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Abstract This paper presents observations of polar cap auroral features on 19 January 2008,
evaluated using multiple instruments with near-simultaneous observations in both hemispheres. Analysis
of the features indicates that there are at least two formation mechanisms/types of polar cap aurora
occurring simultaneously on different magnetic field topologies (one on open and the other on closed
magnetospheric field lines). Two high-latitude structures were observed on opposing sides of the northern
hemisphere polar cap in the same time interval. The structure on the duskside was formed on closed
field lines that protruded into the polar cap and was generated by the precipitation of electrons with
energies varying between 2 and 11 keV consistent with an identified mechanism for the formation of
transpolar arcs. However, the structure did not extend fully across to the dayside of the auroral oval but
rather stayed at ~80° magnetic latitude for a minimum duration of 40 min. Thus, this structure is an
example of a “failed” transpolar arc. The structure on the dawnside of the polar cap was associated with
low-energy electron precipitation (less than 1 keV) and no associated ion signatures, which is consistent
with it being a common low-intensity arc formed by accelerated polar rain on open field lines. The two
separate types of polar cap auroras formed during the same interval, demonstrating the complexity of the
solar wind-magnetosphere coupling during the interval.

1. Introduction

Polar cap auroras occur at high latitudes above the main auroral oval and are sometimes known as high-
latitude or Sun-aligned arcs. These arcs have been studied for a century [Mawson, 1916] and are correlated
with periods of quiet magnetospheric activity [Davis, 1963] and a northward directed interplanetary magnetic
field (IMF) [Berkey et al., 1976; Gussenhoven, 1982]. Their location in the polar cap and their motion are depen-
dent on the IMF B, component [Frank et al., 1985; Huang et al., 1989; Craven et al., 1991; Valladares et al., 1994;
Kullen et al., 2002]; however, there are exceptions to this dependence [e.g., Hosokawa et al., 2011]. Whether
these high-latitude auroras occur on the open field lines that define the region of the polar cap, or closed
field lines embedded within the polar cap, is an open question. In a review, Zhu et al. [1997] suggested three
different magnetospheric configurations that could result in the formation of high-latitude aurora. These
configurations, along with multiple mechanisms that have been advocated for them are discussed below.

The first magnetospheric configuration is magnetotail lobe bifurcation whereby the closed field lines of the
plasma sheet protrude into the magnetotail lobes. This idea was proposed after satellite UV images revealed
large-scale Sun-aligned arcs emerging from the nightside oval, known as transpolar arcs or, when considering
the entire configuration including the oval, “theta” aurora [Frank et al., 1982, 1986]. Frank et al. [1982] also
reported simultaneous plasma measurements from a low-altitude spacecraft that crossed the morning sector
of the oval, a Sun-aligned arc, and then the evening oval. These measurements showed the electron spectra
over the arc to be similar to those over the oval and hence led them to suggest that the arc was formed on
closed field lines. Furthermore, polar rain, which originates from the solar wind, has been observed on either
side of a Sun-aligned arc [Hoffman et al., 1985]. This suggested that the arc was surrounded by open field lines,
validating the idea of a bifurcated lobe.
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Milan et al. [2005] proposed a mechanism explaining this magnetospheric configuration. Their mechanism is
based on the nightside closure of open magnetotail flux during northward IMF, when dayside reconnection
is suppressed and a twist in the magnetotail due to an IMF B, component. The IMF B, component is intro-
duced some hours before during an earlier period of dayside reconnection and results in the northern and
southern hemispheric lobes twisting about the GSE X axis [e.g., Browett et al., 2016; Tenfiord et al., 2015; Reistad
et al., 2016]. If reconnection occurs during these conditions, the return flow of the newly closed flux will be
asymmetric about magnetic midnight [Grocott et al., 2003, 2007], referred to by Milan et al. [2005] as TRINNIs
(“Tail reconnection during IMF-northward, nonsubstorm intervals”). Milan et al. [2005] suggested that when
a field line that straddles midnight is closed, it will become stuck due to equal and opposite forces being
applied to either end of the field line as it tries to return to the dayside. As more and more flux is closed in this
magnetic local time (MLT) sector, the trapped field lines will protrude deeper into the magnetotail lobes. This
mechanism has been validated by several different case studies [e.g., Goudarzi et al., 2008; Fear et al., 2014].
Furthermore, the main predictions from the mechanism, i.e,, a delay in the MLT dependence on the IMF B, and
an association with TRINNI flows, have been statistically verified by Fear and Milan [2012a, 2012b]. Fear et al.
[2015] have also recently argued that this mechanism implies that the presence of a transpolar arc modifies
the large-scale magnetospheric dynamics when high-latitude magnetopause (lobe) reconnection also takes
place, as the lobe reconnection process is then capable of causing a net opening of magnetic flux.

Additionally, the Milan et al. [2005] mechanism predicts that transpolar arcs will form on opposite sides of
the polar cap, determined by IMF B, component, in opposite hemispheres. In fact, any mechanism which
place transpolar arcs on closed field lines, predicts that they will be seen in both hemispheres simultaneously.
Conversely, @stgaard et al. [2003] presented two intervals with simultaneous northern and southern auro-
ral observations, where a transpolar arc was only seen in one hemisphere. Fear and Milan [2012a] suggested
that these observations could still be explained by the Milan et al. [2005] mechanism if reconnection occurred
preferentially in the summer hemisphere [Crooker and Rich, 1993; Lavraud et al., 2005], and hence, the trans-
polar arcin the summer hemisphere moved and became indistinguishable from the main oval before the first
available image from that hemisphere. However, further study of so-called “nonconjugate” transpolar arcs is
warranted.

The second magnetospheric configuration that Zhu et al. [1997] outlined was related to oval expansion. Meng
[1981] suggested that after a period of southward IMF, the edge of the auroral oval could expand poleward
resulting in aurora seen at higher latitudes, essentially identifying regular auroral features observed in the
main oval as polar cap arcs. This idea was based on observations of continuous soft (<1 keV) electron precipita-
tion from the main auroral oval up to high latitudes (>80°) and simultaneous observations of Sun-aligned arcs
in the polar cap. They suggested that the arcs were occurring on closed field lines at the expanded poleward
edge of the oval rather than on the open field lines of the polar cap.

The final configuration Zhu et al. [1997] discussed was where polar cap arcs form on open field lines. There
have been studies reporting Sun-aligned arcs embedded within polar rain [e.g., Hardy et al., 1982]. A study by
Carlson and Cowley [2005] found subvisual Sun-aligned arcs to be consistent with accelerated polar rain and
suggested that they can be generated by any method that drives shear flows across open field lines. These
subvisual, lower intensity arcs are thought to dominate the polar cap during northward IMF and are reported
to be present in the polar cap at least 40% of the time [Valladares et al., 1994], whereas the larger, transpolar
arcs are present approximately only 10% of the time [Kullen et al., 2002]. This is reflected in the 130 transpolar
arcs identified over a 5 year interval in a statistical survey of global-scale images carried out by Fear and Milan
[2012a], compared to the 150 Sun-aligned arcs identified in Valladares et al. [1994] using ground-based all-sky
cameras from Qannaagq, Greenland, in just one winter season.

Some authors have suggested that multiple mechanisms may be required to explain the discrepancy in the
observations of polar cap auroras. A statistical study by Kullen et al. [2002] classified five different types of trans-
polar arcs depending on their motion, structure, and where they formed within the polar cap. The authors,
at the time, could not find a mechanism that explained more than one of these types and hence concluded
there must be at least five different formation mechanisms. However, in Kullen et al. [2015], the same transpo-
lar arcs were re-evaluated using data from the Super Dual Auroral Radar Network (SuperDARN), and TRINNI
flows were found for three out of the five types, confirming the validity of the predictions made by Milan et al.
[2005] and consistent with the observations of Fear and Milan [2012a, 2012b]. One type that did not show
these flows were the arcs classified as “bending arcs”; these arcs have since been identified as a phenomenon
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of dayside reconnection under IMF B -dominant conditions [Carter et al., 2015]. Conversely, it has been argued
that some transpolar arcs are formed by a more complicated process whereby two different mechanisms, one
on the dayside and the other on the nightside, occur simultaneously [Eriksson et al., 2005; Mailyan et al., 2015].

Separately, in a ground-based statistical study, Hosokawa et al. [2011] argued that the motion of only some
arcs was correlated with the sign of IMF B, while others moved independently from it. They suggested that
the motion of the B,-dependent arcs is caused by flux transfer due to lobe reconnection, indicating that the
plasma source for these arcs is on or adjacent to open field lines. As the B,-dependent arcs are seemingly
unaffected by lobe reconnection, Hosokawa et al. [2011] suggest that they are formed on closed field lines,
indicating a different formation mechanism for each type. However, another possible explanation for the
apparent difference between “B -dependent” and “B,-independent” polar cap arc motion could be that the
motion is driven by polar cap convection as outlined by Milan et al. [2005], which would result in the same
spatial patterns as reported by Hosokawa et al. [2011].

In a review of polar precipitation and aurora, Newell et al. [2009] argued for three types of polar cap aurora:
the first, a common but weak arc caused by an intensification of polar rain (no associated ion precipitation);
the second, arcs seen adjacent to the auroral oval associated with higher electron flux and an ion signature;
lastly, a rare high-energy type consistent with transpolar arcs.

The aim of this study is to combine ground-based and satellite observations of polar cap auroras to investigate
the suggestion that some polar cap arcs form on open field lines, while others form on closed field lines and
to investigate whether it is possible for both configurations to form at the same time. This study considers any
high-latitude aurora that is distinctly Sun-aligned in nature and shown to originate from either accelerated
polar rain or a protrusion of the plasma sheet into the magnetotail lobes to be polar cap aurora [Newell et al.,
2009]. We present observations from satellites and several ground-based instruments from 19 January 2008.
An introduction to the instruments used in this study is presented in section 2, followed by the main findings
and observations in section 3. Finally, in section 4 these observations are discussed and conclusions are drawn
on the configuration of the magnetosphere during northward IMF conditions.

2. Instrumentation

Measurements from multiple instruments were used to analyze the magnetospheric and ionospheric condi-
tions during the event studied. In addition to the main instruments that are discussed in the following three
subsections, we make use of data from the fluxgate magnetometer (FGM) instruments [Balogh et al., 2001;
Gloag et al., 2010] and the Hot lon Analyzer on the Cluster lon Spectrometry instrument (CIS-HIA) [Réme et al.,
2001; Dandouras et al., 2010] on the Cluster 3 spacecraft for the solar wind conditions. Magnetometer data
from the International Monitor for Auroral Geomagnetic Effects (IMAGE) Svalbard stations were also obtained
[Tanskanen, 2009].

2.1. The Special Sensor Ultraviolet Spectrographic Imager

The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instruments are on board four of the DMSP
(Defense Meteorological Satellite Program) spacecraft [Paxton et al., 2002]. The SSUSI imagers on two
of the DMSP spacecraft (F16 and F17) were operational during our event. The DMSP satellites are in a
Sun-synchronous orbit with a period of approximately 90 min. SSUSI scans from horizon to horizon above
the polar region in each hemisphere, building up brush-stroke-like images of the aurora. A scan of the polar
auroral region takes approximately 20 min.

SSUSI produces these images in five different UV wavelengths simultaneously. In this study the Lyman-Birge
Hopfield long (LBHL) band, between 165 and 180 nm, is used. For comparison with observations of polar cap
aurora by the IMAGE satellite [e.g., Milan et al., 2005; Fear and Milan, 2012a, 2012b; Fear et al., 2014, 2015], these
wavelengths are within the range of the IMAGE wideband imaging (WIC) camera.

2.2. The EISCAT Svalbard Radar

The EISCAT (European Incoherent Scatter) Svalbard radar (ESR) is an incoherent scatter radar situated at
Longyearbyen in the Svalbard archipelago. It is operated by the European Incoherent Scatter Scientific
Association. The ESR consists of a steerable 32 m diameter dish antenna and a colocated 42 m fixed dish
antenna that is aligned with the local magnetic zenith [Wannberg et al., 1997]. During the international Polar
Year (IPY) between 2008 and 2009, when our event occurred, the ESR operated quasi-continuously taking
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Figure 1. IMF data from the Cluster spacecraft between 16:00 and 21:00 UT. The top three panels are the IMF GSM
components (a) By, (b) By, and (c) B, at spin resolution. (d) The solar wind speed.

measurements of ionospheric parameters (electron density and temperature and ion temperature with the
42 m dish at a 6 s resolution). In this study, data from the ESR, during the IPY, have been analyzed for our
period of interest, and electron density profiles have been used to estimate the energy of precipitation using
the Southampton ionospheric model [Lanchester et al., 1998] (described in section 2.4).

2.3. The Auroral Structure and Kinetics Instrument

The ASK (Auroral Structure and Kinetics) instrument is a multispectral, high-resolution auroral imager [Ashrafi,
2007; Dahlgren et al., 2008] located at the ESR site. The imager consists of three cameras (ASK1, ASK2, and
ASK3), each observing the same narrow field of view of 3.1° x 3.1°, equivalent to 5 X 5 km at a height of
100 km, in the magnetic zenith. Each camera has a different narrow passband interference filter to select
specific auroral emissions. In this study, images from the ASK1 and ASK3 cameras obtained at 20 frames per
second are used. These camera images correspond to the N, 1PG (1st positive) emission at 673.0 nm and Ol
(3s°S-3p°P) emission at 777.4 nm.

The ASK instrument has been used to study auroral features at small spatial scale, for example, boundary
undulations or “ruffs” [Dahlgren et al., 2010] and at high temporal resolution to study flickering aurora [Whiter
et al, 2010]. The two main strengths of ASK are the ability to estimate the energy of precipitation and to
trace plasma flows, which can in turn be used to estimate electric field strength and direction to very good
resolution; these methods are outlined in a review paper by Dahlgren et al. [2016].

2.4. The Southampton lonospheric Model

The Southampton ionospheric model (described in the appendix of Lanchester et al. [2001]) is a combined
electron transport and ion chemistry model. The electron transport part [Lummerzheim, 1987] allows for
an arbitrary input electron precipitation spectrum, provides ion production rates, and allows calculation
of selected prompt optical emission rates. The ion chemistry part solves the coupled continuity equations
for major and some minor ion species time dependently. The model assumes a neutral atmosphere taken
from MSIS E-90 thermospheric model [Hedin, 1991] and requires input solar activity parameters for the date
of event.

Data from ASK can be used in conjunction with the Southampton ionospheric model using a method outlined
in Lanchester et al. [2009] to estimate the energy of the precipitating electrons. This method compares the
ratio of emissions measured by the ASK1 and ASK3 cameras to a modeled relation between the ratio and
energy produced by the ionospheric model. The ASK1 camera has a filter that is sensitive to high-energy
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Figure 2. Images from SSUSI (LBHL band) between 17:50 and 19:05 UT providing almost simultaneous measurements
of the Northern and Southern Hemispheres with two DMSP spacecraft, F16 and F17. (a, c) The Northern Hemisphere
images are shown in the left hand column and (b, d) the southern in the right hand column. The southern hemisphere
images have been reversed about the noon midnight meridian for ease of comparison. In all images noon is at the top
and dawn to the right. The green dot in the Northern Hemisphere images indicates the position of ASK/ESR on Svalbard.

electron precipitation. ASK3 is sensitive to lower energy precipitation and hence the ratio of ASK3/ASK1 can
provide characteristics of the energy of the precipitating electrons.

The ionospheric model can also be used to fit ionization rates inferred from ESR electron density profiles to
estimate the energy of auroral precipitation Lanchester et al. [1998]. More details of this method is given in
section 3.2.2.

2.5. Super Dual Auroral Radar Network

Super Dual Auroral Radar Network (SuperDARN) is a network of high-frequency coherent scatter radars that
measure ionospheric flows in the polar regions of the Northern and Southern Hemispheres [Greenwald et al.,
1995; Chisham et al., 2007]. This study uses data from the Pykvibaer radar, which has a field of view over
Svalbard. During this period, it was operating in stereo mode, i.e., operating quasi-simultaneously on two
different frequencies allowing for different spatial and temporal resolutions [Lester et al., 2004]. We also use
summarized global-scale data from the map-potential technique [Ruohoniemi and Baker, 1998] in which data
from all radars are combined with data from a statistical model to obtain ionospheric flow patterns in the
high-latitude regions.

3. Results

3.1. Interplanetary Conditions and Large-Scale Auroral Observations

We present a case study of high-latitude aurora on 19 January 2008. Figure 1 shows the solar wind conditions
between 16:00 and 21:00 UT on this day provided by the Cluster 3 spacecraft. Figures 1a-1c show the IMF
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Figure 3. Magnetic field deflections in the X component (north) obtained from the IMAGE magnetometer Svalbard
stations between 16:00 and 21:00 UT.

components in the Geocentric Solar Magnetospheric (GSM) coordinate system, Figure 1d shows the solar
wind speed. The ion and electron spectrograms (not shown) confirm that Cluster was in the solar wind during
our event, just upstream from the bow shock, at (14, 12, —8) R;.. Our period of interest is between 18:00 and
21:00 UT. During this time the IMF B, component was predominately positive with the occasional negative
turn. The IMF turned northward at around 18:45 UT and apart from a few brief southward turns, remained so
until around 20:30 UT. Prior to this the IMF alternated between northward and southward. The B, component
was predominately negative throughout the interval. It can be seen in Figure 1d that this is a period of high
solar wind speed with a mean value of 610 km s~'.

Figure 2 show images from the SSUSI instruments on board DMSP F16 and F17 from 17:50 to 19:05 UT. During
this interval the spacecraft provide almost simultaneous measurements of the Northern and Southern
Hemispheres. Each image has been projected onto an MLT grid with noon at the top and dawn to the right.
All of the Southern Hemisphere images have been reversed about the noon-midnight meridian for ease of
comparison, such that dawn is to the right in all figures. Consequently, the spacecraft are traveling in the
opposite direction in each hemisphere, i.e., left to right in the Northern Hemisphere image and vice versa in
the southern image.

Figures 2a and 2b show images of the Northern Hemisphere between 17:53 and 18:15 UT and the Southern
Hemisphere between 17:42 and 18:05 UT, respectively. These images coincide with the period when the IMF
was alternating between northward and southward. The green dot in the Northern Hemisphere images indi-
cates the position of ASK/ESR on Svalbard, which at this time are situated poleward of the auroral oval and are
within the polar cap, looking along open field lines. The Southern Hemisphere image shows a Sun-aligned
structure on the dawnside of the polar cap. This structure is not seen in any of the following images and is
hence not considered a part of this study. The Northern Hemisphere between 18:34 and 18:54 UT and the
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Figure 4. SSUSI images between 19:25 and 20:50 UT. Same layout as Figure 2 with noon at the top and dawn to the
right; the Southern Hemisphere images have been flipped for ease of comparison. Again the green dot in the Northern
Hemisphere indicates the location of Svalbard.

Southern Hemisphere between 18:42 and 19:05 UT are shown in Figures 2c and 2d. These images show the
auroral regions around the time the IMF turned northward at 18:45 UT. In both hemispheres there is an auro-
ral bulge seen between 21 and 24 MLT. In the Northern Hemisphere (Figure 2¢), an approximately Sun-aligned
arc can also be seen in the dawnside of the polar cap. No obvious counterpart to this structure can be seen in
the almost simultaneous Southern Hemisphere image (Figure 2d).

Figure 3 shows data from the Svalbard magnetometers between 16:00 and 21:00 UT. A deflection can be seen
around 16:30 UT, which likely corresponds to a magnetospheric substorm during the period of southward IMF
[e.g., Liihr et al., 1998]. At approximately 18:30 UT smaller deflections are seen, with the weakest deflections
shown by the Bear Island magnetometer (BJN) and the strongest at Longyearbyen (LYR). This suggests that the
activity may be localized to Svalbard, which is consistent with the bulges seen in the SSUSI image (Figure 2c).
We hence suggest that the small, localized magnetic deflections are signatures of a poleward boundary inten-
sification [Lyons et al., 1999]. Hence, the bulges in the duskside of the Northern and Southern Hemispheres
(Figures 2c and 2d) appear to result from flux closure in the tail, most likely at the far neutral line.

SSUSI observations between 19:24 and 20:47 UT are shown in Figure 4 with the same layout as Figure 2.
Figures 4a and 4b correspond to the intervals between 19:34 and 19:55 UT for the Northern Hemisphere
image and between 19:24 and 19:45 UT for the Southern Hemisphere. By this time the IMF had been gener-
ally northward for around an hour. The duskside bulge in the Northern Hemisphere (Figure 2c) has protruded
further into the polar cap, extending over the field of view of ASK and ESR (green dot) to almost 80° magnetic
latitude, becoming distinctly Sun-aligned in nature. A conjugate structure can still be seen in the Southern
Hemisphere image, although this structure has not extended as far poleward. There are now also multiple
Sun-aligned arcs seen in the dawnside of the Northern Hemisphere image, still with no apparent Southern
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Figure 5. Image (in negative) obtained from a 60° field of view camera close to ASK at 20:23:23 UT. The camera is fitted
with a 645 nm long pass filter. North is at the top and east is to the left as shown by the arrows. These directions are
approximate as the camera is not sensitive enough to see stars, and hence, more accurate directions cannot be
obtained. The arrow at the bottom of the image indicates moonlight.

Hemisphere counterpart. The last SSUSI images in our period of interest, between 20:14 and 20:36 UT in the
Northern Hemisphere and between 20:23 and 20:47 UT in the Southern Hemisphere, are shown in Figures 4c
and 4d, respectively. The duskside protrusion in the Northern Hemisphere over Svalbard remains after at least
45 min but has not grown further into the polar cap. The conjugate form is no longer seen in the Southern
Hemisphere image, but this could be a result of the field of view of SSUSI. The Sun-aligned structure on the
dawnside of the Northern Hemisphere image has now moved toward the noon-midnight meridian compared
to the previous image.

3.2. The Duskside Structure

3.2.1. Analysis of Optical Data

Figure 5 shows an image of a north-south aligned arc over Svalbard taken by a 60° field of view camera from
the Spectrographic Imaging facility (SIF), also located on Svalbard near the ESR/ASK site. Although this arc is
not discernible in the SSUSI images, it forms part of the duskside structure observed in Figures 2¢, 4a, and 4c.
The arc entered SIF’s field of view around 20:23:23 UT and moved eastward, i.e., dawnward. A video showing
the 40 s interval when the arc passed through SIF’s field of view is included in the supporting information.

Figure 6 shows observations from ASK taken during this selected interval (note that the 3° x 3° field of view
of ASK is approximately in the center of the SIF image in Figure 5). Figure 6a shows the average intensity
measured by ASK1, ¢35, (black) and ASK3, I,,,, (blue) in the 20 x 20 pixels surrounding the magnetic zenith
between 20:23:25 and 20:23:40 UT. Snapshots were taken from the ASK1, l3,, camerain 1 s intervals between
20:23.29 and 20:23.36 UT, Figure 6¢. The yellow box indicates the pixels averaged around magnetic zenith. The
images show a bright curved structure sweeping through the ASK field of view from west to east, followed by
a lower intensity more diffuse structure. The rapid changes in these images demonstrate the highly dynamic
and small-scale structures within the larger-scale features.

The Southampton ionospheric model [Lanchester et al., 2001] can be used to find the changes in energy flux
and peak energy from the ratio of different wavelengths observed by the ASK instrument. The input to the
model requires an initial shape for the spectrum of the incoming electrons, assumed to be a Gaussian in this
study. Examples of the model production rates and emission height profiles for the emissions measured by
ASK can be found in Whiter et al. [2010] and Dahlgren et al. [2011]. The height-integrated emissions are used
to give a relationship between brightness ratio and peak energy, which is then compared with the measured
brightness ratio to give the peak energy as plotted in Figure 6b. The energy flux is found from the brightness of
the emission from N,, which is almost independent of energy. A conversion factor of 240 R/(mW m~2) obtained
from the model is used to convert Ig;,, into flux.
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Figure 6. (a) The intensity from ASK1, lg379 (black) and ASK3, I,77,4 (blue) between 20:23.25 and 20:24.00 in the 20 x 20
pixels surrounding magnetic zenith. (b) The estimated energy (black) and energy flux (blue) of the precipitating electrons
in the interval between 20:23.25 and 20:24.00 UT. (c) Snapshots from ASK1 between 20:23.29 and 20:23.36 UTin 1 s
intervals. The yellow box in each image illustrates the pixels averaged around magnetic zenith. North is approximately
at the bottom of the images and east is approximately left.

Figure 6b shows that the precipitation energy varies between 2 and 11 keV, with a mean value of 5 keV and a
mean energy flux of 0.7 mW m~2, This range also agrees with a similar study carried out by Wu et al. [1991] who
observed a polar cap arc associated with precipitation energies between 3 and 12 keV. A video showing how
the changes in energy correspond to ASK1 images over the selected interval is provided in the supporting

information.
3.2.2. Analysis of ESR Height Profiles

Figure 7 shows the electron density (N,), the electron temperature (T,), and the ion temperature (T;) profiles
measured by the ESR between 17:00 and 22:00 UT, plotted at 1 min resolution. It can be seen that prior to
18:36 UT there is a cool F region plasma (above 200 km); after this time there is a sudden increase in the
E region N, down to heights of around 90 km with a corresponding increase in T, (Figure 7b). These increases
occur before the northward turning of the IMF at 18:45 UT and coincide with the start of the interval that
SSUSI shows an auroral structure over Svalbard. They are typical signatures of precipitation on closed field
lines. Furthermore, the T, profiles show very cold plasma before 18:36 UT that is consistent with polar cap
electrons. From this dramatic change in T,, we suggest that the open/closed field line boundary has moved
over the field of view of ESR (the open/closed field line boundary has previously been identified using T,
[e.g., Aikio et al., 2006]). The optical data from an all-sky camera, not shown, confirms that auroral activity
spreads northward across the site at this time.

The T; profiles (Figure 7c) show distinct structure during the time of the auroral activity, with increases in T;
corresponding to the gaps in N,. These increases are consistent with large electric fields and horizontal flows
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Figure 7. (a) Electron density, (b) electron temperature, and (c) ion temperature profiles between 17:00 and 22:00 UT
from the ESR 42 m antenna at 60 s resolution. The orange arrow shows the time of analysis with ASK, ESR, and the
respective models.

of ions in the region close to auroral brightness [Lanchester et al., 1996]. This connection between a decrease
in N, and increase in T; has also been reported and studied by Opgenoorth et al. [1990] and Perry et al. [2015].

The energy of the auroral precipitation can be estimated from the N, profiles using the Southampton iono-
spheric model. The N, profiles are converted to ionization rate profiles assuming a recombination rate
coefficient, which is an assumption that affects the total flux estimate but does not affect the estimate of the
energy of precipitation. The method, described in Lanchester et al. [1998], uses a library of both Gaussian and
Maxwellian spectra to find the best fit for peak energy of precipitation. This analysis was applied to the same
interval as was chosen in section 3.2.1 to estimate the precipitation energy using the ASK cameras between
20:23:25 and 20:24:00 UT, shown by an orange arrow above Figure 7a.
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Figure 8. lonization rate profile at 20:23:36 UT. Green dots are measurements at 2 s resolution. Blue line is the best fit to
a monoenergetic/Gaussian input, red line is the best fit to a Maxwellian input.
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Figure 9. Velocity flows observed by the Pykkvibaer (PYK) radar from beam 5 at 18:58 UT. This radar is operating in

stereo mode. Negative flows (red/orange) indicate flows away from the radar.

Figure 8 shows the results of this fitting process using an N, profile at 20:23:36 UT. The data are shown in com-
parison with Maxwellian and monoenergetic (Gaussian) fits at 1.7 keV and 4.9 keV, respectively. This clearly
shows that the data are a better fit to a Gaussian spectral shape. This result agrees with the analysis using
the ASK emissions in Figure 6b, which has mean value of 5 keV. The combined ASK and ESR observations and
associated modeling show that the energy of the precipitation is consistent with that typically seen on closed

field lines.
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Figure 11. Map-potential plot of Southern Hemisphere SuperDARN data between 17:58 and 18:00 UT obtained using
the method outline by Ruohoniemi and Baker [1998]. Data are plotted on top of the corresponding SSUSI image from
DMSP F17 between 17:42 and 18:05 UT. Noon is at the top and dawn to the right.

3.2.3. SuperDARN Flows

The SuperDARN Pykkvibaer (PYK) radar has a field of view that covers the ASK and ESR sites and at the time
of interest was operating in “stereo” mode [Lester et al., 2004], in which two different experimental modes
were operating simultaneously on different channels. The primary channel operated at 10.3 MHz in “common”
mode, executing scans of the whole field of view, though no significant scatter was observed. The second
channel (10.5 MHz) operated only on one beam (Beam 5) at higher temporal resolution. Figure 9 shows the
spatial distribution of the data from one scan on this secondary channel at 18:58 UT in context with the
Northern Hemisphere SSUSI image produced between 18:34 and 18:54 UT. Although these data appear
spatially patchy (since data were only available from the one beam and the scatter is limited in extent along the
beam) it can be seen in Figure 10, showing the time series of the line of sight velocity measurements observed
by the radar between 18:40 and 19:10 UT, that these flows at 76° are persistent between 18:50 and 19:03 UT.
Figure 9 illustrates that these flows coincide with the poleward edge of the bulge seen in the SSUSI image.
A SuperDARN map-potential plotis notincluded here, as the only scatter in the area around the arc is provided
by the PYK radar.

SuperDARN flows in the Southern Hemisphere were also examined. Figure 11 shows a map-potential plot at
17:42-18:05 UT in context with the Southern Hemisphere SSUSI image between 17:58 and 18:00 UT. The flow
is spatially very localized between 20 and 22 MLT but shows apparent flow out of the polar cap approximately
at the location the bulges form in the northern and southern polar caps. Figure 1c in Fear and Milan [2012b],
shows a cartoon of nightside flow patterns of a transpolar arc whereby flux is closing in the tail and asymmetric
flows are seen either side of the position of the transpolar arc. Hence, we suggest these flows are indicative of
magnetotail reconnection under the influence of a B, component, and hence consistent with the mechanism
proposed by Milan et al. [2005] for transpolar arcs. Furthermore, although the data from the single radar beam
shown in Figure 9 only tells us that there is ionospheric flow just duskward of the duskside feature that has a
component directed away from the radar, we suggest that the localized but persistent flows seen at the tip of
the duskside structure are at least consistent with the closure and exit of flux from the polar cap adjacent to
the arc, and hence consistent with the transpolar arc mechanism.
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Figure 12. Footprint of the DMSP F16 spacecraft during the 19:34-19:55 UT pass, overplotted onto the corresponding
SSUSI image. The arrows correspond to features in the DMSP particle spectrogram shown in Figure 13.

3.3. The Dawnside Sun-Aligned Arcs
3.3.1. DMSP

Figure 12 shows the footprint of the DMSP spacecraft during the 18:34-18:54 UT pass over the northern polar
cap with corresponding SSUSI image. It can be seen that during this pass, DMSP intersected the tip of the
farthest extended Sun-aligned arc on the dawnside of the polar cap but missed the structure on the duskside.
The arrows correspond to the spacecraft crossing the duskward edge of the auroral oval (orange), the tip of
the dawnside arc (blue), and the dawnside of the auroral oval (red). Figure 13a shows the spectra for each
of these features in the corresponding colors. These spectra clearly show that the precipitation causing the
dawnside arc is of lower energy than that above the auroral oval.

Figure 13b shows the DMSP electron spectrogram with the times of the three spectra indicated again with
the orange, blue, and red arrows. The black vertical line marks the noon-midnight meridian, hence dividing
the dawnside and duskside of the polar cap. Multiple low-energy features can be seen in the dawnside of the
polar cap, the highest energy of these corresponds to the farthest protruding arc (blue arrow). Not all of these
features can be seen in the corresponding SSUSI image (Figure 12), as they are too low in energy flux to be
picked up by the UVimager. The ion spectrogram (Figure 13c) shows two ion signatures corresponding to each
side of the auroral oval with no ion signatures within the polar cap between them. Newell et al. [2009] reported
a common type of polar cap arc that can be identified by lower energy precipitation with no ion signature.
They state this type of arc is consistent with accelerated polar rain, which Carlson and Cowley [2005] suggest
can occur from shear flows on open field lines. Furthermore, the IMF conditions of negative B, and positive
B, favor polar rain in the dawnside of the Northern Hemisphere polar cap [Meng and Kroehl, 1977; Yeager and
Frank, 1975]. We hence suggest that the dawnside arc is an example of an arc formed by accelerated polar
rain, occurring on open field lines.
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Figure 13. Data from the particle spectrograph SSJ4 onboard DMSP F16 between 19:34 and 19:55 UT. (a) Spectra (1 s) from the three times indicated by the
arrows on the DMSP pass (Figure 12) at 19:39.15, 19:46.00, and 19:49.03 UT. (b) The electron spectrogram with the time of the above spectra indicated by the
corresponding colored arrows. (c) The ion spectrogram. The black line seen in Figures 13b and 13c corresponds to the noon/midnight meridian to differentiate
the dawnside and duskside of the polar cap.
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Figure 14. Map-potential plot of SuperDARN data between 19:14 and 19:16 UT with corresponding SSUSI image
between 19:34 and 19:55 UT.
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Figure 15. SuperDARN map-potential plot between 20:14 and 20:16 UT with corresponding SSUSI image between 20:14
and 20:36 UT.

As an additional point, Figures 13a and 13b show the oval electron signatures to have energy of the order
of a few keV, with a peak on the duskside of 5 keV. These energies are very similar to those derived for the
duskside structure from ASK and ESR and hence further supports the idea that this feature is formed on closed
field lines.

3.3.2. SuperDARN Lobe Reconnection Flows

Examination of the map-potential plots from SuperDARN during our event revealed evidence of lobe recon-
nection between 19:12-19:30 UT and 20:10-21:00 UT. Examples are shown in Figures 14 and 15 at 19:14 UT
and 20:14 UT, respectively, with the corresponding SSUSI image. Both images show sunward flows on the day-
side of the polar cap and what appear to be dawnside lobe reconnection cells. The antisunward return flows
appear to be poleward of the extension of the main oval from the SSUSI field of view, which is indicative of
single-lobe reconnection [Milan et al., 2000].

We previously noted that the farthest extended Sun-aligned arc on the dawnside moved duskward between
SSUSI images seen in Figures 4a and 4c, which approximately corresponds to between 19:30 and 20:00 UT.
This motion is consistent with what is expected observationally for positive IMF B, [e.g., Valladares et al., 1994].
It is also consistent with Milan et al. [2005] suggestion that the ‘stirring’ of flux caused by lobe reconnection
in one hemisphere results in flux being transferred between dawn/dusk convection cells depending on the
direction of IMF B,. Milan et al. [2005] argued that this transferral of flux causes the arc, depending on its
spatial location relative to the lobe convection, to move in the direction of IMF By, which is consistent with our
observations.

4. Discussion

The structure seen by the SSUSI imager on the duskside of the Northern Hemisphere was analyzed with
the ASK instrument and the ESR radar in conjunction with the Southampton ionospheric model to esti-
mate the energy of the electron precipitation. This analysis revealed that the structure was associated with
high-energy precipitation which likely occurred on closed field lines. The structure formed out of an auroral
bulge. The small, localized disturbances in the Svalbard magnetometer data (Figure 3) coupled with the loca-
tion of the bulge at the poleward edge of the oval suggested that it is formed by closure of flux at the far
Earth neutral line, resulting in a poleward boundary intensification. This is further supported by SuperDARN
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flows seen in Figure 11, which indicate that magnetotail reconnection was occurring around the position that
the bulges formed in the polar cap. Flows measured by SuperDARN in the Northern Hemisphere (Figures 9
and 10) indicated that after the IMF turned northward, flux continued to close in the tail. Hence, we sug-
gest, due to an assumed absence of low-latitude dayside reconnection from evidence of lobe reconnection
(Figures 14 and 15), subsequently closed field lines protruded further into the polar cap instead of convect-
ing back to the dayside. Furthermore, the map-potential plot in Figure 11 shows flows exiting the polar
cap at 21 MLT which indicate that the IMF B, component is having an effect on reconnection in the tail.
These observations are consistent with the mechanism described in Milan et al. [2005] for transpolar arcs.
However, as the structure does not cross the entire polar cap, we conclude that it is an example of a “failed”
transpolar arc. The transpolar arc most likely failed due to a cessation in nightside reconnection between
19:30 and 20:30 UT when the structure was seen to stay at the same magnetic latitude in the SSUSI images
(i.e., between Figures 2c and 4a). This claim is somewhat supported by the fact that we see no evidence of
nightside reconnection in the SuperDARN data (such as those seen earlier in Figures 9 and 11) during this
interval (not shown). Furthermore, the structure is no longer seen by SSUSI after 20:40 UT (also not shown),
which coincides with the Southward turning of the IMF (Figure 1).

The Milan et al. [2005] mechanism predicts that the transpolar arc would form on the duskside of the northern
polar cap for positive IMF B, statistically verified by Fear and Milan [2012a], which is consistent with the con-
ditions for this event. However, the Southern Hemisphere counterpart also appears on the duskside, which is
not consistent with the Milan et al. [2005] mechanism. Grocott [2016] suggests that there are two factors which
lead to asymmetric flows seen in the polar cap, as seen in the Southern Hemisphere SuperDARN observations
(Figure 11). The first factor is a twist in the magnetotail occurring after a few hours of B, influence and results
in asymmetries between auroral onset location in the Northern and Southern Hemispheres, which is why the
Milan et al. [2005] mechanism predicts transpolar arcs on opposite sides of the polar cap in the different hemi-
spheres. The second factor is caused by dawn-dusk asymmetries in the plasma sheet occurring after longer
periods of stable B, which results in a shift in the auroral onset location to earlier MLT for positive B, and later
for negative B,,. A study by Reistad et al. [2016] reported a 3 h MLT shift in the auroral morphology seen by
simultaneous measurements from the IMAGE FUV-WIC camera in the Northern Hemisphere and the Polar VIS
Earth camera in the Southern Hemisphere. This shift was seen on the duskside of the auroral oval and was
attributed to a persistent positive IMF B, component, which led to asymmetries in the magnetospheric foot-
prints. The second mechanism suggested by Grocott [2016] appears to be consistent with our event since the
IMF B, component in the hours before the period of interest (Figure 1) and in the previous 24 h (not shown)
was predominately positive and the structures appear on the same side of the polar cap. Hence, our event
could be evidence for the two factors being present at the same time, an idea speculated by Grocott [2016] or
could suggest that the lack of dayside reconnection rather than the twist in the magnetotail is the key factor
in the Milan et al. [2005] mechanism for this case.

The multiple, Sun-aligned arcs seen in the dawnside Northern Hemisphere polar cap appear to be formed by a
different mechanism than the duskside structure. They were only seen in one hemisphere of the SSUSIimages
(Figures 2 and 4) and the DMSP particle data showed the farthest protruding arc to be of lower energy than
the oval and duskside structure and not associated with an ion signature (Figure 13). This is different from the
DMSP observations of a transpolar arc in a study by Fear et al. [2014], which showed the arc to be associated
with high-energy electron (up to 10 keV) and ion (greater than 1 keV) signatures. They also saw lower energy
electron-only signatures, which did not have a counterpart in IMAGE and suggested that these may be asso-
ciated with fainter polar cap arcs that form on open field lines. These features are more consistent with the
DMSP precipitation associated with the dawnside arcs in this study. Fear et al. [2014] also presented observa-
tion from Cluster that showed that the plasma source for this arc was on closed field lines. Similarly, a study
by Mailyan et al. [2015] presented observations of a transpolar arc (observed by IMAGE and the TIMED/GUVI
instrument, which is very similar to SSUSI) and a conjugate in situ plasma signature detected by Cluster. The
electron and ion signatures observed by Cluster were at lower energies than those observed by Fear et al.
[2014]. Mailyan et al. [2015] were unable to determine whether the plasma and auroral signature observed
were on open or closed magnetic field lines, but did identify fainter arcs in the GUVI image that branched
away from the main transpolar arc. They also presented DMSP particle data with electron-only signatures of
comparable energy to our event, which are suggested to be associated with these fainter arcs. They suggest
that these fainter arcs are formed on open field lines associated with solar wind direct entry, advocated by
Shietal. [2013] to be due to high-latitude magnetopause reconnection. One problem with this interpretation
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is that the high-latitude magnetopause reconnection site maps to the cusp spot, which is just poleward of
the auroral oval on the dayside [Sandholt et al., 1996, 1998; Jieroset et al., 1997], rather than farther tailward
where the arcs are observed. Our suggested mechanism (acceleration of polar rain) is subtly different, as the
plasma is free to enter across the full width of the lobe (which is open), in a manner controlled by the IMF
BX/By components [Meng and Kroehl, 1977; Yeager and Frank, 1975], but the acceleration is localized to the
field lines which map to the arcs.

Newell et al. [2009] suggest polar cap arcs that do not have an ion signature and are not adjacent to the auroral
oval could be produced by enhanced polar rain. It can be seen in Figure 13b that the Sun-aligned arc on the
dawnside of the Northern Hemisphere polar cap is embedded within similar features of lower energy, which
are not seen in the SSUSI image. These features are similar to what Shinohara and Kokubun [1996] classify as
type B polar showers, i.e., polar showers without ion fluxes that respond to solar wind conditions (appearing
on the dawnside for positive B, and Northern Hemisphere for negative B,) and hence suggested to originate
from the solar wind. Therefore, we conclude that these Sun-aligned arcs are consistent with accelerated polar
rain and hence formed on open field lines.

We have shown that the dawnside arcs move duskward with the flow in the lobe convection cells. This
duskward motion for positive IMF B, is consistent with previous studies which observed polar cap arcs to
move in the same direction as IMF B,.. Milan et al. [2005] suggest that the convection caused by the stirring
of the lobes will cause polar cap arcs in the Northern Hemisphere to convect duskward/dawnward for IMF B,
positive/negative, respectively. This pattern is observed during our event. As an additional point, the duskside
structure was seen by the SIF ground-based camera to move from west to east, i.e., dawnward (see movies in
the supporting information). This motion also fits with the Milan et al. [2005] mechanism, but the arc moves
oppositely to the direction of IMF B, because it is on the other side of the polar cap and hence moving with the
dusk cell. However, this structure would have been classified by Hosokawa et al. [2011] as a ”By independent”
as itis moving poleward irrespective of the direction of IMF B,.Hence, “B,-dependent” and “B, -independent”
arcs can both be explained by the Milan et al. [2005] mechanism.

5. Conclusion

A case study of polar cap aurora occurring on 19 January 2008 has been presented. Almost simultaneous
observations of the northern and southern auroral regions were provided by the SSUSI instruments on board
DMSP F16 and F17. Two different types of high-latitude aurora were observed simultaneously in the northern
polar cap; a “failed” transpolar arc on the duskside formed on closed field lines, and Sun-aligned arc on the
dawnside, which was more consistent with precipitation on open field lines.

The duskside structure had a conjugate form in the Southern Hemisphere, which also formed on the duskside
on the southern polar cap. The structure started as a bulge, identified in magnetometer data as a poleward
boundary intensification, which grew into a distinctly Sun-aligned structure. The Northern Hemisphere
structure was examined using ground-based instruments. Using observations from the ASK instrument in
conjunction with the Southampton ionospheric model, the electron precipitation energy above the dusk
structure was estimated to be between 2 and 11 keV and confirmed by fitting electron density profiles from
the ESR to be monoenergetic in spectral shape. It was shown that these energies are similar to the mea-
surements made by the DMSP particle spectrometer of the auroral oval. Images from the ASK1 camera also
revealed highly structured and dynamic small-scale filamentary aurora. It was concluded that the duskside
structure was consistent with aurora formed on closed field lines. ESR electron temperature profiles showed
very cold plasma prior to the onset of the aurora on closed field lines, hence suggesting that these closed field
lines were within the open field lines of the polar cap. Coupled with the signatures of nightside reconnec-
tion observed in the SuperDARN data, we find this duskside structure to be consistent with the mechanism
proposed by Milan et al. [2005] for transpolar arcs. However, in this case the structure did not cross the entire
polar cap and hence we suggest it is an example of a “failed” transpolar arc. The arc perhaps failed due to a
sudden cessation of nightside reconnection. Furthermore, the fact that this feature was shown to form from
a poleward boundary intensification is consistent with the idea that transpolar arcs (failed or otherwise) are
formed from magnetotail reconnection.

The second type of structure was only seen in the Northern Hemisphere SSUSI images and was analyzed using
data from the DMSP particle spectrometer. This Sun-aligned arc was associated with lower energy electrons
than in the oval and noion signature. It also appeared on the dawnside of the Northern Hemisphere polar cap,
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which is consistent with statistics for polar rain. Hence, this arc is suggested to be an example of the common
weaker polar cap arcs described in Newell et al. [2009], consistent with acceleration of polar rain on open
field lines.

Evidence has been presented for two processes occurring simultaneously in the polar cap during northward
IMF resulting in the formation of different polar cap auroral features. This work shows that the magnetosphere
can have a configuration which allows multiple processes for the formation of polar cap arcs to occur simul-
taneously, during northward IMF. Further study is needed to explore the open field line mechanism resulting
in the lower energy high-latitude aurora and also what causes the cessation of nightside reconnection, which
ultimately lead the transpolar arc to fail.
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