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Leakage of fluids from unregulated and/or poorly engineered waste disposal sites poses a 
significant direct risk to groundwater quality. Characterisation and monitoring of waste 
disposal sites and potentially associated groundwater contaminant plumes are generally 
invasive, time-consuming and expensive, particularly when the extent of the plume is 
unknown. This study examines the value of incorporating of Tellus and Tellus Border 
airborne electromagnetic (AEM) data into current assessment protocols for the charac-
terisation and monitoring of contaminant sources and subsurface contaminant plumes. 
The findings demonstrate the feasibility of using airborne and ground-based non-invasive 
geophysical data as part of existing tiered assessment protocols for prioritising suspected 
sites and for guiding targeted intrusive investigations and subsequent remediation efforts. 

Background
Under the European Union Water Framework Directive, Member States are required to 
assess water quality across national and transboundary surface water and groundwater 
bodies. Work completed to date has identified numerous national transboundary surface 
water and groundwater bodies across the island of Ireland as ‘at risk’. Point source pollu-
tion, such as that associated with pollutant plumes emanating from land contamination, 
including unregulated waste disposal sites, was recorded as one of the key contributors 
in the deterioration of water quality. Unregulated cross-border movement and disposal 
of waste (Department of Justice, 2010) as well as historic, poorly engineered, permitted 
disposal sites have led to a legacy of environmental impacts to water bodies across the 
island of Ireland that pose technical and financial challenges. As part of a Code of Practice 
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(CoP), the Environmental Protection Agency (EPA) provides guidance on completing 
environmental risk assessments of unregulated waste disposal sites (EPA, 2007). SNIFFER 
(2008) and the NIEA (2009) provide details regarding the initial classification and assess-
ment process for identifying and prioritising landfill sites that pose a particular risk to the 
water environment. Figure 27.1 illustrates a phased approach to the evaluation of a site 
based on investigating potential source–pathway–receptor linkages as risk drivers. 

The characterisation and monitoring of waste disposal sites are generally invasive, 
time-consuming and expensive. In particular, adequately capturing potential groundwater 
contaminant plumes emanating from disposal sites with monitoring installations such as 
boreholes, when the extent of the feature is unknown and the presence of contamination 
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Figure 27.1. Conceptual 
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methodology for waste 
disposal sites (EPA, 2007).



is evident only from indirect observations, can be prohibitively expensive. Constraints 
related to the location of monitoring installations can result in an incomplete assessment 
of environmental contamination. A borehole network, for example, may not provide suf-
ficient coverage of an area affected by pollution, resulting in uncertainty in relation to the 
pollution source and pathways. 

Airborne geophysical survey data provide an opportunity for the rapid and cost-
effective spatial assessment of potential pollution plumes, as previously demonstrated by 
Beamish (2003, 2005, 2007). This study explores the potential for using the Tellus AEM 
survey data to assess the nature and extent of suspected contaminant sources and asso-
ciated subsurface contaminant plumes at selected case study sites in Northern Ireland 
and the Republic of Ireland. The details of the airborne surveys have been described by 
Beamish et al. (2006); Hodgson and Ture (2013); and Hodgson and Young (Chapter 2, 
this volume).

This study aims at facilitating a combined approach to the characterisation and moni-
toring of pollution sources adversely affecting water bodies, as well as improving the tar-
geting of costly intrusive monitoring and restoration efforts. The study has been designed 
to complement existing risk assessment strategies, with the results of the project indicating 
how the analysis of airborne geophysical data may be incorporated into the framework of 
existing assessment protocols. 
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Methodology

Case study investigations
The study selected five landfill sites with existing groundwater monitoring data and 
other existing site information to investigate the use of AEM data for assessing potential 
subsurface contaminant impact. Sites were selected according to factors such as varying 
geology (drift and bedrock), water quality, the degree of site engineering and availability 
of existing geological and groundwater monitoring data. These case studies (Fig. 27.2) 
were examined to determine the feasibility of characterising the disposal site and poten-
tial associated groundwater contaminant plumes by airborne geophysics over a range of 
environmental settings. Ground-based geophysical surveys were completed at these sites 
to investigate to what extent the monitoring of disposal sites and subsurface pollutant 
plumes could benefit from the integration of AEM data with ground-based geophysical 
data. Figure 27.3 summarises the workflow completed at the case study sites. 

The methodology was developed following a targeted approach. The AEM data for each 
of the selected sites were assessed to aid targeting of the field surveys. Both the raw, point 
data and interpolated raster grids for low-frequency (3 kHz) and high-frequency (12/14 
kHz, dependent on survey block) were compared with the mapped landfill boundaries and 
expected groundwater flow direction, to identify areas in which the AEM data appeared to 
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show elevated values beyond the known landfill boundary. These areas were then targeted 
during the field campaigns. Information from the desk studies also delineated areas of 
interest at each of the sites, which were then investigated using field electromagnetic (EM) 
methods to delineate conductive zones surrounding the site. Subsequently, surface electri-
cal resistivity tomography (ERT) surveys enabled high-resolution 2D depth profiling of 
conductive zones highlighted by the airborne and field-based EM methods. Two field EM 
methods were employed, the PROMIS multi-frequency system (IRIS Instruments) and 
the EM34-3 system (Geonics Ltd). The ERT surveys were conducted using a SYSCAL-Pro 
72 (IRIS Instruments). ERT data were processed and inverted via Prosys and Res2Dinv 
software. Topography was included in the model inversion, with a refined half space model 
used to reduce surface effects in the modelling. 

Regional study
Figure 27.4 presents an illustration of the workflow completed as part of the regional 
study. In an effort to assess landfills’ properties in a comparable manner across the Tellus 
and Tellus Border AEM data sets, the background bulk conductivity, which on a regional 
scale is dominated by the bedrock geology, was removed. Beamish (2013) developed and 
undertook a geostatistical assessment of the Northern Ireland 3 kHz AEM survey, creat-
ing a baseline classification of 56 lithological units mapped by the 1:250,000 bedrock 
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geological map of Northern Ireland (GSNI, 2012). The approach applied in this study 
also uses this method in an attempt to remove the baseline geological conductivity from 
the AEM anomalies observed across selected landfills across the study area. This allows 
comparability between landfill anomalies and is less dependent on background geological 
conductivity and more representative of landfill characteristics. 

For Northern Ireland the background geological conductivity values for four of the 
study sites were readily available from Beamish (2013). However, specific information on 
other landfills was not easily accessible. In the Republic of Ireland limited information, 
including annual environmental reports, on licensed landfills was available via the EPA 
Waste Licensing and Permitting Portal (EPA, 2013) but information on bedrock con-
ductivity was not available. Using the method of Beamish (2013), an assessment of the 
Tellus Border AEM in conjunction with GSI 100 k bedrock map enabled background 
conductivity values to be calculated in a similar approach. The approach also used the 
3 kHz electromagnetic data, with the resulting baseline raster subtracted from the total 
3KHz conductivity raster to give a theoretical geologically corrected raster of conductivity 
values. 

From landfill site reports in the study area, a database of landfills within this area 
containing attribute data was created. Attributes collated included age and the volume of 
waste for each of the landfill sites. Figure 27.5 shows the locations of the landfills studied. 

350 

Mohill

Drogheda

Corranure

Belturbet

Whiteriver

Bailieborough

Ballynacarrick

BallyjamesduffBallaghaderreen

5

4

3

2

1

Mayo

Donegal

Sligo

Cavan

Leitrim

Meath

Louth
Roscommon

Monaghan

Longford

Tyrone

Antrim

Down

Londonderry

Armagh
Fermanagh

0

Considered Study Sites
Case Study Sites

10 20 30 40 50 Km

Pa
le

oz
oi

c
M

es
oz

oi
c

Ce
no

zo
ic

Carboniferous

Jurassic
Cretaceous

Palaeocene
Oligocene Clay, sand & lignite

Basalt lava
Chalk, flint, glauconitic sandstone
Mudstone & limestone
Sandstone, mudstone, evaporite
Sandstone, conglomerate, evaporite
Shale, sandstone, siltstone & coal
Shale, sandstone, siltstone & coal
Redbed sandstone, conglomerate & mudstone
Sandstone, mudstone & evaporite
Limestone & calcareous shale
Limestone
Sandstone, mudstone, limestone
Volcanic rocks
Sandstone, conglomerate & mudstone
Volcanic rocks
Deep marine mudstone, greywacke & congolomerate
Terrestrial - shallow marine sandstone, siltstone
Deep marine greywacke, mudstone
Slate, sandstone, greywacke, conglomerate
Slate, sandstone, greywacke, conglomerate
Serpentinite & sedimentary melange

Triassic
Permian

Ordovician

Silurian

Devonian

Pr
ot

er
oz

oi
c

Pre-cambrian

Volcanic rocks
Metasedimentary rocks - Dalradian
Schist & gneiss
Gneiss

Palaeogene

Siluro-Devonian

Ordovician

Basic intrusive rocks
Rhyolite

Ig
ne

ou
s 

In
tru

si
on

s

Granitic rocks
Granitic rocks & appinite

Basic-intermediate intrusion
Granitic rocks

Figure 27.5. Locations of 
selected case study sites (black) 
and other sites considered 
(blue) on a bedrock 1:1 million 
bedrock geology background.



An average conductivity value for each of the landfi lls was then extracted based on the 
digitised site boundary and compared with the landfi ll attributes.

Results

Case study investigations
A detailed presentation of the results from across all the case study sites, covering varying 
geological and environmental settings, is beyond the scope of this chapter so the follow-
ing highlights key fi ndings for the case study Site 2 (Fig. 27.2). Th e site occupies an area 
of approximately 20 hectares and is located on an excavated peat moss site. Th e site was 
not constructed as an engineered containment landfi ll but rather operated as a ‘dilute and 
attenuate’ facility between 1963 and 2007. During this period, accepted waste included 
domestic and commercial wastes. Following the closure of the site a low-permeability cap 
was installed across the site. Th e regional bedrock geology consists of the Lower Basalt 
Formation, underlying post-glacial blanket bog and glacial till of varying thickness (<3 m 
to 15 m) and alluvial deposits. Borehole observations describe the basalt bedrock as highly 
weathered in the top 2–4 m. Several groundwater monitoring wells are located along the 
perimeter of the site (Fig. 27.6). Available monitoring data indicate a general northward 
groundwater fl ow direction and consistently elevated concentrations of leachate indicator 
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compounds at monitoring wells along the northern and north-western perimeter of the 
site, highlighting the potential for off-site groundwater impact in this area. 

Figures 27.6 and 27.7 show the AEM apparent conductivity data in plan and cross-
sectional view, respectively, for Site 2. Apparent conductivity is the conductivity calculated 
according to a simple planar model. The ‘depth of penetration’ depends on the local elec-
trical and spatial characteristics but most of the response comes from within 60 m of the 
ground surface. The elevated conductivity values seen within the landfill boundary are as 
would be expected with the deposition of organic material and landfill materials. The fre-
quency response for each of the four available EM frequencies is illustrated in Fig. 27.7 for 
flight line 2. The highest apparent conductivity values occur in the two higher frequency 
data sets (12 and 25 kHz). These have a shallower depth of investigation similar to that 
of the buried waste, whereas the lower frequencies penetrate to greater depth. (Responses 
at the lower frequencies incorporate response of the deeper bedrock, which is likely to be 
more resistant and to dilute the landfill signal.) Areas of interest are delineated where the 
conductivity appears to extend outside the landfill boundary, possibly indicating dispersion 
of high-conductivity leachate which may pose a potential risk to groundwater. However, 
this must be approached with caution as, although the Tellus survey is high resolution at 
a regional scale, at site scale this equates, for example, to 75 data points within the landfill 
boundary for Site 2. Although the resolution is high along the flight line (approximately 
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15 m between samples), flight lines are spaced 200 m apart, which leave large areas in 
between unmapped. Consequently, the interpolated images, as apparent in the contouring 
in Fig. 27.6, can result in an anomalous extension of the high-conductivity values beyond 
the limits of the landfill boundary, rather than representing a real feature. 

Additional information was obtained from the AEM data by numerical inversion of 
Line 2 (Fig. 27.8). The inversion provides good delineation of the landfill anomaly with 
respect to depth, which can be further compared with the field ERT results below. In this 
instance the inversion provides limited information with regard to the lateral extension of 
leachate associated with the site but provides a method to depth-characterise the site and 
associated leachate plume that can be further used to aid decision-making on site-scale 
investigation or monitoring infrastructure.

From the assessment of groundwater flow directions based on available hydrogeologi-
cal data, it was decided that the main area for further field investigations would focus to 
the north-west of the landfill site boundary in the region between flight lines (highlighted 
in Fig. 27.6) with additional surveying along the other boundaries of the landfill also. 
Access to the northern perimeter of the site and the south-east corner was restricted.

Figure 27.9 presents results from the field EM34-3 survey at Site 2. In Fig. 27.9 a 
distinct change is observable when moving from the capped waste body onto the areas 
surrounding the site, with a sharp transition from higher conductivity to lower conduc-
tivity. This demonstrates the ability of the ground EM system to delineate the bound-
ary of the site reasonably well. Delineating areas of potential off-site leachate migration, 
however, proved more difficult for the studied sites, with only subtle changes occurring in 
the areas surrounding the site. The area of slightly elevated conductivities extending across 
the north-west of the landfill boundary, surrounding BH 1, appeared suitable for further 
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investigation with ERT profi ling. In addition BH 1 was fl agged as a groundwater monitor-
ing point during the desk study, with consistently elevated values of key leachate indicators 
noted. Th e survey area was limited along the northern boundary of the site due to access 
restrictions. Th is area along the boundary between BH 1, 3 and 5 would otherwise have 
been another primary target area for further fi eld investigations.

Figure 27.10 presents an example of the ERT data (displayed as conductivity) collected 
along profi le ERT 1 at Site 2. Th e advantage of ERT surveying is evident in the profi les: 
providing very high depth resolution and thus enabling a more accurate investigation into 
the dispersion of the AEM signal, landfi ll structure, and areas of possible leachate migra-
tion. Th e interpretation illustrated in Fig. 27.10 combines information from a number of 
sources including BH logs and site investigation reports in order to delineate the physical 
structures within the profi le. Elevated conductivity values are measured below the inferred 
depth-to-bedrock as constrained by available borehole logs, interpreted as the possible 
eff ect of leachate modifi cation of bedrock conductivity. An area of elevated conductivity 
is also apparent at 120 m along the profi le, which would not normally be expected within 
the low-conductivity bedrock. It is possible that this may be a result of leachate migration 
from the landfi ll. 

In summary, the AEM data provide a clear identifi cation of the waste body within 
the known perimeter of the site. Elevated AEM conductivities are observed along the 
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northern and north-western boundary of the site, where elevated levels of leachate indica-
tors have been observed repeatedly at individual groundwater monitoring wells. Due to 
access restrictions it was not possible to confirm conclusively the veracity or lateral extent 
of elevated AEM data beyond the northern perimeter of the landfill site through field-
based surveys. Along the north-western boundary, AEM observations were supplemented 
with field-based EM and ERT surveys. The field-based EM depicts clearly the change in 
conductivity between the known landfill boundary and adjacent land (where accessible). 
Beyond the site boundary only subtle changes in field EM data are observed. The ERT 
surveys completed at the site indicate potential downward leachate migration into the 
bedrock beneath the waste body and the potential presence of leachate at depth beneath 
the north-western boundary of the site. The inversion of the AEM data at this site provides 
a good depth resolution and may indicate the potential downward migration of leachate 
beneath the waste body into the underlying bedrock, similar to the observations made on 
the basis of the completed ERT surveys. 

Regional study
Figure 27.11 presents the graphs of the residual conductivity at each landfill against the 
individual landfill attributes, namely approximate age (A), approximate waste volume (B) 
and a normalised product of waste volume and age (C) which combines their relative 
influence. Four of the nine additional landfills identified in the Tellus Border region have 
been removed from the plots: Drogheda, Mohill, Bailieborough and Belturbet. Drogheda 
landfill has been removed due to uncertainty in location, and the other three because the 
landfills lie between flight lines.

The plots of age and volume versus the residual conductivity (Fig. 27.11) show strong 
positive correlations, indicating a general increase in conductivity with age of landfill and 
with volume of waste. (As would be expected, there is a strong positive correlation between 
landfill age and landfill waste volume.) The relationship of the residual waste conductivity 
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to background conductivity has also been tested and shows no strong evidence that the 
background conductivity still affects relationship plots in Fig. 27.11.

The positive correlations of landfill age and waste volume with residual conductivity 
could be due to a number of factors, which may work in combination: (1) increase in physi-
cal waste volume; (2) increased volume of leachate generated as a result of increased waste 
volume and rainfall infiltration; (3) changing chemistry of leachate with age; (4) less well-
developed leachate management infrastructure in older landfills; (5) composition of waste 
in older landfills as opposed to newer facilities which have become more strictly regulated; 
and (6) addition of clay capping material (high conductivity) over old landfills which may 
also cover larger areas. 

Although the plots in Fig. 27.11 show a positive correlation with age and volume, 
which might be predicted in the early stages of a landfill, it might also be expected that at 
some point the bulk conductivity of a landfill would begin to decrease. This is based on the 
concept that the overall conductivity of a landfill may be dominated by the stage of waste 
degradation as indicated by leachate chemistry. Meju (2000), Table 4, has reported the 
decrease in leachate conductivity with age. The BOD5/COD ratio has been used to esti-
mate the state of the leachate with the ratio of young leachate between 0.4 and 0.5 (Kur-
niawan et al., 2006; Umar et al., 2010). The stage of waste degradation of a landfill in itself 
has its own list of factors that are site-specific (e.g. Umar et al., 2010; Meju, 2000). This 
could be significant in the risk assessment process as leachate may be regarded as the main 
environmental hazard in the context of landfills. The example presented demonstrates the 
use of AEM and ground geophysics in assessing landfill characteristics. The method may 
be further developed as a predictive tool for the assessment of suspected unregulated dis-
posal sites or as a prioritisation tool for known sites.

Conclusions
To assess the feasibility of using airborne electromagnetic data for mapping the extent of 
pollution plumes emanating from landfills, we assessed the Tellus results over five sites, 
selected to reflect different environmental settings.

We compiled existing information and monitoring data to investigate the nature of 
potential groundwater contaminant impact at the case study sites and to validate the geo-
physical results. AEM data were analysed with regard to their capability for identifying the 
source of potential contamination (i.e. the waste body) and potential associated leachate 
plumes. To cross-validate the AEM interpretation, ground-based EM and electrical profil-
ing (ERT) field surveys were made. The combined geophysical data sets were interpreted in 
the context of observed contaminant impact as documented at individual sites. 

At all sites the AEM method demonstrated its potential for detecting waste deposits, 
with clear lateral changes in electrical conductivity across the site boundaries. With regard 
to assessing the detailed lateral extent of contaminant plumes, the AEM data are unlikely 
to be able to provide the resolution necessary to resolve such plumes at site-specific scales. 
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However, the data are useful for initial identification and for prioritising target areas for 
more detailed investigations. 

We found that background-corrected apparent conductivity correlated reasonably well 
with age and waste volume and demonstrated the potential of AEM as a means of assessing 
undocumented landfill sites or as a risk prioritisation tool for known sites. Using normal-
ised AEM data allows the approach to be applied across different geological settings.

Within the context of existing risk assessment protocols for unregulated landfill sites, 
for example the EPA (2007) Code of Practice (CoP), AEM data may help in assessing the 
significance of suspected unregulated landfill sites, with regard to both their spatial extent 
and their attributes. Specifically, AEM may provide a useful additional tool for initial site 
prioritisation as part of Tier 1 of the CoP. In view of the transition between Tier 1 and 
Tier 2 elements of the CoP, AEM provides valuable information for focusing site-specific 
geophysical investigations, such as ground-based EM and ERT. The project highlighted 
the benefits and increased understanding of site-specific conditions derived from a com-
bined application of AEM and ground-based EM and ERT data. Within the context of the 
progressive tiered approach of the CoP, these non-intrusive geophysical data sets provide 
relevant detailed information for the subsequent design of efficient intrusive investigations 
and monitoring infrastructure, where required.
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