nerc.ac.uk

Radar observations of auroral zone flows during a multiple-onset substorm

Morelli, J. P.; Bunting, R. J.; Cowley, S. W. H.; Farrugia, C. J.; Freeman, M. P. ORCID: https://orcid.org/0000-0002-8653-8279; Friis-Christensen, E.; Jones, G. O. L.; Lester, M.; Lewis, R. V.; Lühr, H.; Orr, D.; Pinnock, M.; Reeves, G. D.; Williams, P. J. S.; Yeoman, T. K.. 1995 Radar observations of auroral zone flows during a multiple-onset substorm. Annales Geophysicae, 13 (11). 1144-1163. https://doi.org/10.1007/s00585-995-1144-2

Full text not available from this repository. (Request a copy)

Abstract/Summary

We present an analysis of ground magnetic field, ionospheric flow, geosynchronous particle, and interplanetary data during a multiple-onset substorm on 12 April 1988. Our principal results concern the modulations of the ionospheric flow which occur during the impulsive electrojet activations associated with each onset. During the first hour of the disturbance these take place every ~12.5 min and involve the formation of a new intense westward current filament in the premidnight sector, just poleward of the pre-existing extended current system driven by the large-scale flow. These filaments are ~1 h MLT wide (~600 km), and initially expand poleward to a width of ~300 km before contracting equatorward and coalescing with the pre-existing current, generally leaving the latter enhanced in magnitude and/or expanded in latitude. Within the impulsive electrojets the flow is found to be suppressed to values 50–100 m s–1 or less during the first few minutes, before surging equatorward at 0.5–1.0 km s–1 during the phase of rapid coalescence. The implication is that the precipitation-induced Hall conductivity within the impulsive electrojet initially rises to exceed ~100 mho, before decaying over a few minutes. This value compares with Hall conductivities of ~20 mho in the quasi-steady current regions, and a few mho or less in the regions poleward of the electrojets and in the preonset ionosphere. Preliminary evidence has also been found that the flow surges propagate from midnight to the morning sector where they are associated with arrested equatorward motion or poleward contractions of the current system. These observations are discussed in terms of present theoretical paradigms of the global behaviour of fields and flows which occur during substorms.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1007/s00585-995-1144-2
Programmes: BAS Programmes > Pre 2000 programme
ISSN: 1432-0576
Date made live: 10 Jan 2017 12:08 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/515752

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...