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Abstract Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to 21 

possible feedback mechanisms to atmospheric CO2 concentrations. We investigated soil organic matter (SOM) 22 

dynamics in the A1 and A2 horizons (~0-5.1 cm and ~5.1-12.3 cm depth, respectively) of a shrubland grass 23 

(Deschampsia flexuosa) after eight years of exposure to: elevated CO2 (CO2), summer drought (D), warming (T) 24 

and all combinations hereof, with TDCO2 simulating environmental conditions for Denmark in 2075. The mean C 25 

residence time was highest in the heavy fraction (HF), followed by the occluded light fraction (oLF) and the free 26 

light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2-27 

horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon 28 

fLF and HF organic C stocks decreased by 43 % and 23 % in response to warming, respectively. Organic nitrogen 29 

(N) stocks of the A2 horizon fLF and HF decreased by 50 % and 17 %, respectively. Drought decreased the A2 30 

horizon fLF N stock by 38 %. Elevated CO2 decreased the A2 horizon fLF C stock by 39 % and the fLF N stock by 31 

50 %. Under TDCO2, A2 horizon fLF C and N stocks decreased by 22 % and 40 %, respectively. Overall, our 32 

results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in 33 

the future.   34 

35 

Introduction  36 

Climate change is accelerated by increasing atmospheric concentration of carbon dioxide (CO2) (IPCC 2013). The 37 

extent to which soil carbon (C) sequestration will counterbalance increasing atmospheric CO2 concentrations 38 

depends in part on soil organic matter (SOM) dynamics (Davidson & Janssens 2006; Hofmockel et al. 2011b; 39 

Trumbore & Czimczik 2008). However, it is unclear how SOM will respond to climate change (Hofmockel et al. 40 

2011b; Nie et al. 2014) because links and feedback mechanisms between SOM dynamics and climate are not fully 41 

understood (Heimann & Reichstein 2008; Trumbore & Czimczik 2008). Changes in C and nitrogen (N) cycling 42 

within SOM pools could drastically change long-term C sequestration and soil N availability (Hofmockel et al. 43 

2011b). 44 

SOM contains roughly 50 % C and 0.1-6 % N (Cotrofo & Gorissen 1997; Schnitzer & Khan 1978) and is mainly 45 

derived from plants through exudates, symbiotic fungi and litter (Davidson & Janssens 2006; Trumbore & Czimczik 46 

2008), and to a minor extent from mesofauna, fungi (Mehrabanian 2013) and bacteria/archaea. The incorporation of 47 

OM into soil aggregates or sorption onto mineral or other organic surfaces slows SOM decomposition by microbes 48 
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and contributes to its stabilization in soil (Kleber et al. 2007). As changes in bulk SOM stocks can be difficult to 49 

observe due to high spatial variability in most natural ecosystems, improved understanding of climate change effects 50 

on SOM turnover and changes in soil C and N pools can be gained from SOM fractionation in combination with 51 

climate manipulation experiments (Trumbore & Czimczik 2008).  52 

The SOM fractionation approach is particularly valuable in climate change experiments because non-complexed 53 

SOM pools often display more sensitive responses to environmental change than the bulk SOM pool (Christensen 54 

2001). SOM fractionation techniques are based on the assumption that the extent and degree to which SOM is 55 

adsorbed to mineral soil particles regulates SOM dynamics and function (Gregorich et al. 2006). Soil density 56 

fractionation provides a mean to separate SOM inside and outside of aggregates (designated occluded light fraction, 57 

oLF, and free light fraction, fLF, respectively, with densities <1.5 g cm-3) from mineral-associated SOM (heavy 58 

fraction, HF, with a density typically 2.5-3.0 g cm-3). Particles that sink in heavy liquid are thought to be absorbed to 59 

clay and sesquioxides, and contain variable amounts of humified SOM (Beare & Gregorich 2007; Kogel-Knabner et 60 

al. 2008).  61 

In general, the youngest, most labile and least 13C enriched (=13C most negative) SOM prevails as discrete particles 62 

of plant origin (fLF) whereas older, most processed, recalcitrant and 13C enriched SOM is associated with the HF 63 

(Gunina & Kuzyakov 2014; Kogel-Knabner et al. 2008; Meyer & Leifeild 2013; Wagai et al. 2009). It is believed 64 

that the HF can be formed from the oLF or directly from fLF material (Wagai et al. 2009). The oLF is thought to 65 

originate from the fLF and may partially be more degraded and recalcitrant (Buurman & Roscoe 2011; Wagai et al. 66 

2009). Stabilization of soil organic C (SOC) and soil organic N (SON) is typically connected to mineral association 67 

in the HF (Bimüller et al. 2014; Marschner et al. 2008; Schrumpf et al. 2013). Organic C pesistence via selective 68 

preservation of recalcitrant compounds such as melanoidins, black C, tannins or aliphatic structures in the oLF 69 

(Mikutta et al. 2006; Poirier et al. 2003) is probably a less important stabilization mechanism (Marschner et al. 70 

2008).  71 

Climate change manipulation experiments have traditionally investigated single-factorial or combined effects of, in 72 

particular, elevated atmospheric CO2 concentrations and warming (reviewed in Dieleman et al. 2012). These 73 

experiments, however, lack studying the effect of more severe future drought events (Dieleman et al. 2012) or 74 

anticipated changed precipitation patterns in general (IPCC 2013), which may also influence soil C and N turnover. 75 

In addition, changes in CO2, temperature and precipitation may interact, complicating the prediction of the effects of 76 
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multiple climatic and environmental stress factors from single factor studies (Andresen et al. 2010; Larsen et al. 77 

2011; Scherber et al. 2013). Combined with the fact that changes in bulk SOC are hard to detect on an annual basis 78 

(Xu et al. 2011) this calls for research on fractionated soil C and N stocks in long-term multi-factorial climate 79 

manipulation experiments. 80 

Shrublands constitute an important component of terrestrial landscapes (~7 % of European land area (Carter et al. 81 

2012)) and provide multiple important ecosystem services (Beier et al. 2009). The global area covered by shrublands 82 

may further increase as changes in land use cause shrub invasion in many arid and semiarid regions of the world 83 

(Schlesinger et al. 1990). Hence, shrublands deserve special attention in climate change impact research (Kröel-84 

Dulay et al. 2015). The objective of this study was to evaluate how eight years of elevated CO2, increased 85 

temperature and extended periods of drought, and all-factorial combinations hereof, affect soil C and N stocks in the 86 

A horizon of a temperate shrubland.  87 

In the current work we tested four main hypotheses addressing the interaction between SOM pools and climate 88 

change conditions, i.e.:  89 

1. Warming decreases the size of the fLF due to the increased SOM turnover rates (Amundson & Davidson90 

1990; Kotroczo et al. 2008). Previous investigations from the heath ecosystem revealed a tendency for91 

higher leaf litter decomposition under warming (Andresen et al. 2010), higher N turnover (Larsen et al.92 

2011), a higher microbial biomass (Haugwitz et al. 2014) and a stimulation of soil respiration (Rs) in most93 

seasons (Selsted et al. 2012).94 

2. Drought increases SOC and SON stocks at the site. This hypothesis is based on literature evidence95 

demonstrating drought-driven increases in litter input from increased plant senescence (Munné Bosch96 

2004), and drought-induced reductions in Rs (Linn & Doran 1984; Selsted et al. 2012; Skopp et al. 1990), N97 

mineralization (Larsen et al. 2011) and leaf litter decomposition (Andresen et al. 2010).98 

3. Elevated CO2 increases the SOM pool size due to a stimulation of net photosynthesis (Albert et al. 2011)99 

and root biomass (Arndal et al. 2013) under elevated CO2 at our experimental site.100 

4. The three-factorial treatment combination of warming, drought and elevated CO2 is not expected to cause101 

significant changes of the SOM pools after eight treatment years. Previous shorter term experiments at the102 

specific site showed that the stimulating effects of elevated CO2 and warming on plant biomass, SOM103 

turnover (measured via soil and leaf litter incubation bags after 1 year) and soil fauna cancelled out or were104 
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reduced when combined with drought (Andresen et al. 2010; Kongstad et al. 2012; Larsen et al. 2011; 105 

Maraldo et al. 2010; Reinsch & Ambus 2013).  106 

 107 

Methods 108 

 109 

Experimental field site  110 

Soil samples were collected at the site of the CLIMAITE experimental site, a temperate shrubland/grassland ca. 50 111 

km north of Copenhagen, Denmark (55o53’N 11o58’E), matured on moraine deposits (Mikkelsen et al. 2008). The 112 

soil is a coarse textured sandy Arenosol (FAO) / Entisol (US Soil Taxonomy) from the Weichsel glaciation with 113 

only weak signs of podsolization, a relatively low Cation Exchange Capacity (CEC) and acidic pH (Table 1). The 114 

dominating plant types are grasses (ca. 77 % coverage by Deschampsia flexuosa) and evergreen shrubs (ca. 23 % 115 

coverage by Calluna vulgaris) (Kongstad et al. 2012). The experiment comprises twelve octagon-shaped plots 116 

(6.8 m diameter) that have been exposed to multiple environmental treatments since October 2005. The octagons are 117 

organized pair-wise in six blocks, where one of the paired octagons is exposed to ambient (A) atmospheric CO2 118 

concentration (390 ppm) and one is exposed to elevated CO2 at 510 ppm (CO2) realized by Free-Air CO2 119 

Enrichment (FACE). All octagons are split into four equal-sized plots exposed to, in addition to ambient or elevated 120 

CO2, either no treatment (A), extended spring/summer droughts (D) via horizontally moving curtains (removing 8-121 

11 % of annual precipitation and decreasing soil water content in D compared to A plots by 3.2±0.5 and 5.7±0.6 122 

percentage points on average during the whole drought treatment periods and during the last 7 days of drought 123 

treatments, respectively; Fig. 1a), to passively elevated night-time temperature (T) via a second set of horizontally 124 

moving reflective curtains (annual mean temperature at 20 cm above soil surface and at 5 cm soil depth elevated by 125 

0.3 °C and 0.4 °C, respectively, in T compared to A plots, ranging from 0.1 °C in both air and soil during winter to 126 

0.5 °C and 0.7 °C, respectively, during spring/summer; Fig. 1b) or a combination of drought and warming (TD). 127 

Hence the experimental design allows for the test of eight treatments (A, T, D, CO2, TD, TCO2, DCO2, TDCO2), 128 

each replicated six times. The full factorial treatment, TDCO2, simulates as closely as possible a likely Danish 129 

climate scenario in 2075, as predicted by the Danish Meteorological Institute (www.DMI.dk). For more details, see 130 

Mikkelsen et al. (2008) and Scherber et al. (2013).  131 

 132 

http://www.dmi.dk/
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Soil sampling and sample pre-treatment 133 

Four to five soil cores (Ø 2 cm, depth 12.3±0.3 cm corresponding to the approximate depth of the A horizon) were 134 

collected randomly beneath D. flexuosa from the outer periphery of each experimental plot in December 2013. Soil 135 

cores were divided into an A1 horizon (0-5.1±0.2 cm) and an A2 horizon (5.1±0.2 cm to 12.3±0.3 cm) using color- 136 

and density differences. Any litter fraction was removed from the samples. The soil was air-dried and large 137 

aggregates were gently crushed to pass a 2 mm sieve. The fraction >2 mm was removed by dry sieving. 138 

Subsequently, roots and visible plant remains were removed from the samples and the soil was homogenized using 139 

the cone and quarter technique (Raab et al. 1990). Three subsamples of 5 g were weighed into 50 mL Falcon tubes 140 

(BD Biosciences, DK) for density fractionation, bulk (non-fractionated) soil analysis and pH measurement, 141 

respectively. Roots were dried at 70 C and analyzed as described below.  142 

 143 

Soil fractionation 144 

Soil density fractionation was carried out following protocols of Schrumpf et al. (2013) using sodium polytungstate 145 

(SPT, Sigma Aldrich No. 71913, Denmark) at a density of 1.6 g mL-1. After addition of 25 mL SPT to the soil 146 

samples, the Falcon tubes were shaken gently by hand to release the free light fraction (fLF). Suspensions were left 147 

to settle for ~1 hr prior to 30 min of centrifugation at 4000 g. The floating fLF and SPT supernatant were pipetted 148 

onto glass fibre filters (porosity 4, DUAN, Schott, Germany) and filtered under vacuum. The filtered SPT was 149 

checked for density changes and poured back into the Falcon tubes. Density changes were not observed in the 150 

current experiment. The fLF on the glass fibre filters was washed with milli-Q water to a conductivity of the rinsing 151 

water <50 µS. The occluded light fraction (oLF) was obtained by treating the re-suspended SPT-soil solution with 152 

ultrasound at 26 J mL-1. Calorimetrical calibration of the sonicator (Digital Sonifier No. 450, Branson, USA) was 153 

performed according to Schmidt et al. (1999) to provide an estimate for the applied energy. The applied energy level 154 

was based on 1) a strong discoloration of the SPT at energy levels higher than 26 J m L-1 that indicated reallocation 155 

of C (SI Fig. S1) and 2) tests on the effect of different levels of sonication energy on the amount and the C 156 

concentration of the oLF and HF (Schmidt et al. 1999) (results not shown). Complete disruption of aggregates was 157 

assumed when no further oLF was released (i.e. the mass of oLF increased) at the next sonication step. After 158 

sonication, samples were centrifuged (4000 g, 30 min) and the floating oLF and SPT were pipetted onto quartz fibre 159 

filters and filtered under vacuum. The oLF was washed with milli-Q water to a conductivity of the rinsing water <50 160 
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µS. The settled HF was transferred onto glass microfiber filters (GF/C, Whatman, DK) and washed with milli-Q 161 

water to a conductivity of <50 µS of the rinsing water. The density separated soil fractions were transferred 162 

quantitatively onto tin trays, dried at 60 C and weighed.  163 

The recovery of soil mass was calculated from the sum of the mass in the density fractions and the initial bulk soil 164 

sample weight. Recovery of soil C was calculated from the sum of the C in the density fractions, the SPT solution 165 

and the rinse water versus the amount of C contained in the bulk soil sample. Recovery of soil N was calculated 166 

from the sum of the N in the density fractions versus the amount of N contained in the bulk soil sample. Average 167 

soil mass, C and N recoveries were 99.1 %, 111.7 % and 87.9 %, respectively (Table SI3). 168 

 169 

Soil solution pH  170 

A soil subsample was gently suspended in milli-Q water (5:25 w:vol) and allowed to stand for 10 min. Soil solution 171 

pH was measured using a Radiometer Copenhagen PHM92 Laboratory pH meter. 172 

 173 

C loss to fractionation medium and rinsing water   174 

Water soluble components of the SOC pool may easily be lost during SPT suspension and rinsing. In order to 175 

quantify this C loss, SPT solutions and collected rinsing water samples were filtered through 0.45 µm nylon filters 176 

(Minisart, DK) and analyzed for dissolved organic C (DOC) on a TOC_V CPH Analyzer (Shimadzu Suzhou 177 

Instruments, JP). Loss of C to the SPT solution and to the rinse water during density fractionation accounted for 178 

4.80.1 % and 12.50.5 % of the bulk C in the A1 and A2 horizon, respectively. Five-mL subsamples of the SPT 179 

were freeze-dried and the precipitate was analyzed for total C and the 13C/12C isotope ratio.  180 

 181 

Total C, N and stable isotope analyses 182 

For analysis of the dry matter C and N concentrations (% C and % N) and isotopic ratios of 13C/12C and 15N/14N, 183 

duplicates of finely ball-milled samples were weighed into tin capsules, using 10, 0.1-1, 20, 20 and 10 mg of the 184 

fLF, oLF, HF, bulk soil and root mass, respectively. Samples were measured by Dumas combustion (1020 ºC) on an 185 

elemental analyzer (CE 1110, Thermo Electron, Milan, Italy) coupled in continuous flow mode to a Finnigan MAT 186 

Delta PLUS isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany). The isotope ratios are reported 187 
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by the delta notation (δ13C and δ15N), i.e. the change in isotopic ratio relative to international reference materials, i.e. 188 

Pee Dee Belemnite (PDB) and atmospheric air for C and N, respectively. 189 

 190 

Newly-assimilated C and C residence time  191 

The concentrated CO2 used for the FACE treatment had a distinctly lower 13C isotopic value (signature of the added 192 

CO2, 13CO2FACE = -29 ‰; Reinsch and Ambus 2013) than ambient air (13CO2AIR = -8 ‰), and newly assimilated C 193 

(Cnew) in plots subjected to elevated CO2 was subsequently tracked into the SOM fractions according to the equation 194 

proposed by Bock et al. (2007): 195 

 196 

Eq. (1): %𝐶𝑛𝑒𝑤 = 100 ×
𝛿13𝐶𝑆𝑂𝑀.𝐶𝑂2−𝛿

13𝐶𝑆𝑂𝑀.𝐴

𝛿13𝐶𝑟𝑜𝑜𝑡−𝛿
13𝐶𝑆𝑂𝑀.𝐴

 197 

 198 

where 13CSOM.CO2= 13C of the SOM fraction in the CO2 treatment, 13CSOM.A = 13C of the SOM fraction in the A 199 

treatment, and 13Croot = 13C of the root material in the CO2 treatment. The calculation assumes an instantaneous 200 

change in 13Croot, a temporal persistent value of 13Croot, and a negligible impact of aboveground litter on SOM 201 

formation, assumptions that are a simplification of the reality. The 13C values of collected root materials are 202 

presented in supplementary Table SI1.  203 

The mean residence time of C (MRTC) in each SOM fraction was calculated according to: 204 

 205 

Eq. (2): 𝑀𝑅𝑇𝑐 = 1/𝑘  206 

 207 

where k = -ln(proportion of old C) / (years elapsed since the start of the experiment). A negative Cnew was observed 208 

for 7.5 % of the samples. Because k requires a positive value for Cnew to be meaningful, the calculation of k was 209 

based on a plot average Cnew (n=6). Mean turnover rates for C were calculated across treatments by multiplying Cnew 210 

with the grams of C in a given fraction, followed by division with the fraction dry weight and eight years of elevated 211 

CO2 treatment.  212 

 213 

Statistical analyses 214 
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Results are presented as means  standard error (n=6) unless indicated otherwise. 182 Outliers (i.e. values lower or 215 

higher than the quartile  interquartile range*1.5) corresponding to 4.5 % of the values were removed from the 216 

dataset. Statistical analyses of treatment effects were conducted with a linear mixed effect model (lmer, p<0.05) (R 217 

Core Team 2014). Data were divided into A1 and A2 horizon samples since almost all variables within the fLF, oLF 218 

and HF showed a significant difference between the horizons in Welch’s t-test (Welch 1947) (Table SI2). The same 219 

statistical model was used for all variables, with all main climate factors (T, D, CO2) and their interactions included. 220 

The model included a random statement that accounted for the experimental design (block, octagon octagon×D, 221 

octagon×T; the CO2 treatment is accounted for in the octagon as CO2 is manipulated at octagon level). P-values 222 

0.05 were considered significant, and trends in treatment effects (p<0.1) are indicated.  223 

 224 

Results 225 

 226 

Distribution and characteristics of density fractions 227 

The HF constituted at least 96 % and 98 % of the total soil mass in the A1 and A2 horizons, respectively. The HF 228 

was associated with high mineral contents as reflected by lower total soil C and N concentrations than in the bulk 229 

soil (Table 2). In contrast to the total mass, the light fractions constituted important reservoirs of OC and ON in both 230 

soil horizons (10-24 % of the total C and 3-21 % of the total N each; Table 2). 231 

13C abundance under ambient CO2 decreased in the order oLF≥ leaf litter and roots≥ bulk soil≥ HF> fLF and under 232 

elevated CO2 in the order oLF and HF ≥ bulk soil> fLF> roots> leaf litter in both horizons (Tables 2 and SI1). 15N 233 

abundance decreased in the order HF> bulk soil and oLF> fLF, leaf litter and roots in the A1 horizon. In the A2 234 

horizon, 15N-enrichment decreased in the order HF> bulk soil> oLF and fLF> roots> leaf litter (Tables 2 and SI1). 235 

 236 

Changes in chemistry of bulk soil and density fractions in the climate treatments  237 

Effects of climate treatments on plant and soil C and N concentrations, and total C and N pools (OC and ON) were 238 

investigated (Fig. 2). In general, treatment effects appeared more frequently in the A2 horizon than in the A1 239 

horizon (Table 3). An exception to this was 13C, which was decreased by elevated CO2 in both horizons in all 240 

measured C pools (Table 2; Table 3; Table SI1). Likewise, root material 13C was markedly reduced in all plots 241 

exposed to elevated CO2, ranging from -27.2±0.1 ‰ to -35.0±0.5 ‰, independent of soil depth (Table SI1). Samples 242 
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generally showed large variability, and hence some of the statistical results have to be interpreted with reservation. It 243 

is worth mentioning that all climate treatments reduced the A2 horizon fLF N stock relative to the ambient 244 

treatment, while treatments hardly differed from each other (Fig. 3m, Table 3). This could indicate that the 245 

treatments are non-additive but it could also reflect that the higher fLF N stock of the ambient treatment was caused 246 

by high variability between replicates. 247 

 248 

Responses to warming 249 

Across all treatment combinations, warming (T) significantly decreased soil C and N stocks in the A2 horizon fLF, 250 

HF and the bulk soil (Fig. 2m and 3m, 2o and 3o, and 2p and 3p, respectively; Table 3). When combined with CO2 251 

and drought, warming reduced the bulk soil C stock from 1765±61 g C m-2 in the A2 horizon to 1355±138 g C m-2 252 

(Fig. 2p, Table 3), which was linked to a decreased C concentration (Fig. 2h, Table 3). The dominant source of C 253 

loss was associated with the HF (-272 g C m-2), and to lesser extent with the fLF (-74 g C m-2).  254 

Much in parallel to the reduction in soil C (C/N ratio remained unchanged, data not shown), the N pool decreased in 255 

the A2 horizon HF, from 81.5±6.2 g N m-2 to 67.1±8.1 g N m-2 (Fig. 3o, Table 3) due to a decrease in the N content 256 

of the fraction (Fig. 3g, Table 3); for the fLF, the N pool decreased by 2.1 g N m-2 (Fig. 3m, Table 3). Overall, the 257 

bulk soil showed a substantial 17 g N m-2 (19 %) decrease of the A2 horizon N pool in response to warming (Fig. 258 

3p, Table 3).  259 

 260 

Responses to drought  261 

Drought decreased the A2 horizon fLF N stock from 4.2±0.7 to 2.6±0.5 g N m-2, probably due to a combination of 262 

non-significant decreases in the N concentration, the fLF weight fraction, and the soil bulk density. Drought also 263 

increased the 15N abundance in the oLF from 0.2±0.3 ‰ to 1.9±0.5 ‰ but only in plots under ambient CO2 264 

(significant DCO2 interaction; Table 3, Table SI1). Drought responses often acted in combination with CO2 and/or 265 

warming (Table 3). A noticeable example is the temperature-driven loss of N from the HF in the A2 horizon. The 266 

warming-induced N loss was 14.4 g N m-2 but when combined with drought, the N loss was reduced to 2.2 g N m-2 267 

(Fig. 3o, Table 3).  268 

 269 

Responses to elevated CO2 270 



11 

With respect to elevated CO2 as a driver for soil C and N stocks in this ecosystem, we observed responses in the A2 271 

horizon fLF in particular. The C stock of this soil fraction was reduced by ~67 g C m-2 under elevated CO2 to a total 272 

size of 104±22 g C m-2 (Fig. 2m, Table 3), despite a concurrent increase in C from 43.6±0.8 % to 51.6±1.1 % 273 

(Fig. 2e, Table 3). A concurrent reduction of the relative weight proportion of the A2 horizon fLF from 274 

0.20± 0.002 % to 0.12± 0.002 % was measured under elevated CO2, but only when the CO2 was not combined with 275 

warming (significant antagonistic TCO2 interaction, Table 3; data not shown). 276 

The loss of C under elevated CO2 was lower in combinations with both warming and drought (Fig. 2m). The A2 277 

horizon fLF N stock also decreased under elevated CO2, from 4.2±0.7 to 2.1±0.6 g N m-2 (Fig. 3m, Table 3), but as 278 

for C in the fLF, the elevated CO2-induced loss of N was reduced by significant interactions with both, warming and 279 

drought.  280 

281 

A change in N concentration was not observed for any of the density fractions. However elevated CO2 decreased the 282 

bulk A2 horizon soil N concentration from 0.06±0.003 % to 0.05±0.003 %, but only when not combined with 283 

warming (significant TCO2 interaction; Table 3).  284 

285 

Responses to future environmental conditions 286 

The combination of all three imposed climate drivers (TDCO2), i.e. the simulation of future climate scenario, 287 

decreased the A2 horizon fLF C stock from 171±17 g C m-2 in control plots to 133±15 g C m-2 (Fig. 2m, Table 3); 288 

this decrease was observed in spite of the increase in relative C concentration (Fig. 2e, Table 3). In contrast, the 289 

relative C concentration in the A2 horizon oLF decreased in the combined treatment (Fig. 2f, Table 3), but this was 290 

not accompanied by a concurrent decrease of the C stock (Fig. 2n). The full treatment combination also tended to 291 

decrease the C stock of the A2 horizon bulk soil and the HF (p<0.1; Table 3, Fig. 2p and o, respectively). 292 

Furthermore, the full treatment combination caused a 40 % reduction in N from the A2 horizon fLF, from 4.2±0.7 g 293 

N m-2 under ambient conditions to 2.5±0.5 g N m-2 (Fig. 3m). This N loss was neither driven by reduced N%, a 294 

smaller fLF weight fraction or by a lower soil bulk density alone (Table 3) but was probably caused by a 295 

combination of non-significant decreases in these variables. 296 
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 297 

New C and mean C residence time in SOM  298 

The specific 13C/12C isotopic composition of the atmospheric CO2 in experimental plots exposed to elevated CO2 299 

enabled the calculation of Cnew into the two soil horizon SOM fractions. The Cnew generally decreased in the order 300 

fLF≥ oLF≥ HF with an overall maximum of 46 % Cnew in the A1 horizon fLF, and a minimum of 6 % Cnew in the A2 301 

horizon HF (Fig. 4a-c). None of the treatments affected the formation of new C, although the drought treatment 302 

tended to decrease Cnew formation in the oLF of the A2 horizon (Fig. 4b; Table 3). The incorporation of new C 303 

during the eight years of the experiment in relation to the current C stock further enabled an assessment of the 304 

MRTC. The MRTC in the HF (overall 99±10 years) exceeded the MRTC in the fLF (26±4 years) and oLF (39±4 305 

years), independently of the applied treatments and horizons (Fig. 4d-f). 306 

  307 

Effect of soil depth on soil C and N 308 

With increasing soil depth, i.e. the transition from the A1 to the A2 horizon, the pool of bulk soil C decreased from 309 

1745±52 g C m-2 to 1550±72 g C m-2 (Fig. 2l and p; Table SI2). The pool of C bound in the fLF also decreased from 310 

395±32 g C m-2 in the A1 horizon to 133±9 g C m-2 in the A2 horizon, despite a slight increase in C concentration 311 

(Fig. 2e, i and m, Table 3). DOC followed the same pattern and decreased with depth, as indicated by the DOC 312 

concentration in the SPT solution (p<0.001; Fig. SI2a). The 13C of the fLF, HF and bulk soil increased with depth 313 

for ambient CO2 (0.3 ‰) and elevated CO2 (0.8 ‰) treatments (Table 2; Table SI2; Fig. SI3). In parallel to the 314 

depth-related distribution of C, the N concentrations and N pools generally also decreased with depth in the SOM 315 

fractions and bulk soil (Table 2, Fig. 3). The C:N ratio was generally higher in the deeper soil layer, most 316 

pronounced in the fLF where A2 horizon C:N>50 (Table 2). Similarly, the 15N generally increased with soil depth, 317 

up to 3.8 ‰ for the bulk soil (Table 2; Fig. SI3). Newly assimilated C in the fLF and HF decreased with soil depth 318 

(p<0.001 and p<0.01, respectively; Fig. 4a and c) and correspondingly, the MRTC of the fLF increased with depth 319 

(p<0.001 and p<0.01, respectively; Fig. 4d and f). 320 

 321 

Discussion 322 

 323 
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Origins of the oLF and HF and their relative roles in SOC stabilization  324 

This section examines the origins of the oLF and HF under ambient CO2 concentration using the indicators C:N 325 

ratio, 13C, and 15N, and localizes the stabilization of SOC. Considering the general pattern of enrichment in 13C 326 

of SOM with age, the observed higher 13C enrichment of the oLF relative to the HF suggests that the HF was mainly 327 

formed from the more 13C depleted fLF (Table 2). Meanwhile, selective degradation of 13C depleted compounds 328 

within the oLF such as plant or microbial lipids, lignin or aliphatic compounds (Badeck et al. 2005; Park & Epstein 329 

1961) could provide a pathway for HF formation from the oLF. A MRTC of the HF in the A2 horizon of more than 330 

100 years and a rather slow mean C turnover in the HF and oLF of 0.03 and 1.7 mg C mg dry weight-1 yr-1, 331 

respectively, further suggest little transfer of C from the HF to the oLF. However, also here chemical analysis of the 332 

SOM fractions is needed to confirm that the fLF is the predominant source of C for the oLF. The differences in 15N 333 

and C:N ratios between fLF and oLF in the A1 horizon (but not the A2 horizon) suggest that the oLF had undergone 334 

additional chemical transformation, possibly due to a longer inclusion period (Buurman & Roscoe 2011). 335 

 336 

To our best knowledge this is the first study that consistently shows a higher 13C enrichment of oLF C relative to HF 337 

C. John et al. (2005) also observed higher or equal 13C-enrichment of oLF C relative to HF C for some of their 338 

samples, but mainly reported 13C signatures of oLF C intermediate between C in the HF and fLF. The latter was also 339 

observed for a loamy soil with three different plant covers (Gunina & Kuzyakov 2014) and for most of the sandy 340 

loam or loamy sand grassland soils in Baisden et al. (2002). Other researchers have reported similar 13C signatures 341 

of oLF C and fLF C, e.g. across 12 European study sites of different land use (Schrumpf et al. 2013) or more 13C 342 

depleted C in the oLF compared to the fLF (Buurman & Roscoe 2011; Roscoe et al. 2004). The apparent variance in 343 

the origin of the oLF suggests that SOM dynamics are indeed dependent on initial precursors and soil type, which is 344 

in line with findings by Thockmorton et al. (2012) and Baisden et al. (2002), but contrary to findings by Gunina & 345 

Kuzyakov (2014) and Schrumpf et al. (2013). 346 

 347 

The long MRTC of the HF relative to fLF and oLF and the high weight fraction of the HF (>95 % of the bulk soil) 348 

suggests that most C in the investigated soil was stabilized by association with minerals. The oLF constituted only a 349 

small part of the bulk SOM in terms of weight (0.3-1 %) due to little aggregate formation in sandy soils (Juo & 350 
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Franzluebbers 2003), as shown previously (Roscoe et al. 2004). However, due to the high C concentration in the 351 

oLF, C storage within aggregates at intermediate MRTCs was considerable in our ecosystem (4-12 % of total C).  352 

The isotopic composition of the oLF was low in 15N (Hofmockel et al. 2011a) and high in 13C (Biasi et al. 2005; 353 

Cheng et al. 2007) relative to the HF. This, combined with a smaller MRTC of the oLF compared to the HF, 354 

suggests that the oLF contained a substantial amount of easily degradable organic substances, presumably with a 355 

relatively high concentration of compounds such as cellulose, starch or hemicellulose that are isotopically enriched 356 

in 13C (Badeck et al. 2005; Benner et al. 1987; Park & Epstein 1961). 357 

 358 

Effect of soil depth on SOM turnover 359 

The increases in 15N and 13C in the SOM fractions and the bulk soil with soil depth (except the 13C of the oLF) 360 

were presumably caused by isotopic discrimination by the microbial community, and suggest that SOM age 361 

increases with depth, in accordance with the general conceptual understanding of SOM formation and turnover 362 

(Brunn et al. 2014; Schrumpf et al. 2013). The relatively higher C input to the A1 horizon reflected a substantial 363 

contribution from aboveground litter to Cnew, as also indicated by the different 13C signatures of the fLF and the 364 

roots (Table 2). Decreases in C and N concentration with depth have been reported previously (e.g., Johnsen et al. 365 

2013; Ostrowska & Porębska 2012) and are probably due to a lower SOM input (lower Cnew) in the A2 horizon 366 

combined with a different quality of the SOM entering the soil (Bowden et al. 2014). The increases in C:N ratios of 367 

the oLF and fLF with depth were probably due to concurrent increases in the C:N ratio of the roots but could also 368 

originate from higher concentration of recalcitrant compounds (Brunn et al. 2014). The higher MRTCs of the fLF 369 

and HF in the A2 horizon compared to the A1 horizon suggest increased C stabilization with depth. 370 

 371 

Effect of climate treatments on SOM cycling 372 

The different patterns of 13C signatures between SOM fractions and the plant roots under elevated CO2 and ambient 373 

CO2, respectively, indicate that the ecosystem had not yet established a new equilibrium in terms of C allocation 374 

after eight years of continuous exposure to 13C depleted CO2. The percentage of Cnew in the SOM fractions of the 375 

elevated CO2 plots peaked at around 50 % in the A1 horizon fLF and confirmed an ecosystem in transition. Hence 376 

the reported changes in C and N allocation to SOM pools under elevated CO2 have to be interpreted with this 377 

reservation. 378 
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 379 

Depth-dependent responses to climate treatments 380 

While 13C labelling of the SOC occurred in both horizons, the majority of all changes in response to climate 381 

treatments were observed in the A2 horizon (Fig. 2 and 3; Table 3). This was contrary to the expected, as C turnover 382 

was generally higher in the A1 horizon. The higher responsiveness to climate change of the A2 horizon compared to 383 

the superior A1 horizon may be caused by the observed pattern of relatively large changes of belowground plant 384 

processes, in particular increased deep root productivity (Arndal et al. 2013), compared to relatively small changes 385 

in the aboveground plant biomass in relation to the climate treatments at the experimental site (Kongstad et al. 386 

2012). 387 

 388 

Warming 389 

Decreases of the fLF C and N pools were in accordance with hypothesis 1. The HF lost less C and N compared to 390 

the fLF, which confirms the previous observations by Leifeld et al. (2013) of a higher temperature sensitivity of 391 

labile SOM (high C:N ratio) relative to slowly decomposing/recalcitrant SOM. However, other studies have shown a 392 

higher temperature sensitivity of slowly decomposing SOM (e.g., Follett et al. 2012; Suseela et al. 2013). In their 393 

review, Conant et al. (2011) concluded that most long-term, cross-site studies indicate that the degradation of slowly 394 

decomposing SOM is relatively insensitive to temperature. In contrast, the majority of incubation studies, which 395 

typically capture mostly the responses of readily decomposable SOM, presenting only 5–15 % of the total SOM 396 

pool, show that the decomposition of slowly decomposing SOM is more temperature sensitive than labile SOM 397 

(Conant et al. 2011). 398 

The combined annual loss of C from the fLF C and HF C stocks of 43 g m-2 yr-1 was similar to the increase in Rs 399 

induced by warming of 56-58 g m-2 yr-1 at our site (Selsted et al. 2012). These values are in line with an increase in 400 

Rs in a tall-grass prairie of 59 g C m-2 yr-1 in response to 2 ºC warming (Luo et al. 2009) but slightly higher than the 401 

estimated decrease in OC at temperature increase of 3 ºC in a range of grassland soils (19 g C m-2 yr-1; Follett et al. 402 

2012), however in the latter study only C stocks from 0-10 cm depth were considered. Our results imply an 403 

increased CO2 release due to soil decomposition in a warming world. Additionally, a stronger decrease of the fLF N 404 

stock (-51 %) compared to the fLF C stock (-43 %) may indicate progressive N limitation of the ecosystem under 405 

warming.  406 
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 407 

Drought 408 

Contrary to hypothesis 2, the fLF C stock and fLF C and N concentrations did not increase in response to drought 409 

and the fLF N stock furthermore decreased. Possibly, the duration and timing of the drought (applied during selected 410 

periods each spring or summer, Fig. 1) was not long enough to manifest the predicted changes in the SOM pool. In 411 

addition, any changes manifested during the relatively short-term drought events (3-4 weeks) may rapidly diminish 412 

due to the fast recovery of photosynthetic rates, Rs and plant growth after rewetting (Albert et al. 2011; Kongstad et 413 

al. 2012; Selsted et al. 2012). Our results therefore contrast previous reports of attenuated N turnover (Bimüller et al. 414 

2014), increases in the labile SOC stocks and labile SOM C and N concentrations, and a generally slower SOM 415 

turnover (Garten et al. 2009) under drought.  416 

 417 

Elevated CO2  418 

Contrary to hypothesis 3, elevated CO2 concentration decreased A2 horizon fLF C and fLF N stocks and tended to 419 

decrease the A1 horizon fLF C and fLF N stocks. Decreases in the fLF C and N stocks under elevated CO2 were the 420 

direct consequence of the decrease of the weight fractions of the fLF in both horizons as the concentrations of C and 421 

N in the fLF were either unchanged or increased under elevated CO2 (Table 3). Given the simultaneous increases in 422 

net photosynthesis (Albert et al. 2011) and Rs (Selsted et al. 2012), increased root growth (Arndal et al. 2013) and 423 

unchanged aboveground biomass (Kongstad et al. 2012) at the experimental site, the decreased weight fractions of 424 

the fLF, and decreased fLF C and N stocks indicate a faster turnover of labile SOM under elevated CO2. Our finding 425 

is in agreement with previous studies showing that elevated CO2 may not lead to a higher content of SOC since not 426 

only the C input, but also C turnover in the soil is stimulated (Carney et al. 2007 ; Hofmockel et al. 2011b; Van 427 

Groenigen et al. 2014). Increased C turnover is possibly triggered by the stimulation of microbial degradation by 428 

enhanced labile C input under elevated CO2 (Van Groenigen et al. 2014). An altered microbial community structure 429 

and composition under elevated CO2, potentially involving the up-regulation of functional genes and enzymes 430 

involved in labile C decomposition (Carney et al. 2007 ; He et al. 2010; Nie et al. 2014) and decreased soil 431 

aggregation (Henry et al. 2005) provide alternative explanations. Progressive N limitation is often anticipated to 432 

hinder increases in SOC stocks under increased atmospheric CO2, (e.g. Hungate et al. 2006). While plant growth 433 

was not N limited under elevated CO2, increased leaf C:N ratios, both measured after two treatment years (Larsen et 434 
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al. 2011), may have reduced ecosystem N availabilty after eight years of treatment and may have contributed to the 435 

decreases in the fLF C and N stocks. Changes in more stable SOM (HF) and in the bulk soil C and N stocks under 436 

elevated CO2 were not detected, perhaps due to longer turnover times of SOM within the HF.  437 

The average loss of C from the fLF observed under elevated CO2 (ca. 8 g C m-2 y-1 after eight treatment years in this 438 

study) was much smaller than the increase in Rs (124–146 g C m−2 y-1) during the initial three treatment years 439 

(Selsted et al. 2012). This suggests a substantial increase in root respiration and/or flux of labile organic compounds 440 

such as root exudates rapidly utilized and respired by the soil microbial community, but also potentially additional 441 

losses of C from deeper soil layers than those sampled in this study (the average sampling depth was 17.4 cm).  442 

 443 

The loss of N from the fLF under elevated CO2 averaged ca. 0.25 g N m−2 yr−1. However, neither N-leaching (0.1-0.6 444 

g N m−2 yr−1; Larsen et al. (2011)) nor nitrous oxide (N2O) degassing (<8.8*10-4 g N m−2 yr−1; Carter et al. (2011)) 445 

were affected by CO2 levels, and the increase in root mass under elevated CO2 was not accompanied by a 446 

proportional increase in root N uptake (Arndal et al. 2013). Emissions of dinitrogen (N2) were not quantified, but as 447 

nitrate levels at the experimental site are low («1 mM; Larsen et al. (2011)) the production of N2 as the end product 448 

of denitrification is favored. As such, N2 emission may have been the pathway for the loss of fLF N.  449 

 450 

The apparent persistence of organic C and N stocks of the bulk soil and the HF in response to elevated CO2 indicates 451 

that stabilization of C and N does not change under elevated CO2 alone after eight treatments years. Our findings 452 

contrast those by Van Groenigen et al. (2014) who used a simplified two-pool model to simulate equal increases in 453 

the turnover rate of old and new C under elevated CO2.  454 

Similarly to the observed effects of elevated CO2 on organic C and N stocks, increases in soil C concentration were 455 

only observed for the A2 horizon fLF, and were probably caused by higher plant C concentrations under elevated 456 

CO2 (reviewed in Dieleman et al. 2012). Nitrogen concentrations of the bulk A2 horizon soil decreased under 457 

elevated CO2, in line with previous reports on enhanced organic N mineralization to support increased primary 458 

production under elevated CO2 (Hofmockel et al., 2011a).  459 

 460 
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Changes in organic C and N stocks in a future climate 461 

In accordance with the SOM response under elevated CO2 only, the full treatment combination, simulating a future 462 

climate scenario, decreased the A2 horizon fLF C and N stocks and tended to decrease the A2 horizon HF C and 463 

bulk C stocks. Net photosynthesis (Albert et al. 2011) and Rs (Selsted et al. 2012) were increased under the full 464 

treatment combination, however neither aboveground (Kongstad et al. 2012) nor belowground biomass (Arndal et 465 

al. 2013) changed significantly relative to ambient conditions. Hence, with unchanged litter inputs to the ecosystem 466 

across treatments, the decline of the fLF C and N stocks suggest a faster SOM turnover under future environmental 467 

conditions. Contrary to our observations under elevated CO2 alone, future conditions tended to reduce SOM 468 

stabilization. Our findings contrast previous short-term observations on unchanged plant biomass, SOM turnover 469 

and soil fauna at the experimental site in the three-factorial treatment (hypothesis 4) and indicate different responses 470 

of ecosystem C turnover in the short- and longer term. 471 

The increase in Rs of 140–150 g C m−2 y−1 under the full treatment combination (Selsted et al. 2012) by far exceeded 472 

the annual C loss from the fLF C pool (5 g C m−2 yr−1), in analogy to the conditions under elevated CO2 only. 473 

Reasons for the deviation between the increase in Rs and the observed SOC losses are similar to ones stated in the 474 

previous section, but can further result from a decline in the SOC stocks of the HF and bulk soil under the full 475 

treatment combination. 476 

Few studies have investigated the combined controls of atmospheric CO2, warming and drought on SOM dynamics. 477 

In a replanted, N-poor old-field ecosystem (seven plant species including two N2-fixers), moderate increases of the 478 

labile SOC stock were reported (Garten et al. 2009) after four years with experimental factors similar to the current 479 

work. Contrasting changes in SOM stocks in response to similar experimental conditions are possible for several 480 

reasons: 1) differences in the magnitude of the applied climate treatments. In the old-field experiment (Garten et al. 481 

2009), the imposed temperature and CO2 increases were 1.5 ºC and 180 ppm higher, respectively, relative to our 482 

experiment; 2) differences in the plant succession, geological material and ecosystem at the experimental sites; 3) 483 

adaptable effects of climate change on different plant species (Albert et al. 2011; Andresen et al. 2010). The relative 484 

allocation of C to soluble low molecular weight compounds and insoluble lipids differs among plant types, 485 

potentially affecting litter decay rates and C stabilization (Cotrofo et al. 2013); 4) different timescales of 486 

investigations. Short-term ecosystem responses to climate change may increase (Kröel-Dulay et al. 2015) or 487 

decrease (Boesgaard 2013) in the long term or may be reversed (Suttle et al. 2007); and 5) recent disturbance of the 488 
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ecosystem equilibrium in Garten et al. (2009). According to Kröel-Dulay et al. (2015) the dynamic state of an 489 

ecosystem may determine its responsiveness to climate change with recently disturbed ecosystems being more 490 

sensitive than ecosystems that are in equilibrium. 491 

 492 

Conclusions 493 

Soil organic matter beneath the shrubland species Deschampsia flexuosa was older in the A2 horizon than in the 494 

overlying A1 horizon, and within each horizon, SOM was oldest in the mineral-associated, more recalcitrant soil 495 

fraction, indicating C stabilization on minerals at depth. A2 horizon SOM was susceptible to environmental change 496 

whereas A1 horizon SOM was largely unaffected; in the A2 horizon, significant decreases of the fLF (labile) C and 497 

N stocks (precursor to HF (stable) SOM) were observed under warming, elevated CO2 and the three-factorial 498 

treatment, i.e. the 2075 climate scenario for Denmark. These results suggest reduced C stabilization in this heathland 499 

soil under future climatic conditions. Combined with previous reports of increased net photosynthesis and soil 500 

respiration at the experimental site, our results further provide evidence to the hypothesis that shrubland SOM will 501 

be susceptible to increased C and N turnover, increased N mineralization, and increased associated net C losses in 502 

the future.  503 

Danish shrublands have hitherto been anticipated to be CO2 neutral (Gyldenkærne et al. 2005). Extrapolating our 504 

results on 98.000 ha shrubland in Denmark (or 2.3  % of the country´s area; Gyldenkærne et al. 2005), under the 505 

assumption of an unchanged plant cover of 77 % D. flexuosa with time (Kongstad et al. 2012) and a linear decrease 506 

of the fLF C stock, our results imply a release of 14 Gg CO2
 yr-1 to the atmosphere. This corresponds to only ~0.5 % 507 

of the CO2 emissions from land use and land use change in Denmark (2600 Gg CO2 equivalents yr-1, 2003 figures; 508 

(Gyldenkærne et al. 2005)), and a decline in Danish shrubland topsoil OC stocks is hence not expected to contribute 509 

substantially to the national greenhouse gas budget. In countries with larger shrubland cover, however, a future C 510 

loss in this ecosystem type could have a much higher significance.  511 

Based on our results we suggest that future research efforts should be centered around the characterization of 512 

potential long-term effects of climate change on SOC and SON dynamics beneath different shrubland plant species 513 

with augmented focus on the detailed examination of the ingoing and outgoing C and nutrient fluxes. 514 

 515 

 516 
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Table 1. Soil physical and chemical characteristics. Soil was collected in 2004 (pre-treatment) adjacent to each 721 

experimental octagon (n=12) for Cation Exchange Capacity (CEC) and pH; four locations (n=4) were randomly 722 

selected in 2004 for textural analysis.  723 

Soil depth Sand Silt Clay CEC pH 

(cm) (% wt) (meq 100 g-1) (0.01 M CaCl2) 

0-5 88.0±0.7 9.7±0.3 2.3±0.8 3.32±0.17 3.4±0.03 

5-10 91.9±0.3 6.5±0.2 1.6±0.2 1.78±0.14 3.7±0.03 

10-15 91.8±0.5 5.9±1.0 2.3±0.6 1.37±0.11§ 4.2±0.06§ 

§: data for 10-30 cm soil depth.724 

725 
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Table 2. Characteristics of bulk soil and soil organic matter density fractions with respect to mass proportion, concentrations of carbon (C) and nitrogen (N), isotopic 726 

composition (13C and 15N), pH and bulk density. Selected variables are displayed for roots and leaf litter. Data are means of observations across all treatments in 2013 727 

(n=48±SE), except for 13C isotope values shown separately for plots exposed to ambient and elevated CO2, respectively (n=24±SE). NA= not available. Data on leaf litter 728 

are from Boesgaard (2013). 729 

Soil profile Fraction Mass 

proportion 

Total C Fraction 

of C 

Total N Fraction 

of N 

C:N 13C 15N pH Bulk 

density 

(% of 

total) 

(% of dry 

matter) 

(% of 

total) 

(% of dry 

matter) 

(% of 

total) 

(‰ vs. PDB) 

Ambient CO2          FACE 

(‰ vs air) (H2O) (g cm-3) 

A1 horizon 

(depth) 

fLF 2.3±0.2 37.6±0.6 241 1.7±0.03 21±2 21.4±0.4 -28.9±0.1 -31.1±0.2 -1.4±0.2 NA NA 

(0-5.1±0.2 

cm) 

oLF 1.0±0.2 46.9±1.3 121 1.6±0.04 8±1 29.4±1.3 -26.9±0.2 -28.1±0.2 -0.5±0.1 NA NA 

HF 95.9±0.2 2.2±0.05 652 0.1±0.01 71±2 17.0±0.3 -27.9±0.07 -28.5±0.03 0.2±0.1 NA NA 

Bulk 100 3.1±0.09 NA 0.2±0.01 NA 15.6±0.4 -27.9±0.06 -29.0±0.1 -0.4±0.1 4.7±0.02 0.99±0.02 

Roots 

(NA) 

NA 46.0±0.6 NA 0.9±0.03 NA 55.3±2.8 -27.2±0.1 -34.8±0.8 -1.4±0.1 NA NA 

Leaf litter 

(NA) 

NA 45.8±0.05 NA 1.8±0.03 NA 27.0±0.4 -27.1±0.01 -36.1±0.1 -1.8±0.4 NA NA 

A2 horizon 

(depth) 

fLF 0.2±0.01 47.7±1.0 101 0.9±0.03 3±1 52.0±2.2 -28.6±0.07 -29.9±0.2 0.1±0.4 NA NA 

(5.1±0.2 -

12.3±0.3 cm) 

oLF 0.3±0.1 47.7±2.1 152 0.9±0.04 4±1 51.1±1.8 -27.0±0.1 -28.7±0.4 0.7±0.4 NA NA 

HF 98.4±0.4 0.6±0.02 761 0.04±0.01 93±1 14.5±0.2 -27.7±0.06 -28.3±.0.5 3.7±0.1 NA NA 

Bulk 100 0.8±0.04 NA 0.06±0.01 NA 14.5±0.5 -27.6±0.05 -28.2±0.07 3.4±0.1 5.0±0.03 1.45±0.01 

Roots N 39.6±0.8 NA 0.7±0.03 NA 59.9±3.0 -27.0±0.1 -34.9±0.8 -1.0±0.1 NA NA 
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Table 3: Effects of climate treatments (D = drought, T = warming, CO2 = elevated CO2, and combinations) on 

13C, 15N, organic C- and N stocks of bulk soil, soil organic matter fractions (fLF = free light fraction, oLF = 

occluded light fraction, HF = heavy fraction) and roots. Effects of climate treatments are assessed using a linear 

mixed effect model (lmer). *= 5% level, **= 1% level, ***= 0.1% level, § = p<0.1, n.s.= non-significant. 

Arrows indicate an increase or decrease due to the climate treatment. 

Variable Horizon Sample Significant and near-significant treatments and direction of movement 

Weight fraction A1 fLF CO2**↓ 

oLF n.s. 

HF n.s. 

A2 fLF T§↓, CO2*↓, TCO2*, DCO2§ 

oLF n.s. 

HF n.s. 

%C A1 Bulk n.s. 

fLF D§ 

oLF n.s. 

HF n.s. 

Roots n.s. 

A2 Bulk T*↓, TCO2*, DCO2§ 

fLF CO2*↑, DCO2**, TCO2§, TDCO2* 

oLF T§↓, TD§, TCO2§, TDCO2* 

HF T*↓ 

Roots n.s. 

%N A1 Bulk n.s. 

fLF n.s. 

oLF n.s. 

HF T§ 

Roots n.s. 

A2 Bulk T*↓, CO2*↓, TCO2*, TDCO2** 

fLF n.s. 

oLF n.s. 

HF T*↓, TD§, TCO2§ 

Roots n.s. 

C stock A1 Bulk n.s. 

fLF CO2§ 

oLF TD§ 

HF n.s. 

A2 Bulk T*↓, TD§, TCO2§, TDCO2§ 

fLF T**↓, CO2*↓, TD*, TCO2*, DCO2*, TDCO2* 

oLF n.s. 

HF T*↓ 

N stock A1 Bulk n.s. 

fLF CO2§ 

oLF TD§ 

HF T*↑, TCO2§ 

A2 Bulk T*↓, TD§ 

fLF T**↓, D**↓, CO2**↓, TD**, TCO2*, DCO2*, TDCO2* 

oLF n.s. 
HF T*↓, TD* 

13C A1 Bulk CO2***↓ 

fLF CO2***↓, DCO2* 

oLF CO2*↓, T§ 

HF CO2*↓, TCO2* 
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Roots CO2***↓, TCO2* 

SPT CO2§↓  

A2 Bulk CO2*↓, TCO2** 

fLF CO2**↓, TCO2§  

oLF CO2*↓, TCO2* 

HF CO2*↓, TCO2§  

Roots CO2***↓, TD§, TCO2§, DCO2§ 

SPT CO2**↓ 

15N A1 Bulk n.s. 

fLF n.s. 

oLF n.s. 

HF T*↓, TD*, TCO2§ 

Roots n.s. 

A2 Bulk DCO2§  

fLF TD§ 

oLF D**↑, DCO2***, TDCO2*  

HF n.s. 

Roots DCO2*, TCO2§ 

Cnew  A1 fLF n.s. 

oLF n.s. 

HF n.s. 

A2 fLF n.s. 

oLF D§↓ 

HF TD§ 

Bulk density A1 Bulk TD*  

A2 Bulk n.s. 

pH A1 Bulk CO2§, TCO2§ 

A2 Bulk T**↑, TCO2** 
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Fig. 1: (a) Volumetric soil water content (SWC) in ambient (A) and drought (D) plots (spline curves of monthly 

means). Black bars indicate drought-treated periods. SWC were decreased compared to ambient plots on average 

by 3.2±0.5 percentage points during drought periods (mean decrease increasing to 5.7±0.6 percentage points 

during the last 7 days of treatment) and showed a longer-lasting effect (mean decrease compared to non-treated 

plots of 1.9±0.3 percentage points. (b) Mean soil temperatures in ambient (A) and warming (T) plots (spline 

curve of monthly means). The warming treatment increased the annual mean temperature at 20 cm above soil 

surface (not shown) and at 5 cm soil depth by 0.3 °C and 0.4 °C, respectively, ranging from differences of 0.1 °C 

during winter to 0.5 °C and 0.7 °C, in air and soil respectively, during spring/summer. 

Fig. 2: Boxplots of effects of the climate treatments in soil A1 and A2 horizons (5.1±0.2 cm and 5.1±0.2 cm to 

12.3±0.3 cm, respectively) on: dry matter C concentration (a-h) and the stocks of organic C (OC) (i-p) in soil 

organic matter (SOM) fractions. fLF = free light fraction, oLF = occluded light fraction, HF = heavy fraction, 

bulk = bulk soil. Boxes represent interquartile ranges, whiskers represent 1.5 interquartile ranges from the boxes. 

Thirty outliers (3.9 % of the values) were removed from the figure.  

Fig. 3: Boxplots of effects of the climate treatments in soil A1 and A2 horizons (5.1±0.2 cm and 5.1±0.2 cm 

to12.3±0.3 cm, respectively) on: dry matter N concentration (a-h) and stocks of organic N (ON) (i-p) in soil 

organic matter (SOM) fractions. fLF = free light fraction, oLF = occluded light fraction, HF = heavy fraction, 

bulk = bulk soil. Boxes represent interquartile ranges, whiskers represent 1.5 interquartile ranges from the boxes. 

Thirtyseven outliers (4.8 % of the values) were removed from the figure.  

Fig. 4: Newly assimilated C in the free light fraction (fLF) (a), occluded light fraction (oLF) (b) and heavy 

fraction (HF) (c) and mean C residence time in the fLF (d), oLF (e) and HF (f) of the A1 and A2 horizon in 

treatments with elevated CO2. Error bars represent ± 1 standard error. 
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