Effects of old landfills on groundwater quality. Phase 2, investigation of the Thriplow landfill 1996–1997
Williams, G.M.; Boland, M.P.; Higgo, J.J.W.; Ogilvy, R.D.; Klinck, B.A.; Wealthall, G.P.; Noy, D.J.; Trick, J.; Davis, J.; Williams, L.A.; Leader, R.U.; Hart, P.A.. 2000 Effects of old landfills on groundwater quality. Phase 2, investigation of the Thriplow landfill 1996–1997. Nottingham, UK, British Geological Survey, 136pp. (WE/98/052, Environment Agency R&D Technical Report P 201) (Unpublished)
Before downloading, please read NORA policies.Preview |
Text
WE98052.pdf Download (47MB) | Preview |
Abstract/Summary
Disused sand and gravel excavations overlying the major Chalk aquifer at Thriplow in Cambridgeshire have been filled with domestic waste in two phases. One area (Phase 1) was filled between 1957–77 with little compaction of the refuse and was left uncapped, while Phase 2 was deposited between 1981–87 and capped with clay. Aerial photography and surface resistivity surveys indicate that the site geometry is complex, with several phases of landfilling into excavations of differing depths. Drilling through the waste indicates that leachate production and waste stabilisation proceed at different rates in capped and uncapped landfills. Analysis of leachate obtained by centrifugation or squeezing appears to give more insight into the pollution potential than do leach tests with distilled water. The Biological Methane Potential (BMP) of the waste appears to be related to the quantity of decomposable material but the chemical oxygen demand (COD) values are distorted by the presence of reduced metals. Too few boreholes have been drilled to define the leachate source in terms of its spatial distribution and little is known of how its composition has changed with time. However, hydraulic conductivity measurements on the landfill caps suggest that it is sufficiently permeable for all rainfall to potentially infiltrate the waste. Boreholes outside the landfill penetrate the Upper and Lower Chalk, and identify the Melbourn Rock and underlying Plenus Marls at the junction of the two formations about 20 m below ground level (bgl). Surface resistivity surveys using the BGS RESCAN system, confirm aerial photographs of the extent of the landfill and also suggest that leachate has migrated beyond the base of the landfill. Evidence of leachate migration in pre-existing screened boreholes completed above and below the Plenus Marls suggests that leachate is flowing above the Plenus Marls. Hydraulic head measurements whilst drilling a borehole to the base of the lower Chalk approx. 70 m bgl revealed the potential for upward groundwater flow through the Plenus Marls. Thus, previously-drilled boreholes penetrating the Plenus Marls are expected to recharge upwards into the shallow aquifer above the Plenus Marls diluting any leachate in the upper aquifer and distorting the flow regime. Several of these boreholes have subsequently been modified to stem the flow across the Plenus Marls. One borehole down-gradient to the west of the site revealed a large thickness of drift composed of both sand and clay rich material. This suggests the existence of a buried channel, the hydrogeological significance of which has yet to be assessed. Groundwater chemistry appears to be influenced by three major factors. (a) the landfill leachate (b) the composition of shallow groundwater in the top 10 m of the Chalk, and (c) the composition of water from the Lower Chalk. Limited groundwater monitoring data appear to display a cyclic variation in chloride concentration. The origin for this is not clear but it may correlate with cyclic variations in groundwater levels when the water table rises into the waste. Cyclic flushing of the landfill may release leachate into the aquifer giving rise to pulses of chloride. Alternatively changes in chloride may arise by the changing direction of groundwater flow which as yet has not been assessed. A conceptual hydrogeological model in which flow is limited to above the Plenus Marls has been used to develop a more appropriate groundwater flow and solute transport model. However, the model lacks data on aquifer properties, on contaminant inputs concentrations, fluxes and spatial variations, and there is a paucity of monitoring data for calibration. Nonetheless preliminary transport modelling using an equivalent porous medium approach shows that an effective porosity of about 5% best fits the regional data. Since this is much less than the total porosity of about 40% for the Chalk, it would appear that only part of the Chalk is available for flow but that matrix diffusion could play an important role in leachate attenuation. Discrete fracture modelling using the FRACTRAN code has allowed some scoping to be made of the hydraulic properties of the aquifer by comparison with chloride hydrographs, but these again need to be better conditioned by in-situ measurement of fracture distributions and transmissivities. A number of additional activities are required to improve the understanding of flow and contaminant transport at the site. These include better spatial definition of the waste distribution, improved data on the hydraulic properties of the Chalk aquifer, and the use of automatic monitoring to record temporal changes in groundwater chemistry and groundwater levels.
Item Type: | Publication - Report |
---|---|
Programmes: | BGS Programmes > Groundwater Management |
Funders/Sponsors: | Environment Agency |
Additional Information. Not used in RCUK Gateway to Research.: | This item has been internally reviewed but not externally peer-reviewed |
Date made live: | 21 Dec 2016 11:58 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/515630 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year