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ABSTRACT: In this study, the risks to aquatic organisms posed by 12 commonly 22 

detected pharmaceuticals and personal care products (PPCPs) and endocrine 23 

disrupting chemicals (EDCs) that are extensively used in Bohai coastal region of 24 

China were examined. These were linear alkylbenzene sulfonate (LAS), nonylphenol 25 

(NP), diethylhexyl phthalate (DEHP), norfloxacin (NOR), sulfamethoxazole (SMX), 26 

erythromycin (ERY), bisphenol A (BPA), ofloxacin (OFL), carbamazepine (CBZ), 27 

naproxen (NPX), atenolol (ATL) and metoprolol (MET). Their relative risk was 28 

ranked based on the proximity between the medians of the reported effect 29 

concentrations and measured river or lake water concentrations. The surfactants (LAS) 30 

and endocrine disrupting chemicals NP (a breakdown product of the surfactant 31 

nonylphenol polyethoxylate) and DEHP (a plasticizer) were identified as posing the 32 

greatest risk from this range of chemicals. LAS had a hundred-fold higher risk than 33 

any of the pharmaceuticals. The highest risk ranked pharmaceuticals were all 34 

antibiotics. Zinc (Zn) and mercury (Hg) were added to the comparison as 35 

representative heavy metals. The risk from Zn exceeded that of the other chemicals 36 

but Hg was less than the surfactants but greater than the selected pharmaceuticals. 37 

Whereas LAS and DEHP could cause harmful effects to all the wildlife groups, NP 38 

and BPA posed the greatest risk to fish. Antibiotics showed the highest risk to algae. 39 

Spatial and temporal distributions of PPCPs and EDCs were conducted for risk 40 

identification, source analysis and seasonal change exploration. Municipal sewage 41 

effluent linked to urban areas was considered to be the major source of 42 

pharmaceuticals .With regard to seasonal influence the risk posed by LAS to the 43 



aquatic organisms was significantly affected by wet and dry seasonal change. The 44 

dilution effects were the common feature of LAS and ERY risks. The difference in 45 

LAS and ERY risk patterns along the rivers was mainly affected by the elimination 46 

process. 47 

KEYWORDS: Pharmaceuticals; Personal care products; Endocrine disrupting 48 

chemicals; Risk ranking; Bohai coastal region 49 

1. Introduction 50 

Pharmaceuticals and personal care products (PPCPs), including antibiotics, 51 

antiinflammatory drugs, antiepileptics, surfactants, detergents, disinfectants, 52 

fragrances and cosmetics (Boxall et al., 2012; Bu et al., 2013), are found in variety of 53 

environmental media (Boyd et al., 2003; Bendz et al., 2005; Petrovic et al., 2005; 54 

Hernando et al., 2006; Kasprzyk-Hordern et al., 2008; Santos et al., 2010). Endocrine 55 

disrupting chemicals (EDCs) have also been widely reported in freshwaters. Many of 56 

these chemicals discharged in wastewater are persistent or “pseudo-persistent” (due to 57 

their continuous introduction into the environment) (Daughton and Ternes, 1999) and 58 

may generate potential negative impacts on aquatic organisms (De Garcia et al., 2014; 59 

Gaw et al., 2014). Sewage effluents and waste water treatment plants have been 60 

recognized as major sources of such chemicals arising from human activities in the 61 

aquatic environment (Daughton and Ternes, 1999; Kolpin et al., 2002; Rosi-Marshall 62 

and Royer, 2012). 63 

China is the largest producer of active pharmaceutical ingredients of the world with 64 



an estimated production of about two million tons of pharmaceuticals in 2011, and a 65 

consumption of antibiotics of more than 180 000 tons/year (Zheng et al., 2012). China 66 

is also one of the top three countries with the largest personal care product 67 

consumption (Liu and Wong, 2013). In addition, the issue of estrogenic disrupting 68 

compounds in waters around China from waste water plant effluents, agricultural 69 

fertilizers and fish farming wastes (Jiang et al., 2012; Xu et al., 2014) have also led to  70 

concerns over potential adverse impacts on wildlife and human health (Guillette et al., 71 

1995; Jiang et al., 2012). The Bohai coastal region (including Beijing, Tianjin, Hebei, 72 

Shandong, Liaoning, Fig. 1) located in the Northern China, is one among the three 73 

most important economic zones in China (Guo et al., 2009; Yang et al., 2015). This 74 

region accounts for 5.4% of the whole area of China, but contains 18.5 % of the 75 

country's population and contributes 25% of the national GDP. Thus, its waterways 76 

could be considered as representative of developed regions of China. However, the 77 

risks from chemicals such as PPCPs and EDCs in the Bohai Rim have received little 78 

attention due to the lack of environmental standards or guidelines. But given the 79 

worldwide knowledge available on the ecotoxicity of such compounds can we assess 80 

whether they pose a risk to the rivers of this developed and populous region of China? 81 

The objectives of this study were: 82 

 To identify which of the PPCPs and EDCs monitored in the rivers of the Bohai 83 

Rim posed the greatest risk to local aquatic wildlife 84 

 To identify which wildlife groups were most at risk 85 



 To explore the temporal and spatial characteristics of PPCPs and EDCs risks 86 

2. Methods and ranking analysis 87 

2.1 Study area, chemical selection and the collection of monitoring data 88 

The spatial area was limited to regions around the Bohai sea, which covers the 89 

economic centers of Beijing and Tianjin, and the provinces of Hebei, Shandong and 90 

Liaoning, known as Bohai coastal region or Bohai Rim(Fig. 1). The region is about 91 

518 000 square kilometers with a population density of 671 people per square 92 

kilometer. Agricultural land is the dominant type in the region with the proportion of 93 

71%, followed by construction land (13.8). More than 100 rivers flow through this 94 

region and contribute 65 billion cubic meters of water to the Bohai sea. The Haihe 95 

River and Liaohe River Systems are the two main drainage systems in this region and 96 

from which most of the monitoring data was available  for this study. Rapid but 97 

unbalanced urbanization and industrialization are taking place in the region, and 98 

Beijing and Tianjin are the two main economic centers here with  population 99 

densities of 1,311 and 1,290 people per square kilometer respectively, (Fig. S1). 100 

Considering the close correlation between the contamination level and the 101 

development of urbanization and industrialization in China (Wang et al., 2008; Wang 102 

et al., 2012), the wildlife in this region will be highly exposed to environmental 103 

contamination. Information on the industrial and municipal waste water discharge and 104 

main industries of each city in the study area are provided in Table S1. 105 

Monitoring data were available for atenolol (ATL), bisphenol A (BPA), 106 



carbamazepine (CBZ), diethylhexyl phthalate (DEHP), erythromycin (ERY), linear 107 

alkylbenzene sulfonates (LAS), metoprolol (MET), naproxen (NPX), nonylphenol 108 

(NP), norfloxacin (NOR), ofloxacin (OFL) and sulfamethoxazole (SMX) in the 109 

surface waters of Bohai coastal region. The Chemical Abstracts Service (CAS) 110 

Registry Number, main use/group, molecular formula and molecular structure of 111 

target PPCPs and EDCs are shown in Table S2. Zinc (Zn) and mercury (Hg) were 112 

selected to place these soluble organic contaminants in context to the risks from these 113 

well known metal contaminants. These two metals are frequently detected in the 114 

environment and are potentially hazardous to the environmental organisms (Delgado 115 

et al., 1993; Li et al., 2014; Liu et al., 2017). 116 

Only exposure data (measured value) from the period of January 2010 to December 117 

2015 were collected. The two major sources of information were literature found on 118 

the Web of knowledgeTM database and China National Knowledge Infrastructure 119 

(CNKI) database. The China National Environmental Monitoring Centre (CNEMC) is 120 

another important source for environmental monitoring data. The CNEMC is the 121 

central center for measurement and control for routine environmental monitoring in 122 

China. Water quality measurements for the chemicals reviewed by CNEMC occurs on 123 

a monthly basis and follows the technical requirements for monitoring of surface 124 

water and waste water (HJ/T 91-2002). More than 1600 of these PPCPs and EDCs 125 

data were detected in filtered water samples. For the remaining 200, whether the 126 

samples were filtered or not was not explained in the source literature; for Zn and Hg, 127 

all data used in the study referred to the total concentrations (Su et al., 2017) (Table 128 



S3). Values of concentrations reported as ‘non-detects’ were assigned values of 129 

 (Liu et al., 2016). The measurement data for more than 60 rivers and lakes 130 

were collected in the study area (Fig. 1). The summary of the data collected are shown 131 

in Table S3, and the environmental data in each river/lake is presented in Table S4. 132 

 133 

Fig. 1. Study area and water bodies with PPCPs and EDCs measurements 134 

2.2 Toxicity information screening 135 

Toxicity references for the selected chemicals were guided by information provided 136 

by the ecotoxicology database (ECOTOX) on the USEPA website 137 

(https://cfpub.epa.gov/ecotox/). For each chemical, at least 4 species were required to 138 

estimate the toxicity (Aldenberg and Slob, 1993; Carriger et al., 2006), we took 8 139 

https://cfpub.epa.gov/ecotox/


species as a minimum requirement to avoid bias and reduce deviation. So the Web of 140 

knowledgeTM and CNKI database were also used to look for references on ecotoxicity 141 

to meet the requirements of quantity. To avoid the uncertainty of using non-native 142 

species toxic concentrations (Jin et al., 2015), species found in the Chinese aquatic 143 

environment were preferred, while laboratory standard test species were also 144 

considered (Table S5). 145 

The aim was to include as wide a range of aquatic species and include both lethal 146 

and non-lethal effects. End-points used included lowest observed effect concentration 147 

(LOEC), the mid-point effect concentration (EC50) and lethal concentration (LC50). 148 

For one species only the lowest EC50 or LC50 would be entered in the final ecotoxicity 149 

database. If EC50 and LC50 values are unavailable, the ECxx, LCxx, LOEC were 150 

considered. 151 

2.3 Risk analysis 152 

Relative risk of the different PPCPs and EDCs compared the proximity of the median 153 

ecotoxicity concentration and median freshwater measured concentration (formula 154 

(1)). 155 

                                                        (1) 156 

Where  is the relative risk,  (µg/L) is the median value of chemical 157 

concentrations in environmental fresh water and  (µg/L) is the median value of 158 

effect concentrations. Ranking of the dimensionless  values represents ranking of 159 

chemicals’ concern (Donnachie et al., 2014; Donnachie et al., 2016). 160 

The ecotoxicity data could also be filtered to look at the relative risk for different 161 



species groups, for example, such as only looking at fish or algae. Spatial distributions 162 

of PPCPs and EDCs studied were analyzed using the Arcmap module in ArcGIS 163 

V10.2 software (ESRI, Redland, CA, USA). The original data sources for population 164 

distribution and waste water discharge in the sub-regions were the statistical 165 

yearbooks from the China's National Bureau of Statistics. 166 

3. Results and discussion 167 

3.1 Risk ranking based on toxicity for all freshwater species 168 

Risk ranking for the 12 PPCPs, EDCs and metals based on comparison of the median 169 

ecotoxicity and measured values was shown in Fig. 2. The top 3 highest ranked 170 

organic compounds were LAS, NP and DEHP (Fig. 2). The relative risk of  171 

pharmaceuticals was at least 100 times lower than LAS. The pharmaceuticals of 172 

greatest concern from this group were antibiotics, NOR, SMZ and ERY. However, Zn 173 

posed a risk higher than all the organics while the risk posed by Hg was lower than 174 

LAS, NP and DEHP, but higher than all the pharmaceuticals. Although not used for 175 

risk ranking in this case, the results show some overlaps between the effect 176 

concentrations with measured Bohai Rim water concentrations for Zn, LAS, NP, 177 

DEHP, SMX and BPA (Fig.2a), suggesting that some aquatic organisms were in 178 

danger. 179 



 180 

Fig. 2. Risk ranking of PPCPs, EDCs and heavy metals (ATL, BPA, CBZ, DEHP, 181 

ERY, LAS, MET, NPX, NP, NOR, OFL, SMX, Zn and Hg) using all wildlife 182 

ecotoxicity data.  183 

Note: (a) Comparison of effect concentrations (circles, left-hand column of each pair) 184 

with measured Bohai coastal freshwater concentrations (diamonds, right-hand column 185 

of each pair) for PPCPs, EDCs and heavy metals. The median values are plotted as 186 

open black circles. The numbers next to the open circles represent the median values 187 

for each data set. (b) Here the risk ranking for the chemicals is shown by plotting the 188 

ratios of the median environmental concentration and median effect concentration. 189 

 190 

This analysis indicates that the LAS is the highest risk from this group of organic 191 



contaminants for aquatic organisms of the Bohai Rim with a risk ratio of 0.0107 (Fig. 192 

2b). In the freshwaters of the Bohai coastal region, the reported environmental 193 

concentrations for LAS ranged from 20 to 1220 μg/L, with a median concentration of 194 

35 μg/L. The lowest (most sensitive) effect concentration was reported as 4 μg/L, for 195 

a 6 days LC50 for adult Gammarus pulex (invertebrate), and for fish a level as low as 196 

22 μg/L has been reported to be the 6 days LC50 for Cirrhinus mrigala (fish) (Lal et 197 

al., 1983).  LAS is a very popular surfactant in both industrial and domestic 198 

detergents with a global production of 2.4 million tons per year in 1994, which 199 

accounts for 40% of all surfactants (Riu et al., 2001). It was reported that, in China the 200 

consumption was about 0.5~0.6 million tons and the production was more than 0.6 201 

million tons around 2010 (Fang et al., 2013).  202 

The highest ranked pharmaceutical was the antibiotic NOR whose river 203 

measurements ranged from 0.00025 μg/L to 4.46 μg/L, with a median of 0.054 μg/L. 204 

Similar levels of NOR in environmental water was reported at Jianghan Plain 205 

(average value of 0.065 μg/L in surface water) by Yao et al. (2015), the Pearl River 206 

Estuary (median value of 0.067 μg/L in wet season) by Liang et al. (2013). The 207 

ecotoxicity values ranged from 14 μg/L to 100 mg/L, with a median value of 630 μg/L. 208 

The lowest reported effect level of 14 μg/L: was the 1 day lowest effect concentration 209 

for sexually mature Carassius auratus (Goldfish) which caused increased superoxide 210 

dismutase production in the liver Liu et al. (2014). Thus, the present study result 211 

revealed that the elevated levels of NOR were relatively safe for the aquatic 212 

organisms although we are not considering antibiotic resistance here. 213 



Fluoroquinolones (e.g. NOR and OFL), macrolides (e.g. ERY), and sulfonamides (e.g. 214 

SMX) are likely to be important based on the frequent and common usage of 215 

antibiotics in China, contributing approximately 15%, 20%, and 12%, respectively, to 216 

the total amount of antibiotics used for human and veterinary practices (Xu et al., 217 

2009). In the present study, SMX and ERY ranked the first three pharmaceuticals with 218 

NOR. 219 

A comparison of risk ranking results between in the Bohai Rim and in the UK using 220 

the similar methodology was also conducted in the study (Donnachie et al., 2016). 221 

The phenomenon that metals posed a higher risk to aquatic organisms than 222 

pharmaceuticals is consistent with the findings in the UK. For both UK rivers and the 223 

Bohai Rim rivers the relative risk: Zn > Hg was the same. However, the ranking of 224 

common pharmaceuticals was CBZ > ATL > NPX > SMX > MET in UK (Donnachie 225 

et al., 2016), whilst the order was SMX > CBZ > NPX > ATL = MET in China. China 226 

is the major producing and exporting country for sulfonamides (Lun, 2005). The SMX 227 

exposure was 27 times higher in the Bohai Rim compared to that for UK rivers, and 228 

the effect median after filtering for native species is 1540 ug/L in China, much lower 229 

than that in UK (31350 ug/L) (Donnachie et al., 2016). ATL had a higher relative risk 230 

for UK rivers than that in Bohai Rim. In Bohai coastal region ATL has a same rank 231 

with MET as a result of the same effect media concentration and the same water 232 

concentration. Although both the ATL and MET are beta-blockers used for 233 

cardiovascular diseases, ATL concentration in UK rivers was higher than MET, which 234 

reflects the possibility of the different prescribing habits or the different medication 235 



requirements in these two regions. 236 

The metal Zn was ranked at a higher risk than all the other organics whilst Hg was 237 

lower  but still posed a higher risk than all the pharmaceuticals. In the sequence of 238 

PPCPs and EDCs, surfactant (LAS) was ranked first risk chemical, two EDCs (NP 239 

and DEHP) were ranked the 2nd and 3rd. Antibiotics (NOR, SMX, ERY, OFL) were 240 

in the middle of the sequence, with NOR in the front. Endocrine disruptor BPA was 241 

ranked between them. Antibiotics were followed by antiepileptics (CBZ), 242 

antiinflammatory drugs (NPX), with β-blockers (ATL, MET) ranked in the last. 243 

3.2 Which wildlife groups would be most at risk from PPCPs and EDCs? 244 

Risk ranking of the selected PPCPs and EDCs to the main organism groups, algae, 245 

fish and invertebrates was shown in Fig. 3. The first observation is that for the species 246 

groups of algae, fish and invertebrates each would rank LAS, NP and DEHP as their 247 

biggest threat (Fig. 3), despite the different orders. In other words, these particular 248 

surfactants/EDCs would impact on all main species groups. The major difference 249 

between the species groups is that BPA showed higher risk (rank 4) to fish and 250 

invertebrates than all other pharmaceuticals, but it posed a less risk to algae (rank 8), 251 

in the queue of pharmaceuticals. Antibiotics were still ranked in the middle for algae 252 

(rank 4–7), but the rank of CBZ moved to the middle of the antibiotics for fish (7) and 253 

invertebrates (7). ERY posed high risk to algae (rank 4, top 1 in pharmaceuticals) but 254 

low risk to invertebrates (rank 6) and fish (rank 9). NOR showed high risk to algae 255 

(rank 5), but less risk to fish (rank 8). Anti-inflammatory drug NPX was at the last for 256 



algae and the next to last for fish, but was in the antibiotics sequence for invertebrates. 257 

 258 

Fig. 3. Risk ranking of PPCPs and EDCs (ATL, BPA, CBZ, DEHP, ERY, LAS, MET, 259 

NPX, NP, NOR, OFL and SMX), by algae, fish and invertebrates. 260 

 261 

The risk difference to the organisms by a specific PPCP or EDC was mainly due to 262 

the sensitiveness of the organisms to the chemical. This approach was aimed to 263 

identify the most sensitive species group to a specific chemical and to understand the 264 

change of sensitive species group in case of change in the chemical. The 265 

pharmaceuticals were divided into 4 groups based on their function, including 266 

antibiotics, anti-inflammatory drugs, β-blockers and antiepileptics. With the studied 267 

chemicals in the category of surfactants and endocrine disruptors, 6 groups were 268 

obtained. The toxicity information for algae, fish and invertebrates was pooled 269 

together and the median explained the sensitiveness of the organism category (Fig. 4). 270 



Surfactants (LAS) and one of the EDCs (DEHP) showed similar toxicity to the 3 271 

categories respectively, the differences between the effect data for algae, fish and 272 

invertebrates were less than one order of magnitude on median, so the similar effect to 273 

all these species. Fish was more sensitive organism to the NP and BPA than algae and 274 

invertebrates, thus NP and BPA pose greater risk to fish other than algae and 275 

invertebrates which may represent their typical EDCs character. 276 

An obvious difference showed between the species groups was that algae were the 277 

most sensitive organisms to the toxicity of antibiotics, while fish was the least 278 

sensitive and have least risk posed by antibiotics due to the highest median toxic value. 279 

Antiepileptics (CBZ) posed similar risk to the 3 categories, however, it is suggested 280 

that further research is needed with more chemicals due to the limited data availability 281 

(only 1 chemical). It must be admitted that the species ecotoxicity information is not 282 

equally spread between these chemicals (Fig. 4). This is particularly true for the 283 

pharmaceuticals since relatively few ecotoxicity reports are available for some of 284 

these chemicals. 285 

286 

  287 



Fig. 4. Toxicity information for different organism group of each PPCPs and EDCs. 288 

Note: A represents surfactants, including LAS. B represents EDCs, including DEHP, 289 

NP and BPA. C represents antibiotics, including NOR, SMX, OFL and ERY. D 290 

represents anti-inflammatory drugs, including NPX. E represents β-blockers, 291 

including ATL and MET. F represents antiepileptics, including CBZ. The median 292 

values are plotted as yellow circles with black border. 293 

3.3 Spatial and temporal distribution of PPCPs and EDCs risk 294 

The maximum relative risk value of each PPCPs and EDCs were studied to identify 295 

the hotspots of risks in Bohai Rim. In addition, LAS was selected as a representative 296 

chemical to analyze the spatial and temporal risk distribution in the whole Bohai Rim 297 

since it posed the greatest risk to all the organisms and it was routinely monitored in 298 

China. The Liaohe River basin was selected as a case study area for the character 299 

analysis of chemicals risk along the rivers due to its abundant available exposure data. 300 

LAS and ERY were selected as representative personal care product and 301 

pharmaceuticals respectively. 302 

3.3.1 Hotspots of PPCPs and EDCs risks in Bohai Rim 303 



 304 

Fig. 5. Rivers in which the highest PPCPs and EDCs relative risk value was reported. 305 

Notes: (a) The spatial distribution of rivers with high risks; (b) The highest relative 306 

risk value of each chemicals shown by histogram. 307 

The highest surfactant LAS risk was located in Ziya New River in Hebei province 308 

(Fig. 5a), with the relative risk of 0.37 (Fig. 5b). The south sewage canal in Tianjin 309 

showed a high risk associated with NP (Fig. 5a), with the relative risk of 0.05 (Fig. 310 

5b). This may be due to the discharge of industrial as well as municipal sewage in 311 

these rivers hence it causes high risk from both production and consumption 312 

processes. 313 

Hotspots for DEHP and BPA were located in Liaohe River basin (Fig.5a). The 314 

Haicheng River showed a high relative risk for DEHP (0.12, Fig. 5b), which may be 315 

linked with the number of printing and dyeing industries that are located in Haicheng 316 



county (Zhang et al., 2015). The greatest concentration for BPA with a relative risk of 317 

 was observed in Daliao River estuary, in which urban industrial and 318 

municipal sewage is discharged from the Yingkou region (Liu, 2012). 319 

Concerning the pharmaceuticals, the Qing River and Tonghui River, (situated in 320 

densely populated urban area of Beijing, Fig. S1), had the highest recorded 321 

concentrations and hence risks including NOR 0.007, OFX 11.77, NPX , 322 

CBZ , ATL  and MET . These levels were 323 

most likely linked to discharge from the large human population and the Qing River 324 

and Gaobeidian waste water treatment plants (WWTPs) (Wang et al., 2015). The ERY 325 

risk hotspot was located in Xinmin sewage ditch in Xinmin urban region and SMX 326 

hotspot was located in Wangyang River in Shijiazhuang, both rivers were receiving 327 

water bodies for urban sewage (Bai et al., 2014; Jiang et al., 2014). 328 

The results suggest the importance of the industrial component to hotspots for 329 

surfactants (LAS) and EDCs (DEHP, NP and BPA). The high consumption in urban 330 

regions where medical care was prevalent and population was dense was the 331 

predominant reason for pharmaceuticals. All these phenomena highlight the effect of 332 

anthropogenic activities on exposure to pharmaceuticals in the aquatic environment.  333 

3.3.2 Spatial and temporal distribution of LAS in Bohai Rim 334 

Fortunately, a very comprehensive dataset is available for LAS for the rivers of this 335 

region thanks to it being routinely monitored by the CNEMC (65 water quality 336 

monitoring sites with monthly data for 2013 was available). Given that it is the 337 



highest risk ranked chemical of the pharmaceuticals, personal care products and 338 

endocrine disrupting chemicals it is helpful to look at it in more detail. 339 

As shown in Fig. 6a, those sites with the relatively high risk (as relative risk > 0.04), 340 

were mainly located in the area around Beijing and Tianjin city in the northern Haihe 341 

River Basin. Two sites with highest risk were located in lower Ziya New River in 342 

Cangzhou City, Hebei Province and North Canal in Beijing City, with the relative 343 

risks of 0.14 and 0.13 respectively. The Ziya River system and North Canal system 344 

are two important sub-basins of the Haihe River basin system. Large amounts of 345 

untreated domestic sewage and industrial wastewater are discharged into the Ziya 346 

River system and finally go into Ziya New River which flows into the Bohai Sea. The 347 

discharge of untreated wastewater from industrial units in the Ziya New River system 348 

has been noted in local news media, so these higher risk values may confirm the poor 349 

treatment in this area. Similarly, the other hotspot area at the Beijing section of North 350 

Canal system is an industry-intensive area with high population density of 3,500 351 

people per square kilometer (Jing et al., 2013). It is reported to be a low sewage 352 

treatment capacity and imperfect wastewater network in this area (Jing et al., 2013). 353 

LAS risk is proving to be a good marker of poor industrial and municipal wastewater 354 

treatment in this area. 355 



 356 

Fig. 6. Spatial difference and monthly variation of linear alkylbenzene sulfonates 357 

(LAS) in Bohai Rim area in 2013.  358 

Note: (a) Spatial difference of annual average relative risk in every site; (b) monthly 359 

variation of space average relative risk. 360 

The LAS concentration and relative risk were at a median level in January, and then 361 

reached a peak in March, with the minimum value in August (Fig. 6b). In China the 362 

wet season is May ~ October, and highest risks were associated with the dry season i.e. 363 

November ~ February. Similar changes of LAS and PPCPs between seasons were also 364 

reported in previous studies in different water environments (Inaba and Amano, 1988; 365 

Shimizu et al., 2013; Xu et al., 2013; Tong et al., 2014). Apart from dilution playing a 366 

major role, warmer water temperatures exist in the wet season which would 367 

encourage the LAS biodegradation, both in the WWTPs and rivers. LAS 368 



biodegradation is regarded as the major pathway of LAS elimination from the water 369 

body (Berna et al., 1991; Takada and Ogura, 1992). However, the biodegradation 370 

process was affected by temperature (Mungray and Kumar, 2009; Wang et al., 2010), 371 

longer acclimation periods were needed by the microorganisms at lower temperature 372 

(9℃) in WWTPs (Prats et al., 2006). Therefore, it was possible to have a deterioration 373 

of elimination efficiency of LAS in WWTPs using biological approaches in Bohai 374 

coastal region with an air temperature below freezing in winter. There was another 375 

factor which may result in more LAS in the river in rainy season. The combined 376 

sewer system, which may still exist in some areas, may cause some wastewater 377 

discharged directly into the rivers and make shock loadings to the WWTPs in rainy 378 

season. However, the fact that lower river concentration of LAS in wet season 379 

indicated the influence of the above factor might be limited. 380 

3.3.3 Spatial distribution of LAS and ERY risks in Liaohe River basin 381 

The relative risk reflects that the risks posed by LAS to aquatic organisms in rivers of 382 

Liaohe River basin were between 0.016 ~ 0.043 (Fig. 6a). Three sites with high risk 383 

were located in the upper Hun River (LN1), the lower Taizi River (LN17) and Xixihe 384 

River (LN16) and the relative risk was observed as 0.043, 0.041 and 0.04, respectively. 385 

Along the river, the LAS relative risk was observed as 0.021 at LN2 in Hun River 386 

after the Suzi River, 0.022 at LN9 in Daliao River and 0.017 at LN15 in Daling River, 387 

respectively. This may be due to the dilution effects from flow volume increased by 388 

the river confluence.  389 



In the main streams of Daling River, Liao River and Hun river, the risk in general 390 

was higher in the upstream, and decreased with the flow and was lower in middle and 391 

downstream. Besides the dilution effects, biodegradation of LAS by microorganisms 392 

and adsorption of LAS by suspended particles or sediments are probably the other 393 

reasons for lower risk (González-Mazo et al., 1997; Wang et al., 2010). Also, the 394 

half-lives reported for LAS were no longer than 2 days in river in the presence of 395 

sediments (Larson and Payne, 1981; Larson et al., 1993; Fox et al., 2000). 396 

 397 

Fig. 7. Spatial distribution of erythromycin (ERY) relative risk in Liaohe River Basin 398 

in 2012 399 

ERY is one among the commonly used antibiotic and frequently detected macrolide 400 



in natural water (Kim and Carlson, 2007; Xu et al., 2013; Xue et al., 2013; Chen et al., 401 

2015). For the present study, ERY risk in Liaohe River region was selected as a case 402 

of representative pharmaceuticals risk distribution since ERY posed high risk to 403 

aquatic organisms (ranked 3 in the pharmaceuticals) and the risk hotspot was located 404 

at Liaohe river region. The spatial distribution of ERY risk calculated from the 405 

measurements at 50 sampling sites in Liaohe River Basin (Bai et al., 2014) was shown 406 

in Fig. 7. 407 

The relative risk of ERY to aquatic organisms in rivers of Liaohe River basin were 408 

ranged between  ~ 0.002 (Fig. 7). The sites with high ERY risk were in 409 

the tributaries of Liaohe river (Xinmin sewage ditch, L17) and Taizi River (Sha river, 410 

T44), and the relative risk was 0.002 and 0.001 respectively. The distribution of ERY 411 

in Liaohe River Basin was mainly influenced by the Xinmin sewage ditch from the 412 

urban side and Sha river close to the Anshan First WWTP (Bai et al., 2014). Where 413 

the risk becomes dramatically lower, such as at positions L18 in Liaohe River and 414 

T45 in Taizi River. It was similar to LAS due to the dilution effect from the 415 

confluence of main streams and tributaries. 416 

ERY risk was higher in main stream of Hun river than in Liaohe and Taizi rivers. In 417 

the main streams of all the 3 main rivers, on the contrary to LAS, the ERY risk was 418 

increased with the flow, and was higher in middle and downstream. This is most 419 

probably linked to the differences of persistence between the two molecules with ERY 420 

being very much more persistent than LAS. ERY was reported to be stable in fresh 421 

water because it is a broad spectrum antibiotic which can only be degraded by some 422 



specific bacteria that is resistant to it. In addition, photo-degradation under natural 423 

condition is inefficient and slow (Batchu et al., 2014). Although the sediment can be a 424 

major sink for antibiotics in the aquatic ecosystem through sorption to solid surfaces 425 

(Kim and Carlson, 2007), this process may take a long time (Wu et al., 2015). 426 

Moreover, it is unclear whether elimination by sorption is an irreversible process 427 

(Kummerer, 2004). According to the microcosm study conducted by Wu et al. (2015), 428 

the half-life for ERY in aquatic ecosystem with sediment was 42 days. It can be even 429 

longer in different conditions (≥1 year) (Zuccato et al., 2005). This fairly long 430 

half-life, ERY will contribute to persistence in natural water bodies. 431 

4 Conclusions 432 

River monitoring for many emerging chemicals such as pharmaceuticals is still rather 433 

limited in China. Similarly, the ecotoxicity dataset is not as extensive as we would 434 

like. Nevertheless, it is still worthwhile to risk rank the chemical contaminants in 435 

major Chinese rivers based on what we know now. Risk ranking of this group of 436 

PPCPs and EDCs based on a comparison of the median ecotoxicity and river 437 

concentrations has not put pharmaceuticals as the group of highest concern. Instead 438 

the surfactant LAS and surfactant break-down product NP are the chemicals of 439 

greatest concern, their relative risks were higher even than metal Hg. LAS had the 440 

most measured data where levels would exceed known effect levels. This would be 441 

most likely to occur in the December to March period around Beijing and Tianjin city 442 

on the northern Haihe River Basin. LAS and DEHP would affect equally algae, fish 443 



and invertebrate groups. The highest risk ranked pharmaceuticals were the antibiotics 444 

norfloxacin, sulfamethoxazole and erythromycin (ERY) and they showed higher risk 445 

to algae, invertebrates and the least risk to fish. Municipal sewage effluent linked to 446 

urban areas was considered to be the major source of pharmaceuticals. Take the 447 

widespread used surfactant LAS with relatively high risk and widely abused antibiotic 448 

ERY for example, the dilution effects were the common feature of LAS and ERY risk 449 

and the difference of LAS and ERY risk pattern along the rivers was mainly affected 450 

by the elimination process. Therefore, different measures should be taken. It is 451 

necessary to continue with this risk-ranking and temporal and spatial variation 452 

exploring exercise in other areas of China. And also it is recommended that the 453 

systematic research is needed to focus the efforts on removing chemicals with 454 

hazardous effects and replace them with more eco-friendly chemicals. 455 
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