

Article (refereed) - postprint

Johnson, Andrew C.; Chen, Yihong. 2017. **Does exposure to domestic** wastewater effluent (including steroid estrogens) harm fish populations in the UK?

© 2017 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

This version available http://nora.nerc.ac.uk/516496/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <u>http://nora.nerc.ac.uk/policies.html#access</u>

NOTICE: this is the author's version of a work that was accepted for publication in *Science of the Total Environment*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Science of the Total Environment* (2017), 589. 89-96. 10.1016/j.scitotenv.2017.02.142

www.elsevier.com/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish
populations in the UK?
Andrew C. Johnson*† and Yihong Chen‡
⁺ Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
*Corresponding author, email <u>ajo@ceh.ac.uk</u>
Highlights
ABSTRACT
Historic fisheries data collected from locations across the UK over several years were compared with
predicted estrogen exposure derived from the resident human population. This estrogen exposure could be
viewed as a proxy for general sewage (wastewater) exposure. With the assistance of the Environment
Agency in the UK, fisheries abundance data for Rutilis rutilis (roach), Alburnus alburnus (bleak), Leuciscus
leuciscus (dace) and Perca fluviatilis (perch) from 38 separate sites collected over 7 to 17 year periods were
retrieved. From these data the average density (fish/m ² /yr) were compared against average and peak
predicted estrogen (wastewater) exposure for these sites. Estrogen concentrations were predicted using the
LF2000-WQX model. No correlation between estrogen/wastewater exposure and fish density could be
found for any of the species. Year on year temporal changes in roach population abundance at 3 sites on the
middle River Thames and 4 sites on the Great Ouse were compared against estrogen exposure over the
preceding year. In this case the estrogen prediction was calculated based on the upstream human
population providing the estrogen load and the daily flow value allowing concentration to be estimated over
time. At none of the sites on these rivers were temporal declines in abundance associated with preceding
estrogen (effluent) exposure. The results indicate that, over the past decade, wastewater and estrogen
exposure has not led to a catastrophic decline in these four species of cyprinid fish.
Key Words: Wastewater, estrogens, roach, cyprinid fish, population

1. Introduction

For thousands of years man's activities have disturbed the river environment. The river can be exploited as a food, drinking water and irrigation resource, used as a highway for goods transport, a generator of energy, and a conduit for our waste products. Rivers are also feared as a source of flooding, so they may be excavated to ensure they act as efficient drains. Many of these human activities have had damaging impacts

35 on the river as a habitat for fish. The fish that live in our rivers are at, or near, the top of a complex food 36 web. Unfortunately, the abundance of fish in rivers have not been consistently recorded through history, but 37 it would appear that serious declines in some major rivers in the UK occurred from the 1930s to 1950s. 38 Inadequate treatment of sewage and industrial waste led to the disappearance of fish in the lower reaches 39 of big rivers like the Trent (Mann, 1989), Mersey (Jones, 2006) and Thames rivers (Wheeler, 1979). 40 Fortunately, an increasing appreciation of the amenity value of rivers, legislation, industrial decline, and more investment in water treatment has largely eliminated the problem of gross organic pollution, at least in 41 42 the UK, with the exception of occasional combined sewer overflows. However, it has been increasingly 43 recognised that as individuals we now consume many more pharmaceuticals and personal care products 44 (PPCPs) than ever before. Sewage treatment plants (STPs) were never designed to remove all of such 45 micropollutants. Could it be that we are now harming our river environment and fish through this insidious 46 'invisible' pollution (Daughton and Ternes, 1999)?

47 When we examine the tissue of freshwater wild fish, we can certainly find many hydrophobic pollutants 48 present (Jurgens et al., 2015), but what evidence do we have that chemicals can harm fish individuals and 49 populations? There are, of course, examples of extreme one-off pollution events with industrial, oil and 50 farm waste killing fish (Giger, 2009; Kubach et al., 2011; Kennedy et al., 2012; Eros et al., 2015). But our 51 concern here is with chronic pollution. The strongest evidence seems to be related to metals. Soil 52 acidification thanks to 'acid rain' from coal combustion led to the release of the toxic monomeric forms of Al 53 into upland streams and lakes, leading to fish kills in the 70s and 80s (Henriksen et al., 1984). Freshwaters 54 with high metal concentrations associated with mine waste or heavy industry have also had a recorded 55 impact on fish populations (Filipek *et al.*, 1987).

56 Thus, there are examples of fish kills due to exposure to acutely toxic chemicals at pollution hot-spots. 57 But what of the chemicals routinely discharged in domestic sewage effluent? The chronic sub-lethal 58 phenomena of endocrine disruption, associated with sewage effluent, has had and continues to have a 59 major influence on our thinking regarding PPCPs. There is overwhelming evidence that a ubiquitous 60 component of sewage effluent has led to endocrine disruption effects in resident wild roach (Rutilis rutilis) 61 (Jobling et al., 1998; Jobling et al., 2006). The most likely agents being the natural and synthetic steroid 62 estrogens excreted by humans (Desbrow et al., 1998). Similarly, there is evidence that increasing exposure 63 to wastewater effluent elevates the level of the stress hormone cortisol in fish, at least in stickleback 64 (Pottinger et al., 2016). Recently, a disastrous decline in Asian vultures has been strongly linked to the nonsteroidal anti-inflammatory agent diclofenac (Oaks et al., 2004). Given that diclofenac is a common 65 66 constituent of sewage effluent, this has now risen as a concern for fish in rivers too (Schwaiger et al., 2004; Cuklev et al., 2011). So now both the steroid estrogens and diclofenac have been identified by the European 67 68 Union as requiring special monitoring, with a view to control at a later stage (COM(2011)876). It is also

69 recognised that freshwater fish will be exposed to a wide range of pharmaceuticals and this chronic 70 exposure is a concern (Fent et al., 2006). Given the fear and uncertainty over this chronic exposure to 71 PPCPs, there are increasing arguments that an end of pipe solution at STPs will be needed to protect aquatic 72 wildlife (Eggen et al., 2014; Oehlmann et al., 2014; Stamm et al., 2015). But is this fear justified? We know 73 that if the synthetic estrogen ethinylestradiol reaches a high enough level some fish populations will collapse 74 (Kidd et al., 2007). It can be presumed that our consumption of PPCPs has been growing steadily since the 75 1970s (Richardson and Ternes, 2014), so it would seem a reasonable question to ask how fish populations 76 have fared since then? Rather surprisingly, examining responses in the abundance of wildlife populations to 77 chemical or estrogen exposure has not been a frequently asked question in the aquatic environment (Mills 78 and Chichester, 2005; Johnson and Sumpter, 2016). In contrast, such approaches are seen as central in the 79 terrestrial environment, such as with neonicotinoid pesticides and bees (Woodcock et al., 2016).

80 Unfortunately, until recently there has been little systematic collection of data on fish populations in rivers. However, some species that were relatively common in many UK lowland rivers have declined or 81 82 disappeared, was this due to chemicals or estrogens even? These include the migrating salmonids (Salmo 83 salar and Salmo trutta) and Barbel (Barbus barbus) but these declines are most closely linked with habitats 84 becoming unsuitable (Johnson and Sumpter, 2014). We are sadly aware that there has been a decline in eel 85 numbers in many parts of the world. But the evidence suggests that the eel decline, which started in the 86 early 1980s, occurred in a period of reduced chemical challenge (Jurgens et al., 2015). Eel populations 87 appeared to have done better in the much more polluted post-war period. There are, however, quite a lot 88 of encouraging information on cyprinid fish, such as bream (Abramis brama), whose average length for 5 89 year olds increased from 1966 to 1976 in the Dutch Rhine (Slooff and Dezwart, 1983) and whose condition 90 steadily improved in several major German rivers from 1992 to 2014 (Teubner et al., 2015). Data appear to 91 show that UK cyprinid populations have been recovering since reaching a low-point in the 1950-1970s period 92 (Mann, 1989; Robinson et al., 2003). However, although encouraging, the limited information available is 93 too coarse and not sufficiently focused to address whether the chemicals routinely present in domestic 94 sewage effluent are harming wildlife populations.

To begin addressing the question in a more systematic way, we compared routine fish population
 monitoring data collected in the UK by the Environment Agency of England and Wales with predicted
 wastewater effluent exposure. This study tested the following hypotheses:

Any fish population (average density) will be severely harmed by average exposure to domestic
 wastewater

Any roach population will be severely harmed by temporal increases in domestic wastewater
 exposure

102 It should be pointed out the intention of this study was not to identify the most important environmental 103 factors that stimulate fish population abundance and aid recruitment in UK rivers. The complex interactions 104 of flow, temperature, habitat, disease, and position of the Gulf Stream in the North Atlantic, amongst others, 105 are all likely to be playing a role together. Nor will simple population data, such as we use here, reveal sub-106 lethal impacts that could hamper fish performance and well-being. The aim was to see whether it was 107 possible to rule out sewage and estrogen exposure as having a consistent and seriously damaging impact on 108 fish populations.

109

110 **2.** Materials and methods

111 2.1. Fisheries monitoring data

112

113 The fisheries data were collected for the National Fisheries Monitoring Programme by the Environment 114 Agency of England and Wales. Only sites where the electro-fishing method was used for counting were 115 examined. The method involves a boom boot applying a 50 Hz pulsed DC current to the water. Downstream 116 runs may be up to 2 km between dividing locks or be of shorter duration, such as around islands or weir 117 pools (Table 1). The sampling runs were mainly carried out in close proximity to the river margins, as the 118 method is somewhat ineffective at depths greater than 1.5 m. The electric current stuns the fish, which on 119 floating to the surface are collected, identified, counted, and their fork length recorded before being 120 returned to the water. For the data examined in this study, fish down to 21 mm in length were recorded. 121 The fish counts were recorded and can be normalised to the survey area. This sampling method is not 122 suitable for counting bream, which are most numerous in the deeper mid-channel. Smaller species such as 123 bullhead (Cottus govio), stone loach (Noemecheilus barbatulus), minnow (Phoxinus phoxinus) and stickleback 124 (Gasterosteus aculeatus) were noted only as presence/absence. The method is semi-quantitative, but most 125 importantly it was carried out in the same way, at the same time, and in the same locations for 10 years or 126 more. Thus, a site on the middle stretch of the Thames might always be sampled in July. For logistical 127 reasons not all river sites were sampled in the same month. So for one site this may be a regular sampling 128 date in May and for another it might be October. Occasionally the fisheries team might have to delay 129 sampling if river conditions were very adverse. The fish recorded with the greatest regularity and the highest 130 numbers were roach, bleak (Alburnus alburnus), dace (Leuciscus leuciscus) and perch (Perca fluviatalis).

A central assumption behind this study is that fish counted at a particular location are 'native' to that area and remain exposed to sewage effluents in their local area throughout their lives. The fish that were examined in this study are non-migratory and so would be presumed to be born and die in the same river and indeed many authors refer to fish having a 'home range'. However, fish will move naturally depending on their life stage, such as movement to spawning grounds, and depending on the time of day, as they

136 change from foraging to avoiding predators (Baade and Fredrich, 1998; Reichard and Jurajda, 2007; Nunn et 137 al., 2010). Movement may also be forced due to high flow events or man-made habitat degradation 138 (Bruylants et al., 1986; Lucas, 2000). Movement can be artificially restricted by rivers being controlled by 139 locks and weirs, such as occurs on the Thames. But much of the available information suggests that adult 140 roach largely remain local to a small area, perhaps with a range of only 70 to 400 m along a river (Williams, 141 1965; Baade and Fredrich, 1998; Penczak, 2006) and more recently it has been revealed that roach can have 142 considerable, and stable, genetic diversity within a river network (Hamilton et al., 2014), supporting a view 143 of distinct populations. Similarly, genetically distinct populations of perch have been identified across 144 distances of only a few km in Sweden (Bergek and Bjorklund, 2009), with each fish having a range of up to 145 225 m (Williams, 1965; Penczak, 2006). The dace would appear to range between 1 and 3 km (Clough and 146 Beaumont, 1998; Penczak, 2006). The movement and range of bleak is unclear from the literature. In 147 summary, whilst there is not complete consensus on the degree of cyprinid movement, there is evidence 148 that the majority of roach, dace and perch adults would reside within 3 km of the sampling point, with many 149 remaining within 500 m. Assuming fish sampling re-occurs at the same location, month and time of day, it is 150 probable that any fluctuations in population size observed over time would not be due to the vagaries of fish 151 migration.

152 However, it must be admitted that different river sites may be more or less amenable to electro-fishing, 153 and different teams of people are responsible in different regions. Thus, the effort that one team puts into 154 electro-fishing in one region may be different from a different team in a different region. To reduce some of 155 these sampling anomalies, comparisons against estrogen (effluent) exposure was only made within a single 156 river/region, rather than between them. In an attempt to normalise the results within a river, average fish 157 density rather than fish numbers was used. Thus, a comparison of fish density from these locations against 158 sewage effluent exposure remains crude and only serious population failure would be likely to be 159 discernible. To further reduce sampling anomalies in the second study, trends at single sites over time were 160 followed. It was presumed that the same team returning to the same site each year would provide 161 consistency.

162

163 2.2. Calculating effluent and steroid estrogen exposure

164 In this study steroid estrogen exposure was used as a proxy for sewage effluent/wastewater exposure. 165 The two are intimately linked as the estrogen concentration in the prediction used here is a function of the 166 local human population and dilution. The most potent steroid estrogens in sewage effluent are estradiol 167 (E2), estrone (E1) and ethinylestradiol (EE2), their combined estrogenic impact can be calculated as an 168 overall estradiol equivalent (EEQ). Thus, high predicted estrogen exposure would represent a high sewage 169 effluent exposure. At any point in the river network of England and Wales it is possible to estimate the 170 steroid estrogen exposure using the LF2000-WQX model. The LF2000-WQX model was originally designed to

estimate river flows at ungauged sites and intended for the development of catchment and regional water

- 172 resource assessments (Holmes *et al.*, 2005). By the incorporation of an estrogen predictive model (Johnson
- and Williams, 2004), it was further developed to predict estrogen concentrations throughout the 357
- 174 catchments of England and Wales (10,313 individual river reaches comprising 21,452 km and run using a 40
- 175 year climate dataset) which contains physical and spatial data for over 2000 STPs serving over 29 million
- people (Williams *et al.*, 2009). The model output is moderated by dilution and in-stream degradation for the
- 177 estrogens.
- This approach to predict estrogen exposure has been tested against measured concentrations and found to predict overall estrogen exposure in sewage effluent and receiving waters to an acceptable degree of accuracy for the UK (well within one order of magnitude) (Jobling *et al.*, 2006; Huo and Hickey, 2007; Balaam *et al.*, 2010; Williams *et al.*, 2012). The Environmental Agency of England and Wales (Agency, 2008) recommend that the overall EEQ should be calculated as follows, based on their relative potencies:

184
$$[EEQ] = \frac{[EE_2]}{0.1} + \frac{[E_2]}{1} + \frac{[E_1]}{3}$$

- 185
- 186
- 187 **Table 1.**

188 Site location (national grid reference), record duration, length and area fished.

Catchments	Sites	National grid reference	Start & length of records (years)	Length of river fished (m)	Area of river fished (m ²)
	Boulters Weir Stream	SU9040082700	1995-2014 (16)	990	12,000
	Boveney Main	SU9454777812	1995-2014 (17)	2,100	126,000
	Bray-Boveney, Upper Main Channel	SU9109879702	1995-2014 (17)	1700	85,000
	Bray Weir Pool	SU9096979720	2000-2014 (15)	130	6,500
	Cliveden Island	SU9086883984	1998-2014 (16)	170	3,400
River Thames	Odney Weir Stream, Cookham.	SU9050085500	2002-2014 (12)	600	24,400
	Marlow-Cookham Upper Main Channel	SU8730086500	1995-2014 (16)	2000	140,000
	Molesey - Thames Ditton Island, Upper Main Channel	TQ1600067700	1995-2014 (13)	1600	148,200
	Molesey Weir Pool	TQ1492768955	1995-2014 (15)	400	20,000
	Ham Loop	SU9980075400	1995-2014 (16)	2300	103,500

Catchments	Sites	National grid reference	Start & length of records (years)	Length of river fished (m)	Area of river fished (m ²)
	Penton Hook to Chertsey (Laleham Main)	TQ0485069221	1995-2014 (16)	2800	168,000
	Desborough Cut	TQ0788065972	1995-2014 (16)	1,990	40,000
	Sunbury Weirpool	TQ1047468091	1995-2014 (13)	500	16,500
	Caversham-sonning (Margin)	SU7378574196	2001-2013 (13)	4,230	190,350
	Cleeve-Goring (Margin)	SU5970081300	2001-2013 (13)	1,000	40,000
	Hambleden-Hurley (margin)	SU7985983648	2001-2013 (13)	1,000	294,500
	Shiplake-marsh (Margin)	SU7776980072	2002-2013 (12)	4,800	240,000
	Whitchurch to Mapledurham (Margin)	SU6550877460	2001-2013 (13)	3,670	183,500
	Wolverton Mill	SP7911941157	2003-2011 (9)	120	1485
	Newport Pagnell	SP8820044100	2003-2011 (9)	155	2,945
River Great Ouse	Clifton Reynes	SP8960050700	2003-2011 (9)	121	1,996
	Turvey	SP9370052600	2003-2011 (9)	95	1,615
	Oakley	TL0120052900	2003-2011 (9)	140	2,490
	Brighouse Industrial Estate	SE1688421974	1999-2008 (7)	300	7,500
River Calder	Chantry Bridge	SE3398320073	2002-2012 (10)	200	8,000
	Cornmill Weir	SE1688321973	1999-2010 (8)	400	8,800
	Dewsbury	SE2404020932	2004-2012 (7)	250	6,750
	Castleford	SE4280026000	2001-2009 (8)	300	15,000
Piver Aire	Chappel Haddlesey	SE5760023300	2002-2010 (8)	400	16,000
	Thwaite Weir	SE3270031300	2002-2007 (6)	400	6,600
	Kirkstall	SE2640035000	2001-2007 (7)	800	16,000
	Chippenham	ST9193172909	2003-2014 (9)	90	1,215
River Avon	Christian Malford	ST9575078900	1999-2014 (10)	100	1,450
	Great Somerford	ST9675083280	2002-2014 (11)	77	546
	Lacock	ST9230068030	2003-2014 (9)	70	840

190 2.3. Comparing fish abundance with temporal changes in sewage effluent (estrogen) exposure

191

192 Given the dynamic nature of many rivers, the exposure, which is a feature of dilution, can vary

dramatically over the course of a year and between years (Johnson, 2010). Thus, if chemicals in effluent,

such as estrogens, are problematic for fish populations it might be expected that years with high exposure could be identified by a subsequent reduction in abundance. The most numerous fish in these lowland UK rivers are roach, and because we have much information on their sensitivity to estrogens, this part of the study focused on the roach.

198 The next question is what are the ages of the roach which have been sampled each year? During the 199 electro-fishing process the lengths of fish were recorded. However, fish growth rates are variable, so length 200 is not an absolute guidance for age. But a review of UK data suggests roach up to 115 mm would be 201 considered within the normal range of fish being up to 2 years of age (Britton, 2007). By this measure, for 202 the period of 2002 to 2013, on average 44-48% of roach at the Great Ouse sites and 33% to 42% of roach at 203 the Middle Thames sites were up to 2 years of age (Table S1). Therefore, the conditions of the preceding 12 204 months could be seen as being highly influential to the development of a substantial proportion of the roach 205 population present. Thus, in this analysis we are tracking changes in the fish population at the same site 206 over several years with respect to their estrogen (effluent) exposure over the preceding year.

The estrogen model (Williams *et al.*, 2009) predicts an effluent loading of 3.49 μ g EEQ per capita per day. Once the daily flow (m³/s), taken from the nearest automatic flow gauging station (Table S2) and total upstream population served by STPs is identified, so the daily EEQ concentration as ng/L (calculated here as μ g/m³, which is equivalent to ng/L) of a site can be calculated by:

211 EEQ (d) = (3.49 * P) / (F* 86,400),

- 212 Where EEQ (d) is daily EEQ concentration (ng/L)
- 213 P is total upstream population,
- 214 F is daily flow (m^3/s) ,
- 215 86,400 is the total number of seconds in a day.
- 216

So in this case the abundance of roach for a particular time point, say 12th July 2010, was compared with the average or peak estrogen (EEQ) predicted for the period 12th July 2009 to 12th July 2010, or for those in the windows of April-June 2009, July 2009. Comparisons were also made with average of peak flow of the preceding year. The comparisons were made by standard linear regression.

- 221
- 222 3. Results and discussion
- 223

224 3.1. Fish Density compared to estrogen (effluent) exposure

225

226 Depending on the site, the fisheries monitoring records start from 1995 to 2004, and thus the average 227 density of fish per site were calculated based on a minimum of 7 to a maximum of 17 years of fisheries data 228 (Table 1). The predicted mean EEQ exposure at these sites ranged between 0.6 ng/L and 3.2 ng/L, a five-fold 229 difference (Table 2). If we were to assume water use of 200 L per capita per day, then this would represent 230 a wastewater content of 3 to 18% in the river. Whilst the 90% ile exposure the EEQ exposure ranged from 231 1.2 ng/L to 6.4 ng/L, which would indicate a wastewater content of 7 to 37%. What might we expect from 232 such expected estrogen exposure? Based on a field study, at EEQ values over 1.6 ng/L between 20% of fish 233 would be expected to have oocytes in testes and 15% feminised reproductive ducts. This rises to 30% and 234 20% respectively at EEQ values over 16 ng/L (Jobling et al., 2006). So there is some dose dependency. Thus, 235 many of the monitoring sites in this study would be expected to lead to detectable endocrine disruption. 236 What might this mean for fish reproduction? In a breeding experiment with moderately to severely intersex 237 'male' roach it was found that reproductive success declined (Harris et al., 2011). Over this reporting period no relationship can be found between average roach, bleak, perch or dace 238

density within any of the rivers and the mean or 90%ile EEQ (general effluent) exposure over a 7 to 17 year
time period (Table 3). In particular, no significant damage to the population (very low population density)
was associated with wastewater/estrogen exposure. However, there is a suspicion that wastewater effluent
in the Great Ouse has a unique component that is negatively affecting roach and perch density although this
was not significant (Table 3).

244

245 Table 2

Predicted estrogen exposure using the LF2000-WQX model (sewage effluent exposure proxy) compared to average fish density at each of the monitoring locations over the recording period (7-17 years)

	Mean EEO	90%ile EEO	Roach density	Bleak density	Perch density	Dace density
Fish monitoring locations	(ng/L)	(ng/L)	(fish/m ²)	(fish/m ²)	(fish/m ²)	(fish/m ²)
R. Thames						
Boulters Weir Stream	1.9	3.3	0.00072	0.0017	0.00027	0.00099
Boveney Main	2	3.5	0.0005	0.00025	0.00016	0.0003
Bray Boveney upper						
main	1.9	3.3	0.00278	0.00164	0.00242	0.00406
Bray Weir pool	1.9	3.3	0.0798	0.0557	0.0113	0.0272
Cliveden Island	1.9	3.3	0.0215	0.0068	0.00247	0.00067
Odney Weir stream	1.9	3.3	0.00695	0.0284	0.00113	0.00074
Marlow Cookham	1.8	3.1	0.00867	0.00341	0.00301	0.00168
Molesey Thames Ditton	1.9	3.4	0.00017	0.00002	0.00015	0.00006
Molesey Weir pool	1.9	3.4	0.0534	0.0365	0.0186	0.00888
Ham Loop	2.2	3.7	0.00459	0.0348	0.00205	0.00154
Penton Hook	2.7	3.8	0.01012	0.00215	0.00418	0.00077
Desborough Cut	2.1	3.5	0.003	0.00095	0.00632	0.00625
Sunbury Weir pool	1.9	3.4	0.1596	0.0432	0.0106	0.029
Caversham	1.3	2.4	0.00156	0.00013	0.00008	0.0001
Cleeve Goring	1.7	3.1	0.00238	0.00091	0.0001	0.00008
Hambledon	1.7	3.1	0.00043	0.00005	0.00005	0.00008

Fish monitoring locations	Mean EEQ	90%ile EEQ	Roach density (fich (m ²)	Bleak density (fich (m ²)	Perch density (fich (m ²)	Dace density (fich (m ²)
	(IIg/L) 1.0					
	1.8	5.1	0.00062	0.00019	0.00004	0.00005
Manledurham	1 5	2.8	0 00092	0.00015	0 00006	0 00009
R. Great Ouse	1.0	2.0	0.00032	0.00010	0.00000	0.00000
Wolverton Mill	0.9	2	0.1139	0.00088	0.0327	0.00565
Newport Pagnell	1.5	3	0.0398	0.0307	0.01162	0.03362
Clifton Reynes	2.7	5.1	0.05968	0.01891	0.00831	0.0139
Turvey	2.6	5	0.0599	0.02888	0.005	0.0184
Oakley	2.3	4.5	0.0425	0.0139	0.00384	0.02282
R. Aire & Calder						
Brighouse	1.4	2.9	0.00597	0	0.00196	0.0002
Chantry Bridge	2.6	4.5	0.0366	0.0003	0.00215	0.00288
Cornmill Weir	1.4	2.9	0.00246	0	0.00104	0.00017
Dewsbury	2	3.8	0.01338	0	0.00025	0.00216
Castleford	3.2	6	0.02813	0.00197	0.0232	0.00096
Chappel Haddlesey	3.1	5.5	0.00314	0.00009	0.00161	0
Thwaite Weir	2.3	4.6	0.00277	0	0.0008	0.00072
Kirkstall	2.3	4.7	0.00068	0	0	0.0013
R. Avon						
Chippenham	1	2.1	0.26	0.0426	0.023	0.0315
Christian Malford	0.8	1.7	0.11327	0.0136	0.01147	0.01314
Gt Somerford	0.6	1.2	0.0327	0.00892	0.01004	0.03946
Lacock	1.3	2.9	0.1113	0.00676	0.00703	0.0487

249 Table 3

250 Attempted linear correlation expressed as R² values and trend (positive or negative) between the density of

251 the different fish species within a particular river and estrogen (sewage effluent) exposure

River	Estrogen				
	exposure	Roach density	Bleak density	Perch density	Dace density
R. Thames	Mean EEQ	0.0033	0.0252	0.0487	0.0049
	90%ile EEQ	0.0274	0.0867	0.0934	0.0301
R. Gt. Ouse	Mean EEQ	0.3495 (-ve)	0.2402 (+ve)	0.7564 (-ve)	0.0203
	90%ile EEQ	0.3442 (-ve)	0.299 (+ve)	0.7585 (-ve)	0.0186
R. Aire &	Mean EEQ	0.1928	0	0.298 (+ve)	0.0304
Calder					
	90%ile EEQ	0.1132	0	0.3392 (+ve)	0.0105
R. Avon	Mean EEQ	0.184	0.0057	0.0029	0.207 (+ve)
	90%ile EEQ	0.0635	0.0007	0.0107	0.2064 (+ve)

252 Note no correlation was significant at P 0.05 level

253

254 *3.2.* Comparing roach abundance with the preceding 12 months of estrogen (effluent) exposure

As an example, variation in the size of a roach population for Caversham-Sonning on the R. Thames can be

seen in Figure 1. It will be noted that roach numbers recorded here varied by up to 18-fold over the period 2001-

257 2013. When comparing the rises and falls in the roach population over the period of 2001 to 2013 for the sites on 258 the middle Thames, there appeared to be a relatively weak positive relationship with sewage effluent exposure of 259 the preceding year, particularly for the period of April to June of the previous year (Table 4) and a weak negative 260 one with flow (although this was not significant). For the Great Ouse a positive relationship with sewage effluent 261 exposure cannot be clearly seen, although a strongly significant negative one with flow at some sites was 262 apparent (Table 5). But these positive or negative relationships between the roach and estrogens/wastewater or 263 flow cannot be attributed with certainty. Other variables may be playing a role. However, there does not appear 264 to be a consistent pattern of seriously negative impacts of estrogens/wastewater from the previous year on roach 265 numbers.

266 It has been argued that successful fish recruitment is related to the environmental conditions in the first few 267 weeks after hatching of the eggs. Negative correlations have been seen with river flow, where too much water 268 flushes the juveniles out of the river (Mann and Bass, 1997; Nunn et al., 2007), and positive correlations with 269 temperature (juveniles grow faster and stronger and so become better foragers and better able to maintain 270 themselves against the current) (Mann, 1997; Beardsley and Britton, 2012). Roach are recorded as the most 271 common of our lowland fish and it has been noted that around a month after hatching the diet of juveniles is 272 dominated by grazing on biofilms (Mann, 1973; Mann et al., 1997). It could be hypothesised that in periods of 273 low flow in late spring and summer, elevated dissolved organic concentrations would stimulate these biofilms, 274 which are a useful food source in a critical period of development for the juvenile roach. The observation of fish 275 populations on occasions appearing to prosper in situations of lower water quality associated with wastewater 276 has been noted before (Mills and Chichester, 2005; Liu et al., 2015).

280 Fig. 1. Comparison between number of roach monitored each July and the maximum estrogen concentration 281 (EEQ) predicted to have occurred over the preceding year at the Caversham Sonning site on the River Thames from 2001 to 2013 282

- 283
- 284

285 Table 4

R² value (standard linear regression) for correlations between numbers of roach and environmental variables for the Middle River Thames over 14 years of monitoring (2001-2013)

Environmental variables	Caversham- Sonning(R ²)	trend if any	Shiplake- Marsh (R²)	trend if any	Whitchurch- Mapledurham (R ²)	trend if any
Average EEQ of preceding April- June	0.5*	+ve	0.61*	+ve	0.28	+ve
Peak EEQ of preceding April-June	0.34*	+ve	0.34*	+ve	0.32	+ve
Average EEQ of preceding July	0.4*	+ve	0.21	+ve	0.3	+ve
Peak EEQ of preceding July	0.33*	+ve	0.19		0.28	+ve
Average flow of preceding year	0.29	-ve	0.13		0.11	
Peak flow of preceding year	0.20	-ve	0.03		0.05	
Average EEQ of preceding year	0.44*	+ve	0.34*	+ve	0.25	+ve
Peak EEQ of preceding year	0.33*	+ve	0.14		0.21	+ve

288 * R² values shown with an asterisk are significant at P 0.05 level

289 Table 5

290 R² value (standard linear regression) for correlations between numbers of roach and environmental variables

291 <u>at River Great Ou</u>se over 9 years of monitoring (2003-2011)

Environmental variables	Clifton- Reynes (R ²)	trend if any	Newport- Pagnell (R ²)	trend if any	Oakley (R ²)	trend if any	Turvey (R ²)	trend if any
Average EEQ of preceding April- June	0.09		0.05		0.06		0.08	
Peak EEQ of preceding April-June	0.2	+ve	0.06		0		0	
Average EEQ of preceding July	0.14		0.1		0		0	
Peak EEQ of preceding July	0.02		0.02		0.01		0.02	
Average flow of preceding year	0.60*	-ve	0.27	-ve	0.06		0.16	
Peak flow of preceding year	0.58*	-ve	0.09		0.10		0.29	-ve
Average EEQ of preceding year	0.37	+ve	0.17		0.03		0.09	
Peak EEQ of preceding year	0.30	+ve	0.08		0.04		0.08	

292 * R² values shown with an asterisk mean significant at P 0.05 level

293

294 **4.** Conclusions

At 38 sites across England (UK), the density of roach, bleak, dace and perch populations over a period of

296 7 to 17 years, starting from the early 2000 period, were not obviously linked to estrogen (sewage effluent)

297 exposure. Hence it is possible to conclude that wastewater was not a clearly damaging factor on fish

density. As a test case, the temporal rises and falls of roach populations in the middle Thames and Great

299 Ouse were compared over several years with the preceding 12 months of sewage effluent exposure, and 300 again no severe negative relationships found. Thus, returning to the original hypotheses:

301

Any fish population (density) will be severely harmed by average exposure to domestic wastewater

The roach population will be severely harmed by temporal increases in domestic wastewater
 exposure

304 These hypotheses appear to have been falsified, at least as far as the sites, fish species and time periods 305 examined here. However, this does not mean that there are no problems associated with chemical 306 contaminants in effluent. Chemicals in wastewater may be harming other animal groups, such as 307 invertebrates, or other fish species, perhaps at other sites and at other time periods. Nor can we say that 308 the chemicals in sewage effluent are benign for fish health, although it does appear from this limited study 309 that they are not severely damaging population abundance. This type of analysis has many limitations, yet 310 the picture that emerges from these preliminary studies is that exposure to wastewater effluent in the 311 recent past, with all its estrogens, PPCPs and complex mixtures of chemicals, has not been catastrophic for 312 populations of cyprinid fish in the same way that TBT from boats was for mollusc populations (Langston et 313 al., 1990). It must be admitted that only having consistent monitoring records back to the late 1990s and 314 occasional records back to the 1970s we cannot say whether fish numbers or densities should be much 315 higher than they are now.

316

We would encourage other scientists around the world to search for more data, sites and fish species, and utilise perhaps more suitable analytical techniques, to assess whether routine chemicals in sewage effluent are harmful to fish populations. The information gathered here may be seen as encouraging and perhaps reflects a greater resilience in these wild fish populations then some might have expected (Reid *et al.*, 2016).

321

Whilst there does seem to be increasing enthusiasm to examine, assess and perhaps in the future even regulate sewage treatment plants based on toxic or harmful effects detected by a suite of bioassays (Busch *et al.*, 2016; Schroeder *et al.*, 2016), the link with whole organisms and populations remains unclear (Power and McCarty, 1997; Mills and Chichester, 2005). We would argue that knowledge of the trends in wildlife populations with respect to chemical exposure is actually the most critical factor and so long-term wildlife monitoring should be vigorously supported and maintained.

328

329 Acknowledgements

The authors are grateful for support from the CEH Science budget provided by NERC and fisheries data
 provided by the Environment Agency of England and Wales. The authors are grateful for helpful advice from
 Francois Edwards and John Sumpter

334 References

Agency E. Catchment Risk Assessment of Steroid Oestrogens from Sewage Treatment Works. Science Report,
 SC030275/3/SR. . Bristol, UK, 2008.

Baade U., Fredrich F. Movement and pattern of activity of the roach in the River Spree, Germany. Journal of
 Fish Biology 1998; 52: 1165-1174. doi: 10.1006/jfbi.1998.0661.

- Balaam J.L., *et al.* The use of modelling to predict levels of estrogens in a river catchment: How does
 modelled data compare with chemical analysis and in vitro yeast assay results? Science of the Total
 Environment 2010; 408: 4826-4832. doi: 10.1016/j.scitotenv.2010.07.019.
- Beardsley H., Britton J.R. Recruitment success in a roach Rutilus rutilus population of a hydrologically stable
 chalk river: relative influences of temperature and flow. Ecology of Freshwater Fish 2012; 21: 168 171. doi: 10.1111/j.1600-0633.2011.00549.x.
- Bergek S., Bjorklund M. Genetic and morphological divergence reveals local subdivision of perch (*Perca fluviatilis L*.). Biological Journal of the Linnean Society 2009; 96: 746-758. doi: 10.1111/j.1095-8312.2008.01149.x.
- Britton J.R. Reference data for evaluating the growth of common riverine fishes in the UK. Journal of Applied
 Ichthyology 2007; 23: 555-560. doi: 10.1111/j.1439-0426.2007.00845.x.
- Bruylants B., et al. The movement pattern and density distribution of perch Perca fluviatilis in a channelized
 lowland river. Aquaculture and Fisheries Management 1986; 17: 49-58. doi: 10.1111/j.1365 2109.1986.tb00084.x.
- Busch W., et al. Micropollutants in European rivers: A mode of action survey to support the development of
 effect-based tools for water monitoring. Environmental Toxicology and Chemistry 2016; 35: 1887 1899. doi: 10.1002/etc.3460.
- Clough S., Beaumont W.R.C. Use of miniature radio-transmitters to track the movements of dace, *Leuciscus leuciscus* (L.) in the River Frome, Dorset. Hydrobiologia 1998; 371-372: 89-97. doi:
 10.1023/a:1017087222935.
- Cuklev F., et al. Diclofenac in fish: Blood plasma levels similar to human therapeutic levels affect global
 hepatic gene expression. Environmental Toxicology and Chemistry 2011; 30: 2126-2134. doi:
 10.1002/etc.599.
- Daughton C.G., Ternes T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle
 change? Environmental Health Perspectives 1999; 107: 907-938. doi: 10.2307/3434573.
- Desbrow C., et al. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in
 vitro biological screening. Environmental Science & Technology 1998; 32: 1549-1558.
- Eggen R.I.L., *et al.* Reducing the discharge of micropollutants in the aquatic environment: The benefits of
 upgrading wastewater treatment plants. Environmental Science & Technology 2014; 48: 7683-7689.
 doi: 10.1021/es500907n.
- Eros T., et al. Taxonomic- and trait-based recolonization dynamics of a riverine fish assemblage following a
 large-scale human-mediated disturbance: the red mud disaster in Hungary. Hydrobiologia 2015; 758:
 31-45. doi: 10.1007/s10750-015-2262-9.
- Fent K., *et al.* Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 2006; 76: 122-159. doi:
 10.1016/j.aquatox.2005.09.009.
- Filipek L.H., *et al.* Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the
 West Shasta mining district, California. Environmental Science & Technology 1987; 21: 388-396. doi:
 10.1021/es00158a009.
- Giger W. The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact
 assessment. Environmental Science and Pollution Research 2009; 16: 98-111. doi: 10.1007/s11356 009-0156-y.
- Hamilton P.B., *et al.* Populations of a cyprinid fish are self-sustaining despite widespread feminization of.
 BMC Biology 2014; 12. doi: 10.1186/1741-7007-12-1.
- Harris C.A., *et al.* The Consequences of Feminization in Breeding Groups of Wild Fish. Environmental Health
 Perspectives 2011; 119: 306-311. doi: 10.1289/ehp.1002555.

384 Henriksen A., et al. Episodic changes in pH and aluminium speciation kill fish in a Norwegian salmon river. 385 Vatten 1984; 40: 255-260. 386 Holmes M.G.R., et al. A catchment-based water resource decision-support tool for the United Kingdom. 387 Environmental Modelling & Software 2005; 20: 197-202. doi: 10.1016/j.envsoft.2003.04.001. 388 Huo C.X., Hickey P. EDC demonstration programme in the UK Anglian Water's approach. Environmental 389 Technology 2007; 28: 731-741. 390 Jobling S., et al. Widespread sexual disruption in wild fish. Environmental Science & Technology 1998; 32: 391 2498-2506. 392 Jobling S., et al. Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual 393 disruption in wild fish populations. Environmental Health Perspectives 2006; 114: 32-39. 394 Johnson A.C. Natural Variations in Flow Are Critical in Determining Concentrations of Point Source 395 Contaminants in Rivers: An Estrogen Example. Environmental Science & Technology 2010; 44: 7865-396 7870. 397 Johnson A.C., Sumpter J.P. Putting pharmaceuticals into the wider context of challenges to fish populations 398 in rivers. Philosophical Transactions of the Royal Society B-Biological Sciences 2014; 369: 6. doi: 399 10.1098/rstb.2013.0581. 400 Johnson A.C., Sumpter J.P. Are we going about chemical risk assessment for the aquatic environment the 401 wrong way? Environmental Toxicology and Chemistry 2016; 35: 1609-1616. doi: 10.1002/etc.3441. 402 Johnson A.C., Williams R.J. A model to estimate influent and effluent concentrations of estradiol, estrone, 403 and ethinylestradiol at sewage treatment works. Environmental Science & Technology 2004; 38: 404 3649-3658. doi: 10.1021/es035342u. 405 Jones P.D. Water quality and fisheries in the Mersey estuary, England: A historical perspective. Marine 406 Pollution Bulletin 2006; 53: 144-154. 407 Jurgens M.D., et al. PCB and organochlorine pesticide burden in eels in the lower Thames River (UK). 408 Chemosphere 2015; 118: 103-111. doi: 10.1016/j.chemosphere.2014.06.088. 409 Kennedy R.J., et al. Recovery patterns of salmonid populations following a fish kill event on the River 410 Blackwater, Northern Ireland. Fisheries Management and Ecology 2012; 19: 214-223. doi: 411 10.1111/j.1365-2400.2011.00819.x. 412 Kidd K.A., et al. Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the 413 National Academy of Sciences of the United States of America 2007; 104: 8897-8901. 414 Kubach K.M., et al. Recovery of a temperate riverine fish assemblage from a major diesel oil spill. Freshwater 415 Biology 2011; 56: 503-518. doi: 10.1111/j.1365-2427.2010.02517.x. 416 Langston W.J., et al. Assessing the impact of tin and TBT in estuaries and coastal regions. Functional Ecology 417 1990; 4: 433-443. doi: 10.2307/2389606. 418 Liu C., et al. Influences of environmental and chemical parameters on the spatial growth patterns of four 419 riverine cyprinid fishes. Knowledge and Management of Aquatic Ecosystems 2015: 14. doi: 420 10.1051/kmae/2015008. 421 Lucas M.C. The influence of environmental factors on movements of lowland-river fish in the Yorkshire Ouse 422 system. Science of the Total Environment 2000; 251: 223-232. doi: 10.1016/s0048-9697(00)00385-5. 423 Mann R.H.K. Observations on age, growth, reproduction and food of roach Rutilis rutilis (L) in 2 rivers in 424 southern England. Journal of Fish Biology 1973; 5: 707-736. doi: 10.1111/j.1095-425 8649.1973.tb04506.x. 426 Mann R.H.K. The management problems and fisheries of three major British rivers the Thames, Trent and 427 Wye UK. Canadian Special Publication of Fisheries and Aquatic Sciences 1989; 106: 444-454. 428 Mann R.H.K. Temporal and spatial variations in the growth of 0 group roach (*Rutilus rutilus*) in the River 429 Great Ouse, in relation to water temperature and food availability. Regulated Rivers-Research & 430 Management 1997; 13: 277-285. doi: 10.1002/(sici)1099-1646(199705)13:3<277::aid-431 rrr455>3.0.co;2-7. 432 Mann R.H.K., Bass J.A.B. The critical water velocities of larval roach (Rutilus rutilus) and dace (Leuciscus 433 leuciscus) and implications for river management. Regulated Rivers-Research & Management 1997; 434 13: 295-301. doi: 10.1002/(sici)1099-1646(199705)13:3<295::aid-rrr457>3.0.co;2-5.

436 juveniles in the River Great Ouse in relation to prey availability. Regulated Rivers-Research & 437 Management 1997; 13: 287-294. 438 Mills L.J., Chichester C. Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment 439 impacting fish populations? Science of the Total Environment 2005; 343: 1-34. doi: 440 10.1016/j.scitotenv.2004.12.070. 441 Nunn A.D., et al. Seasonal and diel patterns in the migrations of fishes between a river and a floodplain 442 tributary. Ecology of Freshwater Fish 2010; 19: 153-162. doi: 10.1111/j.1600-0633.2009.00399.x. 443 Nunn A.D., et al. Fish, climate and the Gulf Stream: the influence of abiotic factors on the recruitment 444 success of cyprinid fishes in lowland rivers. Freshwater Biology 2007; 52: 1576-1586. doi: 445 10.1111/j.1365-2427.2007.01789.x. 446 Oaks J.L., et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004; 427: 447 630-633. doi: 10.1038/nature02317. 448 Oehlmann J., et al. In Response: What are the challenges and prospects? An academic perspective. 449 Environmental Toxicology and Chemistry 2014; 33: 2408-2410. doi: 10.1002/etc.2715. 450 Penczak T. Movement pattern and growth ratio of tagged fish in two lowland rivers of central Poland. Polish 451 Journal of Ecology 2006; 54: 267-282. Pottinger T.G., et al. A comparison of two methods for the assessment of stress axis activity in wild fish in 452 relation to wastewater effluent exposure. General and Comparative Endocrinology 2016; 230: 29-37. 453 454 doi: 10.1016/j.ygcen.2016.03.022. 455 Power M., McCarty L.S. Fallacies in ecological risk assessment practices. Environmental Science and 456 Technology 1997; 31: 370-375. 457 Reichard M., Jurajda P. Seasonal dynamics and age structure of drifting cyprinid fishes: an interspecific 458 comparison. Ecology of Freshwater Fish 2007; 16: 482-492. doi: 10.1111/j.1600-0633.2007.00229.x. 459 Reid N.M., et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild 460 fish. Science 2016; 354: 1305-1308. doi: 10.1126/science.aah4993. 461 Richardson S.D., Ternes T.A. Water Analysis: Emerging Contaminants and Current Issues. Analytical 462 Chemistry 2014; 86: 2813-2848. doi: 10.1021/ac500508t. 463 Robinson C.A., et al. The value and performance of large river recreational fisheries in England. Ecohydrology 464 & Hydrobiology 2003; 3: 51-60. 465 Schroeder A.L., et al. Environmental surveillance and monitoring - The next frontiers for high-throughput 466 toxicology. Environmental Toxicology and Chemistry 2016; 35: 513-525. 467 Schwaiger J., et al. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part 1:

Mann R.H.K., et al. Temporal and spatial variations in the diet of 0 group roach (Rutilus rutilus) larvae and

- 468 histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology 2004; 68:
 469 141-150. doi: 10.1016/j.aquatox.2004.03.014.
- Slooff W., Dezwart D. The growth, fecundity and mortality of bream (*Abramis brama*) from polluted and less
 polluted surface waters in the Netherlands. Science of the Total Environment 1983; 27: 149-162. doi:
 10.1016/0048-9697(83)90153-5.
- 473 Stamm C., et al. Micropollutant Removal from Wastewater: Facts and Decision-Making Despite Uncertainty.
 474 Environmental Science & Technology 2015; 49: 6374-6375. doi: 10.1021/acs.est.5b02242.
- 475 Teubner D., et al. Biometric parameters of the bream (*Abramis brama*) as indicators for long-term changes in
 476 fish health and environmental quality-data from the German ESB. Environmental Science and
 477 Pollution Research 2015; 22: 1620-1627. doi: 10.1007/s11356-014-3008-3.
- Wheeler A. The tidal Thames, the history of a river and its fishes. London, UK: Routledge and Keegan Paul,
 1979.
- Williams R.J., et al. Comparing predicted against measured steroid estrogen concentrations and the
 associated risk in two United Kingdom river catchments. Environmental Toxicology and Chemistry
 2012; 31: 892-898. doi: 10.1002/etc.1756.
- 483 Williams R.J., *et al.* A national risk assessment for intersex in fish arising from steroid estrogens.
- 484 Environmental Toxicology and Chemistry 2009; 28: 220-230. doi: 10.1897/08-047.1.

- 485 Williams W.P. The population density of four species of freshwater fish, roach (*Rutilis rutilis* (L)), bleak
- 486 (Alburnus alburnus (L)), Dace (Leucicus leucicus (L)) and perch (Perca fluviatilis L.) in the River Thames
 487 at Reading. Journal of Animal Ecology 1965; 34: 173-185.
- Woodcock B.A., *et al.* Impacts of neonicotinoid use on long-term population changes in wild bees in England.
 Nature Communications 2016; 7: 8. doi: doi:10.1038/ncomms12459.

Table. S1 Sites and years where fish length was measured giving percentage of roach in the up to 2

28.9

44.6

494 year age classes (0-115 mm length).

Gt. Ouse	Gt. Ouse - Newport Pagnell					
			0-115	0-115 mm	fish	
year	All roach		mm	as a %		
1991		242	121		50	
1994		197	64		32.5	
2001		83	28		33.7	
2011		150	100		66.7	
2014		156	91		58.3	
Average	1	65.6			48.2	
Gt Ouse	- Clifton Re	ynes				
			0-115	0-115 mm	fish	
Year	All ro	ach	mm	as a %		
1	991	793	583		73.5	
1	994	250	118		47.2	
1	997	10	1		10.0	
2	011	125	79		63.2	

38

243.2

11

495

Λ	q	6
-	-	v

Thames - Caversham

2014

Average

Year	All roach	0-115 mm	0-115 mm fish
2001	168	130	77
2002	72	12	15
2003	38	15	37
2004	361	238	63
2005	298	68	23
2006	106	6	6
2007	231	67	29
2008	91	33	36
2009	408	77	19
2010	507	198	39
2011	637	306	48
2012	884	150	17
2013	63	16	25
Average	297		33.4

Thames – Shiplake Marsh	
	0-1

				0-115 mm fish
Year		All roach	0-115 mm	as a %
	2002	45	13	28.9
	2003	80	52	65.0

2004	177	104	58.8
2005	66	18	27.3
2006	33	8	24.2
2007	47	15	31.9
2008	43	4	9.3
2009	147	66	44.9
2010	152	108	71.1
2011	148	50	33.8
2012	764	373	48.8
2013	97	40	41.2
Average	150		40.4

Thames – Whitchurch Mapledurham						
			0-115 mm fish			
Year	All roach	0-115 mm	as a %			
2001	110	46	41.8			
2002	57	7	12.3			
2003	57	6	10.5			
2004	54	27	50.0			
2005	76	20	26.3			
2006	131	30	22.9			
2007	181	109	60.2			
2008	34	15	44.1			
2009	227	58	25.6			
2010	113	79	69.9			
2011	441	254	57.6			
2012	529	228	43.1			
2013	177	135	76.3			
Average	168		41.6			

500 Table S2 Relationship between sampling sites on the Thames and Great Ouse and closest flow gauging site

Catchmants	Sites	National grid reference	Upstream human population	Flow gauging site	Distance to flow gauging site (miles)
	Caversham- sonning	SU 73785 74196	991811		1.23
River Thames	Shiplake-Marsh	SU 77769 80072	1892531	flow station	5.24
	Whitchurch to Mapledurham	SU 65508 77460	991811		4.43
	Clifton Reynes	SP 89600 50700	395879		9.89
River Great	Newport Pagnell	SP 88200 44100	76182	Bedford 33002 flow station	11.24
Ouse	Oakley	TL 01200 52900	413672		3.4
	Turvey	SP 93700 52600	402748		7.57