

influenced by the presence, seasonal rhythms and properties of sea ice (Massom and Stammerjohn, 2010). Here, 

we have confirmed important associations between seal foraging behaviour and sea ice, and we brought new 

insights on the role of the spatio-temporal variability of sea ice along their tracks. It builds upon previous studies 

that the responses of predators to sea ice and its variability are complex, involving aspects of seasonality and 

position within sea ice.  

Our understanding of the complex linkages between sea ice and ecosystems still remains limited by 

restricted ship access, difficulties in sampling in remote environments during wintertime, and the patchiness of 

biota at any given location (Brierley & Thomas, 2002; Steffens et al., 2006). In addition, our understanding of 

the trophic ecology of benthic and mesopelagic communities that SESs consume within the sea ice region and 

their vertical distribution are extremely limited (Costa et al., 2010). Resource limitation due to low primary 

productivity in winter is often regarded as a key factor, however, we show in the present study that food 



  

consumption of the top predator community such as SESs persists or increases hundreds of kilometres deep into 

the pack ice (see also van Franeker et al., 1997; Flores et al., 2012b). Biological resources in ice-covered regions 

may have been underestimated by pelagic sampling in the past, and thus may appear poorer than they really are 

(Flores et al., 2012b). Moreover, the current neglect of an autumn bloom from non-detection of ice-associated 

phytoplankton in conventional satellite ocean-colour images may have also underestimate the potential of sea ice 

to sustain a rich under-ice ecosystem during winter (Lieser et al., 2015). Thus this work also contributes to 

deepening our knowledge on (i) the functioning of the under-ice biological habitat and (ii) ecological 

mechanisms that take place in remote and extreme environments with limited access. 

The continued sustained monitoring of vertebrate colonies relative to sea ice parameters around the 

Antarctic coast and islands is crucial, given the complexity of the impact of climate forcing on biotic and abiotic 

components of the Antarctic marine ecosystem (Clarke et al., 2008; Massom and Stammerjohn, 2010).  
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Figures and Table 

 

 

 

 

Fig 1. Schema illustrating the three sea ice variables used in the study: (a) the sea ice concentration at the 

position of the seal at the present time, (b) the area covered by sea ice with a concentration of >80% within a 50 

km radius around the animal (A
80%

) and (c) the number of days with a sea ice concentration of >80%at a given 

location within a 30 day window (T
80%

).  

 

 

Fig 2. Schema illustrating the statistical approach step by step used for modelling the influence of sea ice 

parameters on foraging activity. 

 

 



  

 

 

 

 

Fig 3. Tracks of the 46 post-moulting individuals equipped with CTD-SRDLs from 2004 to 2014, linked with 

the seasonality of the sea ice in the East Antarctic region. The colour scale represents the time and the same 

colour is used for sea ice extent and tracks of animals; the sea ice extent of a given day and associated seal 

positions are colored in the same way. For visual purposes, tracks and sea ice extent were limited to September 

(annual maximum sea ice extent) and the unique individual in 2009 was removed. For all years, sea ice extent 

was obtained from SSM/IS daily sea ice concentration (resolution 25 km). 

  

 



  

 

 

Fig 4. Density plots of the distance of females (A) and males (B) to the sea ice edge (km) relative to the increase 

of sea ice extent from South to North (km). Colour intensity represents the number of dives per grid cell of size 

10 x 10 km (note that a sliding window over 200 x 200 km has been applied for smoothing purposes). Each 

contour represents 1000 dives. Negative distances on the x-axis indicate when seals are inside the sea ice region. 

Animal dives in the open ocean more than 200 km from the edge were not considered as they represent transit 

from/to the colony. 

 



  

 

 

Fig 5. Density curves representing the habitat available to seals in the area of 0 - 150° E and from 55° S from 

March to September over the 7 years of the study in terms of sea ice concentration (yellow curve), and the sea 

ice usage by males (blue curve) and females (red curve). Observations north of 64°S with sea ice concentrations 

of < 15 % were removed. Sea ice concentration was obtained from SSM/IS daily sea ice concentration 

(resolution 25 km). 

 

 



  

 

 

Fig 6. Density plot of the distance of males and females to the sea ice edge relative to: A, B) Sea ice 

concentration; C, D) The temporal variability of concentrated sea ice patches (T
80%

, expressed as the number of 

days with sea ice concentration above 80% at a given location within a 30 day window); and E, F) The spatial 

variability of concentrated sea ice patches (A
80%

, expressed by the area covered by sea ice with concentration 

above 80% within a 50 km radius around the animal). The colour scale represents the sum of dive duration (in 

minutes) per grid cell (note that a sliding window has been applied for smoothing purposes). Distances on the x-

axis represent when seals are inside the sea ice zone, with values increasing towards the ice edge (at 0 km). One 

contour is drawn every 0.25.10
5 
min. 



  

 

 

Fig 7. The characteristics of dives shallower than 40m for 22 males and 17 females equipped with CTD-SRDLs, 

from 2004 to 2014. A) Geographic repartition of shallow dives, with blue dots corresponding to male shallow 

dives and red dots to female shallow dives. The grey shading and contours correspond to bottom topography 



  

(m). B) A histogram of the frequency of shallow dives depending the time of day. C) Plot showing the 

relationship between sea ice concentration (ratio 0 - 1) and the distance of animals to the sea ice edge (in km) for 

the shallow dives. D-E) Examples of shallow dives for one male and one female, respectively, created with 

MamVisAD software (from the Sea Mammal Research Unit); dives are represented by yellow lines and red lines 

being the track of the seal. The blue ellipses show the presence of shallow dives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of regression coefficients and goodness-of-fit indices from the two most parsimonious models 

(LMMs) relating hunting time to sea ice patterns for the 19 females and 22 males equipped with CTD-SRDLs 

from 2004 to 2014. Coefficients are presented ± SE with their associated p-value. Significant parameters at the 

threshold 5% are denoted by bold characters. Six classes of distance of the animal from the sea ice edge were 

used in interaction with all the explanatory variables. Coefficients and p-values for the interaction between each 

explanatory variable and classes 2 – 6 were given relative to the class 1 of distance from the edge corresponding 

to 0-46 km for males and 0-15 km for females. Individuals were used as random effect on the intercept and 

explanatory variables were standardized to allow comparison of their slope coefficients. 



  

Linear mixed-effects model fit by REML : Response variable: Hunting time (scaled by ID) 

Males (n=22, dives=48787) Females (n=19, dives=36177) 

Explanatory variables Coefficient ± SE p-value  Explanatory variables Coefficient ± SE p-value  

Intercept has the baseline value of the class 1 of distance from the sea ice edge 

Intercept   -0.3 ± 0.5 0.5 Intercept  -0.5 ± 0.7 0.4 

All parameters (for class 1 of distance from the sea ice edge) 

Sea ice concentration 0.1 ± 0.2 0.6 Sea ice concentration  -0.3 ± 0.1 0.03* 

Persitence of high SIC (T
80%

)  -0.9 ± 0.2 0*** Persitence of high SIC (T
80%

) 0.6 ± 0.3 0.06 

Area covered by high SIC (A
80%

) 3.2 ± 0.2 0*** Area covered by high SIC (A
80%

) 3.8 ± 0.2 0*** 

Bin of distance from the sea ice edge (relative to class 1) 

Class 2 [46, 83]  0.008 ± 0.3 0.9 Class 2 [15, 31] 0.9 ± 0.4 0.03* 

Class 3 [83,141] 0.2 ± 0.3 0.5 Class 3 [31, 52] 0.2 ± 0.4 0.6 

Class 4 [141, 233]  1.8 ± 0.3 0*** Class 4 [52, 87] 1.5 ± 0.4 0*** 

Class 5 [233,417]  2.1 ± 0.3 0*** Class 5 [87, 147] 2.7 ± 0.5 0*** 

Class 6 [417,962] 4.3 ± 0.5 0*** Class 6 [147, 367] 3.9 ± 0.6 0*** 

Sea ice concentration (relative to class 1 of distance from the sea ice edge) 

SIC:Class 2 [46, 83]  -0.08± 0.3 0.8 SIC:Class 2 [15, 31]  -0.5 ± 0.2 0.06 

SIC:Class 3 [83,141]  -0.3 ± 0.3 0.3 SIC:Class 3 [31, 52]  0.6 ± 0.3 0.04* 

SIC:Class 4 [141, 233]  -0.9 ± 0.3 0.002** SIC:Class 4 [52, 87] 0.1 ± 0.3 0.7 

SIC:Class 5 [233,417]  -0.9 ± 0.3 0*** SIC:Class 5 [87, 147] 0.6 ± 0.5 0.2 

SIC:Class 6 [417,962]  -1.3 ± 0.3 0*** SIC:Class 6 [147, 367] 1.2 ± 0.5 0.02** 

Persitence of high SIC, T
80%

 (relative to class 1 of distance from the sea ice edge )  

T
80%

:Class 2 [46, 83] 0.5 ± 0.3 0.08 T
80%

:Class 2 [15, 31] 0.2 ± 0.4 0.6 

T
80%

:Class 3 [83,141] 0.6 ± 0.3 0.053 T
80%

:Class 3 [31, 52]  -1 ± 0.4 0.01* 

T
80%

:Class 4 [141, 233] 0.5 ± 0.3 0.09 T
80%

:Class 4 [52, 87]  -1 ± 0.4 0.02* 

T
80%

:Class 5 [233,417]  0.002 ± 0.3 0.9 T
80%

:Class 5 [87, 147]  -1 ± 0.5 0.03* 

T
80%

:Class 6 [417,962]  0.1 ± 0.3 0.6 T
80%

:Class 6 [147, 367]  -1.1 ± 0.6 0.07 

Area covered by high SIC, A
80% (relative to class 1 of distance from the sea ice edge) 

A
80%

:Class 2 [46, 83] 0.3 ± 0.3 0.3 A
80%

:Class 2 [15, 31]  -0.05 ± 0.2 0.8 

A
80%

:Class 3 [83,141]  -1 ± 0.3 0*** A
80%

:Class 3 [31, 52]  0.01 ± 0.3 0.9 

A
80%

:Class 4 [141, 233]  -1.3 ± 0.3 0** A
80%

:Class 4 [52, 87]  -0.3 ± 0.3 0.3 

A
80%

:Class 5 [233,417]  -1.2 ± 0.3 0*** A
80%

:Class 5 [87, 147]  -2.2 ± 0.3 0*** 

A
80%

:Class 6 [417,962]  -2.9 ± 0.4 0*** A
80%

:Class 6 [147, 367]  -3.2 ± 0.3 0*** 

Goodness-of-fit 

R
2

LMM(m)-full 14% R
2

LMM(m)-full 13% 

R
2 

LMM(c)-full 21% R
2 

LMM(c)-full 18% 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’. 

     



  

 



  

Fig 8. Model 1, relationships from the two LMMs between hunting time and: A, B) the sea ice concentration at 

the seal position; E, F) the temporal variability of concentrated sea ice patches (T
80%

); I, J) the spatial variability of 

concentrated sea ice patches (A
80%

); and M, N) the distance of animals from the sea ice edge. Results for males 

are presented on the left panels and those for females on the right. Each graph from models shows the 

relationship relative to bin of the distance of the animal from the sea ice edge when inside the sea ice region (in 

km). For each graph, the thick lines represent the predictive values from the population at a given position in sea 

ice and the grey shaded envelopes represent the boundaries of the variation between the predicted values per 

individual. Available data for each bin of distance are represented by boxplots for: C, D) sea ice concentration; 

G, H) the temporal variability of concentrated sea ice patches (T
80%

); and K, L) the spatial variability of 

concentrated sea ice patches (A
80%

). The marginal ice zone is shown by the red shaded area. The variable differing 

between the three model suites was represented by blue stars (see Appendix D, Fig D1-D2). 

 

 

 

Fig 9. Summary schematic of the model analysis. Results for sea ice concentration, the temporal variability of 

concentrated sea ice patches (T
80%

) and the spatial variability of concentrated sea ice patches (A
80%

) are presented 

for sectors where males and females foraged more intensively, i.e. 150 - 370 km from the edge for females and 

420 – 960 km from the edge for males. Grey bars represent their habitat use in these sectors, while red hatched 

lines represent where they foraged more intensively. 

 



  

 

 

Fig 10. Time-series of MODIS visible and infrared images of resolution 1 km illustrating female behaviour 

within sea ice from February to July 2008 within the region from 20 to 50°E. Coincident day animal track is 

represented by a red curve, while the blue part corresponds to the previous and subsequent two days. Polynyas 

and large open water areas are represented by red stars. 



  

 



  

Fig 11. Time-series of MODIS visible images of resolution 1 km illustrating male behaviour within sea ice from 

February to May 2011 within the region from 60 to 80°E (A-D) and from March to September 2012 within the 

region from 110 to 150°E (E-H). Coincident day animal track is represented by a red curve, while the blue part 

corresponds to the previous and subsequent two days. Polynyas and large open water areas are represented by 

red stars while red ellipses show where animals are within the Cape Darnley polynya. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Appendix A 

Table 1. General information of the 46 post-moulting SES including sex, dive start and end date, date of return 

when the tag did not stopped, number of Argos position transmitted daily, animal weight and snout-to-tail length 

upon deployment, total number of dives, mean number of dives per day and mean distance travelled per day 

between the first and last locations of each day. Additional information on behaviour towards sea ice is also 

included such as animals visiting the sea ice region, their maximal distance from the sea ice edge, the percentage 

of shallow dives (i.e. less or equal to 40m) performed under sea ice and their hunting time per dive. Negative 

distances refer to distances into the pack from the ice edge, and positive distances refer to distances north of the 

ice edge. Mean are expressed ± SD. 

 

ID Sex Dive start 

date 

Dive end 

date  

Date of 

return to 

the 

colony 

(if tag 

did not 

stopped) 

Number  

of position 

transmitted 

daily 

Weight 

(kg) 

Length 

(cm) 

Total 

dives  

Daily 

number 

of 

dives  

Distance 

travelled 

per day 

(km) 

Visit 

sea 

ice 

Maximal 

distance 

from the 

sea ice 

edge 

(km) 

Shallow 

dives 

within 

sea ice 

(%) 

Hunting 

time 

per dive  

within 

sea ice 

(min) 

2004_1 M 04/03/2004 29/03/2004  8 ± 4 368 250 553 25 ± 12 75 ± 49 × -62 12% 5,4 ± 
3,9 

2004_2 M 27/02/2004 09/07/2004  18 ± 7 385,5 267 6133 46 ± 20 34 ± 33 × -192 7% 11,3 ± 

7,3 

2004_3 F 01/03/2004 19/07/2004  14 ± 9 297,5 233 5363 38 ± 20 34 ± 29 × -345 1% 14,6 ± 

11,3 

2004_5 M 25/02/2004 06/08/2004  17 ± 6 469,5 282 7209 46 ± 18 22 ± 31 × -341 10% 
14 ± 10 

2004_6 F 22/02/2004 07/08/2004  12 ± 6 347 240 4248 27 ± 12 28 ± 26 × -165 1% 22 ± 
10,2 

2004_7 F 29/02/2004 02/08/2004  15 ± 9 295,5 238 6021 40 ± 19 42 ± 28 × -110 2% 
8,5 ± 4 

2004_8 M 27/02/2004 08/08/2004 6 then 

South 

17 ± 9 274 235 7530 50 ± 25 40 ± 34 × -610 6% 

5,4 ± 

4,7 

2004_10 F 29/02/2004 08/08/2004  16 ± 10 363,5 258 7503 46 ± 24 31 ± 29 × -367 5% 
13 ± 10 

2008_1 M 01/01/2008 08/09/2008  9 ± 5 266 230 8815 39 ± 30 33 ± 26 × -161 8% 10 ± 
7,5 

2008_2 F 24/12/2007 27/05/2008  14 ± 7 169 200 6031 39 ± 16 44 ± 30  -8  
  

2008_6 F 24/01/2008 16/08/2008  11 ± 4 290 242 6200 31 ± 10 42 ± 26 × -3 0% 11,3 ± 

6,2 

2008_7 F 27/01/2008 11/07/2008  15 ± 7 377 267 5253 32 ± 13 44 ± 32 × -244 1% 17 ± 

9,8 

2009_16 M 01/01/2009 03/06/2009 6 17 ± 7 258 249 5887 40 ± 18 34 ± 28 × -155 4% 
9,4 ± 7 

2011_1 M 27/01/2011 20/02/2011  21 ± 7 680 316 1002 40 ± 13 98 ± 30  50  
  

2011_4 M 31/01/2011 16/05/2011  26 ± 7 800 330 4438 42 ± 11 33 ± 39 × -316 2% 13,5 ± 
7,1 

2011_6 F 19/02/2011 16/05/2011  31 ± 9 284,6 233 4230 50 ± 11 32 ± 31 × -4 0% 10,6 ± 

5,8 

2011_7 M 26/01/2011 15/04/2011  34 ± 10 452,5 280 4749 60 ± 19 36 ± 39 × -302 14% 9,3 ± 

6,5 

2011_9 M 27/01/2011 16/05/2011  18 ± 6 628,5 326 3487 32 ± 12 29 ± 37 × -409 7% 14,6 ± 

9 

2011_10 F 24/02/2011 16/05/2011  20 ± 9 330 250 3041 37 ± 11 35 ± 28 × -37 0% 14,5 ± 
8 

2012_1 M 23/01/2012 14/09/2012  18 ± 6 523 291 9799 43 ± 18 31 ± 28 × -434 19% 10,6 ± 

11,1 

2012_3 M 23/01/2012 26/04/2012  24 ± 6 454 277 4297 45 ± 11 36 ± 38 × -286 1% 13,2 ± 

6,2 

2012_2 F 07/02/2012 28/09/2012 9 20 ± 9 303 233 7178 31 ± 12 28 ± 21 × -58 1% 17 ± 

9,1 



  

2013_1 F 27/02/2013 19/10/2013 10 18 ± 6 340 262 8079 34 ± 9 43 ± 30 × -130 2% 17,5 ± 

10,4 

2013_2 M 08/03/2013 02/11/2013 11 17 ± 10 1100 370 8321 39 ± 17 33 ± 41 × -482 6% 17,4 ± 

10,5 

2013_3 M 10/02/2013 17/03/2013  22 ± 9 468 280 1513 46 ± 9 67 ± 41 × -140 19% 7,2 ± 

5,7 

2013_4 M 03/03/2013 09/09/2013 9 18 ± 7 850 333 6064 35 ± 12 36 ± 36 × -699 9% 18,1 ± 

11,5 

2013_5 F 24/02/2013 17/12/2013 9 then 

South 

22 ± 8 336 254 11732 43 ± 16 29 ± 27 × -745 8% 

16 ± 

11,9 

2013_7 F 17/02/2013 13/10/2013  19 ± 7 410 248 9204 42 ± 14 43 ± 36 × -256 9% 15,1 ± 

10,7 

2013_9 M 11/02/2013 14/03/2013  24 ± 6 470 300 1517 47 ± 15 63 ± 45 × -157 9% 9,1 ± 

5,8 

2013_11 M 11/02/2013 08/10/2013  23 ± 7 556 256 10151 44 ± 13 22 ± 32 × -962 9% 12 ± 

8,1 

2013_12 M 17/02/2013 07/10/2013 10 19 ± 7 1150 375 7728 36 ± 12 31 ± 21 × -164 5% 23,3 ± 

10 

2013_13 M 10/02/2013 20/04/2013  23 ± 6 600 321 3501 50 ± 17 50 ± 37 × -221 18% 
6,8 ± 6 

2013_14 M 17/03/2013 24/11/2013 11 20 ± 8 300 270 10074 42 ± 16 19 ± 32 × -743 19% 15 ± 

11,2 

2013_15 F 10/02/2013 29/09/2013 10 20 ± 7 366 248 8335 38 ± 9 47 ± 26 × -121 2% 17,8 ± 

10,3 

2013_18 F 07/02/2013 03/08/2013  23 ± 9 346 255 6723 41 ± 15 34 ± 30 × -192 1% 21,6 ± 

8,5 

2014_1 F 28/01/2014 21/09/2014 6 then 

East 

17 ± 6 265 250 7760 35 ± 9 38 ± 25  136  

 ± 

2014_2 F 25/01/2014 30/03/2014  24 ± 10 304 255 2793 48 ± 15 56 ± 31 × -34 20% 8,3 ± 
6,3 

2014_3 F 25/01/2014 04/10/2014 10 16 ± 6 293 244 7038 29 ± 8 28 ± 21 × -64 0% 28 ± 

10,1 

2014_4 F 30/01/2014 12/03/2014  22 ± 9 265 236 1840 45 ± 13 57 ± 32  31  
  

2014_5 F 27/01/2014 23/09/2014  18 ± 4 244 240 7836 37 ± 8 23 ± 18  256  
  

2014_6 F 28/01/2014 30/09/2014 9 19 ± 6 266 243 8241 36 ± 10 32 ± 23 × -128 1% 22,7 ± 

9,2 

2014_7 M 26/12/2013 23/10/2014 7 then 

South 

19 ± 9 405 277 11722 46 ± 21 32 ± 32 × -857 20% 

9,1 ± 

8,3 

2014_8 F 30/01/2014 21/09/2014  17 ± 6 270 247 7249 34 ± 10 28 ± 25 × -203 3% 21,2 ± 

10,1 

2014_9 M 29/12/2013 11/09/2014  12 ± 6 700 322 4233 22 ± 10 35 ± 32 × -195 3% 23,5 ± 

11,1 

2014_10 M 27/12/2013 27/09/2014 6 then 

North 

14 ± 8 700 306 7876 35 ± 14 27 ± 36 × -241 12% 
14,5 ± 

8,7 

2014_11 F 29/01/2014 17/09/2014  24 ± 13 295 249 8346 38 ± 19 28 ± 26 × -148 9% 14,7 ± 
9,2 

Mean ± 

SD 

_ _ _  18 ± 9 _ _ _ 39 ± 17 34 ± 31 _  12% 14 ± 11 

Sum _ _ _  _ _ _ 286843 _ _ _    

Mean ± 

SD 

males 

_ _ _  _ 559 ± 

244 

293 ± 

39 

_ 41 ± 19 32 ± 35 _ -337 ± 

267 

(min 

males = 

-962) 

10 ± 6 

% 

13 ± 10 

Mean ± 

SD 

females 

_ _ _  _ 307 ± 

52 

245 ± 

13 

_ 37 ± 14 35 ± 28 _ -128 ± 

195 

(min 

females 

= -745) 

4 % ± 

5% 

17 ± 11  

 

 



  

 

Appendix B 

  Computation of the anomaly of the spatial variability, A’80%: From March to August-September, an 

increase of A80% with time was observed for males and females (Figure 1A - B); we defined A’80% by (i) 

computing the median of the observations from the time-series of A80% for males and females (black lines, Figure 

1A – B), (ii) removing this median from each observation to obtain the anomaly of the spatial variability from its 

seasonal cycle (hereafter denoted A’80%). 

 

Fig 1. Time series of A80%; the area covered by sea ice with concentration above 80% within a 50 km radius 

around the animal) for A) males and B) females. The time-series only includes positions inside the sea ice from 

March to the end of post-moult trips. The black line represents the median of the observations (used to compute 

the anomaly of the spatial variability from its seasonal cycle; A’80%), and grey lines represent the standard 

deviation associated with the median. Red dots correspond to positive local anomalies (observations superior to 

the median) while blue dots correspond to negative local anomalies (observations inferior to the median).  

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Appendix C 

Fig 1. Description of the seasonal signal of sea ice concentration within the study area represented by the spatial 

and temporal pattern from an Empirical Orthogonal Function analysis over a 7 year time-series of sea ice 

concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Appendix D 

Fig 1. Model 2, relationships from the two LMMs between hunting time and the same variables used in model 1 

(Figure 8) except the spatial variability of concentrated sea ice patches (A
80%

) was replaced by the day of year. We 

choose to present only results for the modified variable as results are identical for other variables. Results for 

males are presented on the left panels and those for females on the right. Each graph from models shows the 

relationship relative to bin of the distance of the animal from the sea ice edge when inside sea ice (in km). For 

each graph, the thick lines represent the predictive values from the population at a given position in sea ice and 

the grey shaded envelopes represent the boundaries of the variation between the predicted values per individual. 

Available data for each bin of distance are represented by boxplots. The marginal ice zone is shown by the red 

shaded area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Fig 2. Model 3, relationships from the two LMMs between hunting time and the same variables used in  model 1 

(Figure 8) except the spatial variability of concentrated sea ice patches (A
80%

) was replaced by the anomaly of the 

spatial variability of concentrated sea ice patches (A’
80%

). We choose to present only results for the modified 

variable as results are identical for other variables. Results for males are presented on the left panels and those 

for females on the right. Each graph from models shows the relationship relative to bin of the distance of the 

animal from the sea ice edge when inside sea ice (in km). For each graph, the thick lines represent the predictive 

values from the population at a given position in sea ice and the grey shaded envelopes represent the boundaries 

of the variation between the predicted values per individual. Available data for each bin of distance are 

represented by boxplots. The marginal ice zone is shown by the red shaded area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Appendix E 

Fig 1. Plot of diving depths (m) and bottom topography under the position of A & C) males and B & D) females 

relative to their distance from the sea ice edge (km) using a 2D kernel density estimation (kde2D function from 

package MASS, from R Development Core Team). One contour is drawn every 25 dives for females and 100 

dives for males. 

 

 

 

 

 

 

 



  

 


