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Abstract 14 

The early Silurian (Llandovery) Gondwanan South Polar ice sheet experienced episodes of 15 

ice retreat and readvance. Marine base level curves constructed for the interval are widely 16 

assumed to provide a record of the associated glacioeustasy. In revealing a series of 17 

progradational sequences (progrades) bounded by flooding surfaces, recent work on the Type 18 

Llandovery succession in mid Wales (UK) has provided an opportunity to test this 19 

hypothesis. The grouping of these progrades into three composite sequences underpins the 20 

construction of both low order (small amplitude, high frequency) and high order (large 21 

amplitude, low frequency) base level movement curves. Revised biostratigraphical datasets 22 

for the type succession permit the accurate dating of base level events. The composite 23 

sequences record progradational acmes in the acinaces, lower convolutus and upper 24 

sedgwickii-halli graptolite biozones. A series of transgressions that postdate the Hirnantian 25 

glacial maximum culminated in an upper persculptus Biozone high-stand. Maximum 26 

flooding events also occurred during the revolutus and lower sedgwickii biozones, and the 27 

base of the early Telychian guerichi Biozone also marked the onset of a pronounced 28 

deepening. A review of 62 published datasets, including global and other regional base level 29 

curves, records of glacial activity, isotope data, patterns of facies and faunal flux and putative 30 

climate models, permits an evaluation of the origins of these local base level events. The 31 

concept of a Eustasy Index is introduced and shows that the impacts of global sea level 32 

movements can only be demonstrated within narrow ‘eustatic windows’ coincident with 33 

times of ice sheet collapse. At other times, the geometry of Llandovery area progrades 34 

reflects their accumulation across a faulted basin margin where, during periods of slow ice 35 

sheet advance, epeirogenic processes outstripped sea level movements as the dominant 36 
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forcing factors. Increased levels of Telychian subsidence at first enhanced and then 37 

overwhelmed the influence of glacioeustasy as part of the region's response to the north 38 

European Scandian deformation. 39 

Keywords: Llandovery, Silurian, Glacioeustasy, Eustasy Index, Sequence stratigraphy, 40 

Biostratigraphy, Epeirogenesis 41 

 42 

1. Introduction 43 

Recent studies have shown that, following its maximum in the Late Ordovician (Hirnantian), 44 

the early Silurian retreat of the Gondwana-based South Polar ice sheet was punctuated by 45 

separate episodes of ice re-advance (e.g. Grahn and Caputo, 1992; Caputo, 1998; Dias-46 

Martinez and Grahn, 2007). Glacioeustasy has been widely cited as significant in shaping 47 

Llandovery age successions around the world, including the Type Llandovery succession in 48 

mid Wales, UK (e.g. McKerrow, 1979; Johnson et al., 1991b), and in influencing the form of 49 

Silurian sea level curves (e.g. Haq and Schutter, 2008; Johnson, 2010; Munnecke et al., 50 

2010). Remapping and extensive biostratigraphical resampling in the Llandovery area have 51 

allowed a new sedimentary architecture to be erected and the positions of key biozonal 52 

boundaries to be revised (Figs. 2–5) (Davies et al., 2013). Graptolite discoveries coupled to 53 

new microfossil analyses underpin major changes to the biozonal cross-correlations put 54 

forward by Cocks et al. (1984) that have informed global Llandovery analysis for over a 55 

generation. In allowing more precise comparisons with other regional datasets, these 56 

revisions have permitted a critical evaluation of the influence of glacioeustasy on the type 57 

succession. 58 

Deposition of the Type Llandovery succession took place in a ramp-like setting located along 59 

the SE margin of the ensialic Lower Palaeozoic Welsh Basin, in mid-southern palaeolatitudes 60 

(Cherns et al., 2006; Woodcock and Strachan, 2012). Though traditionally recognised as 61 

forming part of the Eastern Avalonia microcraton, Waldron et al. (2011) suggested that the 62 

Welsh Basin has more complex crustal foundations. However, the term ‘Avalonian’ remains 63 

relevant in the biopalaeogeographical sense of Cocks and Fortey (1990) and as a label for a 64 

group of loosely associated crustal terranes, the ‘Anglo-Acadian belt’ of Cocks and Fortey 65 

(1982), that lay to the south of the contemporary Iapetus Ocean (Fig. 1). Docking of these 66 

‘Avalonian’ terranes with the more easterly craton of Baltica took place along the northern 67 

European Tornquist Zone, and is recorded in Wales by the late Katian (mid Ashgill) 68 

‘Shelvian’ deformation (Toghill, 1992). By Llandovery times, these once separate crustal 69 

elements formed part of a unified tectonic plate and faunal province (e.g. Cocks and Fortey, 70 

1990). Early Llandovery closure of the northern sector of the Iapetus Ocean initiated the 71 

Scandian Orogeny in Baltica (e.g. Ladenberger et al., 2012) at the same time as the late stages 72 

of the Taconic and Salinic tectonic episodes were being felt in North America (e.g. Ettensohn 73 

and Brett, 1998). Hence, tectonism was ongoing during the Llandovery throughout the 74 

circum-Iapetus realm where, within migrating foreland basins and faulted-bounded 75 
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depocentres, evolving patterns of subsidence competed with eustasy in the shaping of 76 

sedimentary successions (e.g. Baarli et al., 2003). 77 

Nowhere is this more evident than in the Type Llandovery area, where active basin-bounding 78 

faults accommodated the subsidence of the basin to the west and uplift of source areas to the 79 

east (Davies et al., 2013). Notwithstanding this tectonic backdrop, early Hirnantian facies at 80 

Llandovery and throughout theWelsh Basin, as elsewhere, record the impact of Late 81 

Ordovician glacioeustasy (e.g. Brenchley and Cullen, 1984; Davies et al., 2009). Preserved in 82 

distal settings are strata that were deposited during the maximum drawdown in sea level, 83 

whereas an unconformity records the coincident emergence and deep erosion of proximal 84 

regions. Late Hirnantian units record the pulsed transgression that post-dated the glacial 85 

maximum, and the resulting re-ventilation and faunal re-stocking of theWelsh Basin and its 86 

marginal shelf. The current study seeks to evaluate the role that eustasy, specifically 87 

glacioeustasy, went on to play in the shaping of the succeeding Type Llandovery succession. 88 

Telychian and lower Wenlock rocks at Llandovery provide a record of deep and distal shelfal 89 

sedimentation and of increased subsidence and disruption by synsedimentary slides. 90 

Coincidental increases in the volume and grade of sediment supplied to the Welsh Basin, 91 

sourced from new quadrants and accommodated by active faulting, confirm that the late 92 

Llandovery to early Wenlock was a time when regional tectonism was resurgent throughout 93 

Wales (e.g. Woodcock et al., 1996; Davies et al., 1997). However, preceding Rhuddanian and 94 

Aeronian rocks comprise a cyclical succession of variably bioturbated and fossiliferous 95 

sandstones, sandy mudstones and mudstones that has proved better suited for eustatic 96 

analysis. It is these strata, viewed in the context of a clinoform facies model (see Davies et 97 

al., 2013), on which this study principally focuses (Figs. 3, 6). 98 

The parameters used to establish the base level history of the Llandovery area (Sections 3 and 99 

4) allow comparison with global syntheses of Silurian sea level change and other regional 100 

base level datasets (Fig. 1) that sample tectonic settings ranging from cratonic interiors and 101 

passive margins to deep oceans and orogenic belts (Sections 5 and 6). They also enable 102 

comparison with datasets that, by charting the distribution of glacial facies, changing isotope 103 

ratios and faunal flux, purport to chronicle sea level-linked climatic events (Section 7). A 104 

novel method of assessing the levels of correspondence between these varied datasets and the 105 

record of base level movements in the Type Llandovery area is developed (Section 8). 106 

 107 

2. Implications of revised biostratigraphical correlations 108 

The revised cross-correlation of the various macro- and microfossil biozonal schemes 109 

applicable to the Type Llandovery area is presented in Fig. 5. This forms the basis for the 110 

nomenclature and calibration applied throughout the paper. The graptolite biozonal scheme is 111 

that developed by Zalasiewicz et al. (2009) for the UK Silurian, with wider comparisons 112 

based on Loydell's (2011) review of other regional schemes. Further information on relevant 113 
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aspects of Welsh and global Llandovery biostratigraphy, and on the sources used to compile 114 

Fig. 5, are provided as Supplementary data. 115 

Davies et al.'s (2013) re-examination of the type succession, and of the Aeronian and 116 

Telychian stage GSSPs that it hosts, has important implications for international correlation. 117 

Rhuddanian rocks in the type succession range into the triangulatus graptolite Biozone, and 118 

earliest Telychian rocks pre-date the local FAD of guerichi Biozone graptolites. However, to 119 

avoid confusion and facilitate global comparisons, the bases of the Aeronian and Telychian 120 

stages herein follow the graptolitic definitions of current international usage (i.e. base 121 

triangulatus Biozone = base Aeronian; base guerichi Biozone = base Telychian). The 122 

consequences of applying this to the type succession are shown in Fig. 5. Moreover, where 123 

stage recognition is based on the appearances of key brachiopod taxa, which is true of many 124 

non-graptolitic successions in Europe and North America, it is now likely that the regional 125 

stage boundaries correlate with neither the Type Llandovery GSSPs nor the graptolite zonal 126 

boundaries on which they are based (see Davies et al., 2013). 127 

Similarly, correlations based on the A1-4, B1-3 and C1-6 quasi-chronozonal scheme erected 128 

in the Llandovery area by Jones (1925), which have been widely adopted as the standard 129 

means for subdividing Llandovery strata both in the UK (e.g. Williams, 1951; Ziegler, 1966; 130 

Ziegler et al., 1968b; Cocks et al., 1970; Cocks et al., 1984) and internationally (e.g. Berry 131 

and Boucot, 1970; Johnson et al., 1985; Brett et al., 1998), should no longer be relied upon 132 

without reference to the primary dating criteria. 133 

 134 

3. A sequence stratigraphy for the Type Llandovery area 135 

The event stratigraphy of uppermost Hirnantian strata in the Llandovery area has been 136 

assessed by Davies et al. (2009). The overlying Rhuddanian to Aeronian facies comprise a 137 

series of progradational sequences (progrades) bounded by flooding surfaces and correlative 138 

unconformities. Such sequences represent transgressive–regressive (T–R) cycles in the sense 139 

of Embry and Johannessen (1992; also Catuneanu et al., 2011) and ‘depositional sequences’ 140 

as defined by Embry et al. (2007; Embry, 2009). Lateral and vertical changes in lithology and 141 

biota, including trace fossil assemblages, record the repeated basinward migration of 142 

shallower, intensely bioturbated, sandy foreset facies across their deeper, more distal and 143 

muddy bottomset counterparts (Davies et al., 2013) (Fig. 3). The reduced levels of 144 

bioturbation displayed by bottomset facies and a trace fossil assemblage dominated by 145 

Chondrites are consistent with deposition at depths that lay beyond the colonising reach of 146 

contemporary shelly benthos. In contrast, foreset facies belts were home to a diverse and 147 

abundant assemblage of soft-bodied, burrowing organisms that lived alongside Stricklandia 148 

and deeper Clorinda community shelly benthic assemblages (e.g. Ziegler et al., 1968a). 149 

Topset facies were anchored to an active and erosion-prone fault footwall region, but their 150 

characteristic Pentamerus Community assemblages (Plate 1) extended into upper foreset 151 

settings where they serve to identify periods of maximum shallowing (Fig. 6). It is of note 152 

that, whereas appearances of Stricklandia and Pentamerus community assemblages in 153 
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cratonic interior successions are normally viewed as evidence of off-shore deposition and 154 

deepening (e.g. Witzke, 1992), in the basin margin setting at Llandovery they are associated 155 

with peak shoaling episodes. Truncation surfaces are present locally at the top of each 156 

prograde. Shoreline ravinement (e.g. Embry, 2009) may have contributed to the development 157 

of these surfaces, but where they merge to form the compound unconformities that 158 

characterise condensed proximal successions (Figs. 3, 4) subaerial denudation was likely to 159 

have been the dominant erosive process. 160 

Ten flooding surfaces define nine (low order) prograde sequences that span the late 161 

Hirnantian to Aeronian interval, the tenth and youngest of these flooding surfaces marking 162 

the redefined local base of the guerichi Biozone and Telychian Stage (Figs. 4, 6). Davies et 163 

al. (2013) labelled these progrades according to their dominant sandstone unit (e.g. Ceg0, 164 

Cegl, Ceg11, etc.) (Fig. 4). Differences in the scale, duration (as measured by graptolite 165 

biozones) and basinward reach of the progrades, as well as the lateral extent and vertical 166 

impact of erosion, allow these to be grouped into three compound (or high order) sequences 167 

according to the criteria established by Embry (1995) and Schlager (2004) (also Catuneanu et 168 

al., 2011; Embry, 2009) (Figs. 4, 6). In addition, many of the progrades comprise a 169 

succession of smaller scale parasequences. Local FADs and/or LADs of key taxa permit these 170 

newly recognised sequences to be dated using a range of biozonal criteria, with many FADs 171 

linked to flooding events (Davies et al., 2013). Radiometric dates available for the 172 

Llandovery Series suggest that the study interval spanned c. 6 myr (Cooper and Sadler, 2012; 173 

Melchin et al., 2012) and, hence, that the average duration of the prograde sequences 174 

recognised in the Llandovery area was well under 1 myr. 175 

 176 

4. Relative marine base level movements 177 

Facies and faunal variations within each sequence and compound sequence allow the 178 

construction of both low and high order relative marine base level movement curves (e.g. 179 

Embry, 2009; see also Section 6b) for the upper Hirnantian to lower Telychian succession 180 

(Fig. 6). These differ significantly from those compiled by McKerrow (1979) and Cocks et al. 181 

(2003). In the first instance, such curves plot the relative changes in depositional depth that 182 

occurred at any given location through time. However, each Llandovery area prograde 183 

appears to have been accompanied by the progressive erosion of its proximal portions, with 184 

the depth of erosion increasing in a landward direction. This suggests that these progrades do 185 

not simply record the cyclical infilling of accommodation space created by subsidence 186 

beneath a static or slowly rising base level, but periods when base level fell. It implies they 187 

were the product, at least in part, of forced regressions (e.g. Posamentier et al., 1992; Hunt 188 

and Gawthorpe, 2000). The deeper, more distal facies that closely overlie flooding surfaces 189 

provide a record of deposition during periods of rising and elevated relative base level within 190 

transgressive and high-stand system tracts. In contrast, each transition into shallower, more 191 

proximal facies signalled the onset of deposition within regressive/falling stage followed by 192 

low-stand system tracts (e.g. Catuneanu et al., 2011). 193 
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Compiled from data beyond the limits of erosion, Fig. 6 identifies the main Llandovery area 194 

base level events. The numbers used on this figure to identify sequence-defining flooding 195 

surfaces and the letters for periods of maximum flooding and shallowing are those cited 196 

throughout the remainder of the text. The first post-glacial maximum flooding surface (1), 197 

present in rocks barren of graptolites, underlies the first appearance in Wales of taugourdeaui 198 

Biozone chitinozoans (see Fig. 5 [12, 20]). A second flooding level (2) coincides with the 199 

FAD of persculptus Biozone graptolites in Wales, but which is now thought to be later than 200 

elsewhere (see Vandenbroucke et al., 2008; Davies et al., 2013; Challands et al., 2014; and 201 

Supplementary data). A third intra- Hirnantian event (3) is succeeded by Llandovery flooding 202 

surfaces that coincide with the local FADs of revolutus (4), magnus (6), middle and upper 203 

convolutus (7, 8) and lower sedgwickii (9) graptolite biozone assemblages. A further intra-204 

revolutus Biozone event (5) is also recognised. The higher order base level curve points to 205 

maximum deepening events during the deposition of the upper persculptus, revolutus and 206 

lower sedgwickii Biozones (A–C). A marked flooding event that coincides with the local 207 

FAD of guerichi Biozone graptolites (10) is seen on both the high and low order datasets. 208 

To facilitate the wider correlation of these events, it is important also to place them in the 209 

context of the revised ranges for the key brachiopod lineages and microfossil assemblages 210 

used in Llandovery correlation (Fig. 5). Thus, flooding events 1 and 2 lie within the range of 211 

the Hirnantia Fauna (Davies et al., 2009) and event 3 is closely related to the first appearance 212 

of primitive forms of Stricklandia lens. Event 4 coincides with the FAD of the more evolved 213 

S. lens intermedia alongside eoplanktonica Biozone acritarchs. Flooding events 5 and 6 also 214 

fall within the range of S. lens intermedia, event 5 marking the appearance of maennili 215 

Biozone chitinozoans, and event 6 of a precursor of the chitinozoan Eisenackitina 216 

dolioliformis within the range of tenuis Biozone conodonts. The intra-convolutus Biozone 217 

transition between S. lens intermedia and S. lens progressa, well documented in theWelsh 218 

Borderland (Cocks and Rickards, 1969; Ziegler et al., 1968b), appears related to event 7, 219 

which also marks the entry of microcladum Biozone acritarchs. Fully evolved forms of S. 220 

lens progressa are first recorded above flooding level 8, coincident with the local FADs of 221 

estillis Biozone acritarchs and dolioliformis Biozone chitinozoans. The earliest records of 222 

Eocoelia hemispherica at Llandovery are also from above this flooding surface, though the 223 

species is believed to first appear in the leptotheca graptolite Biozone (e.g. Cocks et al., 1984; 224 

Bassett, 1989). Event 9 marks the entry of the more highly evolved E. intermedia alongside 225 

S. laevis, yet specimens from above this level identified as E. hemispherica and S. lens 226 

progressa (Williams, 1951; Cocks et al., 1984) confirm an interval of overlapping ranges 227 

within the lower parts of the sedgwickii graptolite Biozone and the staurognathoides 228 

conodont Biozone. The records of E. curtisi at Llandovery are from a slump deposit (Davies 229 

et al., 2010, 2011), but this more evolved taxon has elsewhere also been shown to have its 230 

FAD in rocks of sedgwickii Biozone age (Doyle et al., 1991). No in situ shelly assemblages 231 

have been recognised closely overlying event 10 at Llandovery. However, data from 232 

elsewhere appear to confirm that only S. laevis and E. curtisi survive into and above the 233 

guerichi Biozone (Bassett, 1989), within which encantador Biozone acritarchs first appear 234 

(Davies et al., 2013). 235 
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The fault-generated uplift and deep erosion of proximal parts of the succession preclude the 236 

construction of an onlap curve (e.g. Haq and Schutter, 2008). However, the lateral extent of 237 

each of the main progrades provides an arbitrary measure of the basinward shift of facies 238 

belts associated with each relative lowering of base level (Fig. 6). The three composite 239 

sequences reached their progradational acmes (D, E and F) during the acinaces, lower 240 

convolutus and upper sedgwickii-halli graptolite biozones. Significant lower order 241 

progradations occurred during the revolutus, triangulatus and in the middle and upper 242 

convolutus biozones. 243 

Was the forcing mechanism for these Llandovery area progrades regional isostasy, tectonism, 244 

or global eustasy and, if the latter, was this glacioeustasy, and did these factors operate in 245 

concert or separately at different times? Regional base level movement curves differ 246 

conceptually from true sea level movement curves (e.g. Grabau, 1940; Artyushkov and 247 

Chekhovich, 2001; Miall, 2004). The latter seek to provide a record of changes in sea level 248 

elevation through geological time relative to a fixed global datum, nominally taken to be 249 

modern sea level (e.g. Vail et al., 1977; Haq and Schutter, 2008). Such changes, if properly 250 

identified, must be eustatic (i.e. of global reach), even though their impacts might be rendered 251 

unrecognisable by local isostatic and/ or tectonic effects. In reality, local and regional 252 

variations in rates of subsidence, source area uplift and sediment supply, all of which are 253 

linked to ambient epeirogenesis, must play a role in fashioning the detailed shape of such 254 

curves (e.g. Artyushkov and Chekhovich, 2001, 2003; Zhang et al., 2006) and can be the 255 

dominant factors, as during the Telychian in Wales (e.g. Schofield et al., 2009). These same 256 

factors make it unlikely that the base level history and hierarchy recognised in one area will 257 

be fully replicated in another. 258 

When seeking to discern whether regional base level movements record a global (eustatic) 259 

signal, it is therefore gross trends, major flooding surfaces and peak events that offer the best 260 

potential for testing. For this reason, the Llandovery area base level history depicted on Figs. 261 

7 to 14 is divided into broad intervals of deepening and elevated base level (coloured blue) 262 

and of shallowing and lowered base level (coloured red) rather than simply into transgressive 263 

and regressive components. Parasequence-scale movements (Fig. 6) have been ignored. 264 

Where the boundaries between these sectors coincide with flooding surfaces, their location is 265 

precise, but where they are located on the regressive portions of the curves their placement is 266 

more arbitrary. Nevertheless, in providing a single template for comparison, this approach 267 

emerges as a practical means of gauging the broad similarities and differences displayed by a 268 

range of datasets (see Section 8). 269 

 270 

5. Regional and UK comparisons (Fig. 7) 271 

Comparisons with other successions appear to confirm that many of the late Hirnantian–early 272 

Telychian base level events recognised in the type area occur widely throughout the UK (Fig. 273 

7). To the east of Llandovery, in a palaeo-landward direction, the coeval rocks of the Welsh 274 

Borderland, notably in the Church Stretton area, testify to the pulsed transgression of a 275 



8 
 

dissected topography (Johnson et al., 1998). Rhuddanian rocks were either largely excluded 276 

or subsequently eroded from much of this region. The work of Ziegler et al. (1968b; also 277 

Cocks and Rickards, 1969), reinterpreted in the light of the Type Llandovery findings, point 278 

to an initial inundation of more deeply incised settings around the Rhuddanian–Aeronian 279 

boundary (B),with evidence for subsequent pre- and intra-convolutus Biozone flooding 280 

episodes (6 and 7). Transgressive Pentamerus-bearing sandstones of sedgwickii Biozone age 281 

bear testimony to a more extensive inundation (9 and C), and the subsequent deepening that 282 

widely introduced Clorinda Community benthic assemblages can be matched to the guerichi 283 

Biozone flooding event at Llandovery (10). 284 

Further west, in the contiguous, graptolitic, deep water Welsh Basin succession, many of the 285 

events documented in the type area are mirrored by the alternation of oxic and anoxic 286 

mudstones facies and by evolving patterns of coarse clastic deposition (e.g. Woodcock et al., 287 

1996; Davies et al., 1997; Schofield et al., 2009) (Fig. 7). Periods of falling base level are 288 

argued to have promoted the better mixing of surface and deep water layers. The introduction 289 

of oxygenated waters then allowed a burrowing fauna to colonise the basin floor (e.g. Page et 290 

al., 2007; Challands et al., 2008). The resulting mudstone facies are, accordingly, strongly 291 

burrow-mottled. The coincident rejuvenation of sediment source areas and increased clastic 292 

input is recorded by the expansion and migration of sand-dominated turbidite lobes locally 293 

present on the basin floor (e.g. Cave and Hains, 1986; Davies and Waters, 1995; Davies et al., 294 

2006 a, b;Wilson et al., 2016). In contrast, episodes of rising base level have been linked to 295 

the establishment of a strongly stratified basin water column, the imposition of anoxic 296 

(anaerobic) bottom waters and, due to the exclusion of burrowing organisms, the 297 

accumulation of laminated, organic-rich mudstones (e.g. Leggett, 1978). The coeval 298 

drowning of source areas and the decline in sediment supply is reflected in the synchronous 299 

contraction of the basin's deepwater sandy systems (e.g. Schofield et al., 2009). 300 

This level of linkage between the successions of the Welsh Basin and its contiguous margin 301 

is to be expected. Closely comparable oxic/anoxic alternations are recognised in Llandovery 302 

successions that also formed along the southern seaboard of Iapetus at Llanystumdwy and 303 

Conway (North Wales) and in the English Lake District (e.g. Baker, 1981; Rickards, 1970; 304 

Rickards and Woodcock, 2005) (Fig. 2). Their presence in the Llandovery succession at 305 

Dob's Linn in the Scottish Southern Uplands is more telling. There, in Aeronian strata, units 306 

that are barren of graptolites, with quasi-oxic mudstone beds, alternate with richly graptolitic, 307 

anoxic intervals (Toghill, 1968) in a pattern that can be matched to that in the Welsh Basin 308 

(Baker, 1981; Loydell, 1998; Page et al., 2007) and, by extrapolation, to many Type 309 

Llandovery events. This is significant since the succession in Scotland has been interpreted as 310 

an accretionary prism of Iapetus ocean floor sediments accreted during subduction along the 311 

southern edge of Laurentia (e.g. Leggett et al., 1979;Woodcock and Strachan, 2012; but see 312 

Stone et al., 1987). Hence, it offers evidence that many of the base level events recognised in 313 

the Llandovery area can be linked to changes in seawater chemistry that affected both intra-314 

cratonic and oceanic settings alike. Only in the mid Rhuddanian do these successions fail to 315 

provide clear evidence of correlatable changes in facies and base level. 316 
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 317 

6. Llandovery eustasy 318 

Whether it is feasible to discern a eustatic signal in ancient sedimentary successions is widely 319 

questioned by those who argue that the ‘noise’ of regional factors is always likely to ‘drown 320 

out’ the impacts of all but the largest and most rapid global sea level movements (e.g. Miall, 321 

2010) (see Section 8). Those who have published on Silurian eustasy take care to 322 

acknowledge and to counter such concerns (e.g. Witzke, 1992; Johnson, 2010). They point to 323 

facies, faunal and, increasingly, isotopic shifts that can be linked to changes in bathymetry, 324 

and appear to be widely correlatable, as evidence of global movements in marine base level. 325 

Johnson et al. (1991b) labelled this empirical approach the pursuit of ‘practical eustasy’ and, 326 

utilising regional datasets, many have since attempted to construct curves that purport to chart 327 

changing Silurian sea levels (Fig. 8). 328 

The varied methods used in the construction of Silurian sea level curves and the concepts that 329 

underpin them have been reviewed by Johnson (2006, 2010). In shallow shelfal settings, 330 

systematic changes in benthic brachiopod (e.g. Johnson, 1987, 1996; Johnson et al., 1991a) 331 

and conodont (e.g. Zhang and Barnes, 2002b) assemblages have proved effective in 332 

identifying gross trends and peak events, despite the misgivings of some (e.g. Aldridge et al., 333 

1993; Loydell, 1998). Johnson et al. (1985) (also Rong et al., 1984) suggest that variations in 334 

graptolite diversity may similarly reveal the impact of sea level changes in otherwise uniform 335 

deep water mudstones. Linked changes in lithofacies and biofacies have been used in both 336 

shallow water carbonate (e.g. Witzke, 1992; Copper and Long, 1998) and siliciclastic 337 

successions (e.g. Brett et al., 1998; Melchin and Holmden, 2006), and, in a variant of this 338 

approach, Baarli (1988, 1998; also Baarli et al., 1992) and Long (2007) chart changes in the 339 

frequency and thickness of storm beds (tempestites). Johnson et al. (1998) gauged the onlap 340 

of palaeotopography. Many of these studies deliberately target the successions of cratonic 341 

interiors on the assumption that tectonically stable regions are those most likely to preserve 342 

the imprint of eustatic events (e.g. Johnson et al., 1991b). Evidence of regional epeirogenesis 343 

within and along the margins of intra-cratonic basins in which many of the most extensively 344 

studied Llandovery successions accumulated tells a different story (e.g. Artyushkov and 345 

Chekhovich, 2001, 2003; Baarli et al., 2003; Davies et al., 1997). 346 

The ‘graptolitic approach’ of Loydell (1998) benefits from the precise dating achievable for 347 

graptolite-bearing intervals, which, when shown to be widely correlatable, are argued to 348 

record global flooding events and, as a consequence, widespread anoxia (e.g. Leggett, 1980; 349 

Davies et al., 1997; see Section 5). Other explanations for anoxic events, however, such as 350 

basin restriction and/or locally elevated levels of organic productivity, suggest that the link 351 

between widespread anoxia and eustasy may be more complex (e.g. Challands et al., 2008). 352 

This is illustrated in recent studies documenting redox control on faunal (Vandenbroucke et 353 

al., 2015) and facies variations (McLaughlin et al., 2012) that have previously been used to 354 

infer changes in Silurian sea level. Regional sequence analysis, used in tandem with these 355 

other methods, is widely seen as a prerequisite to curve construction (e.g. Harris et al., 1998; 356 

Brett et al., 1998, 2009; Haq and Schutter, 2008) and is the approach adopted here. 357 
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 358 

6.1. Methodology 359 

This study replicates the approach applied to North American datasets by Johnson (1987) and 360 

first attempted on a global scale by McKerrow (1979), prior to the influential studies of 361 

Johnson et al. (1991b), Johnson and McKerrow (1991) and Johnson (1996). Figs. 8 to 12 362 

present a range of published curves that purport to chart either regional or global movements 363 

in late Hirnantian to early Telychian marine base level. Many of their authors label them ‘sea 364 

level curves’. These are compared with the base level trends and events recognised at 365 

Llandovery in an effort to gauge the levels of similarity. The implicit assumption is that 366 

trends and events that can be shown to be widely correlatable are those most likely to be 367 

eustatic (see Section 8). For many regions, more than one curve is included. This reflects the 368 

availability of datasets compiled using different methods to gauge bathymetry. Some of these 369 

reveal a coincidence of trends and events, as for example on Anticosti Island (e.g. Zhang and 370 

Barnes, 2002b; Long, 2007). However, intra-regional curves that display marked differences 371 

and may reveal the impacts of local tectonism and/or isostasy, notably in Siberia and on the 372 

Yangtze Platform of China (e.g. Johnson et al., 1985; Yolkin et al., 2003), are also utilised for 373 

purposes of objectivity. Other Llandovery datasets (Figs. 13, 14) argued to provide a proxy 374 

record of sea level change, based on physical evidence of glacial advance and retreat and the 375 

flux of stable isotope ratios, faunas and ocean states are assessed in Section 8. 376 

6.2. Curve construction and alignment 377 

Given the current paucity of radiometric dates and stable isotope profiles, the correlation of 378 

many Llandovery successions necessarily remains reliant on biostratigraphical methods. To 379 

facilitate this, all the curves presented in Figs. 8 to 13 have been recalibrated to align with the 380 

UK Llandovery graptolite biozonation (Fig. 5), and this has required the vertical warping of 381 

many. In recalibrating each curve, the dating criteria provided by their authors have largely 382 

been relied upon. The justification for any amendments is provided via the numbered 383 

references [in square brackets] to Supplementary data. The use of FADs and LADs has been 384 

a common theme in such re-evaluations and brings the virtue of consistency to the datasets. 385 

Nevertheless, the roles of facies control, provincialism, diachronous and divergent patterns of 386 

dispersal and cryptic omission, as well as collecting bias, all introduce uncertainty (e.g. 387 

Zalasiewicz et al., 2009; Miall, 2004). Sadler (2004; also Sadler et al., 2009) shows that FAD 388 

and LAD-based biozonal boundaries when correlated on a global scale can rarely be viewed 389 

as truly isochronous and Cramer et al. (2015) suggest that, by using multiple high resolution 390 

datasets, it may soon be possible evaluate these levels of uncertainty. As it is, Silurian 391 

chronostratigraphy remains predicated on the assumption that such uncertainties fall within 392 

geologically acceptable limits (e.g. Cramer et al., 2011a; Melchin et al., 2012) and, as Witzke 393 

(1992) argues, that in the pursuit of ‘practical eustasy’, “parallel changes in relative sea level 394 

coincident with biozonal boundaries are most reasonably interpreted as synchronous.” 395 

The horizontal axes of the curves are as used by their authors and reflect the different criteria 396 

they employed for calibration. Very few claim to chart changes in absolute bathymetric 397 
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value, those of Ross and Ross (1996), Johnson et al. (1998), Artyushkov and Chekhovich 398 

(2001) and Haq and Schutter (2008) being notable exceptions. This use of varied criteria 399 

emphasises the need, when seeking to identify correlatable events, to focus on abrupt changes 400 

and gross trends rather than to compare precise profiles. 401 

Before drawing conclusions from curve comparisons it is also important to consider the 402 

relative orders of movement and the relationships between the events that such curves 403 

portray. That different orders of sea level movement, superimposed upon one another, can be 404 

discerned in the stratigraphical record and that these record not just differences in vertical 405 

scale and duration, but ultimately in causative mechanism is a concept that has evolved (e.g. 406 

Vail et al., 1977; Duval et al., 1992; Embry, 1995; Schlager, 2004; Miller et al., 2005). 407 

Catuneanu et al. (2011) point to inconsistencies in this approach and highlight the misuse of 408 

numerical (1st, 2nd, 3rd, etc.) and comparative (high, low) hierarchies. In this account, high 409 

order refers to sea level curves that purport to record vertical movements of many 10s or 100s 410 

of metres that took place over time periods that can range up to several millions of years. 411 

Lower order curves depict more frequent, lower amplitude events. The concept is valuable in 412 

enabling different levels of comparison between published datasets and offering a potentially 413 

broader insight into the origins of the base level movements recorded, but the distinction is 414 

not always straightforward (e.g. Embry, 1995; Schlager, 2004) and can result in the arbitrary 415 

inclusion of lower order events on high order curves. 416 

Periods of high order global deepening may be interrupted at the local level by prograde 417 

events that record the impact of either low order eustatic regressions and/or local influences 418 

on sediment supply and accommodation space. In the same way, low order flooding events 419 

can be expected to punctuate episodes of high order global shallowing. The offset between 420 

high order, global maxima and regional, lower order oscillations accounts, arguably, for 421 

many of the marked discrepancies in the shapes of published curves and the problems 422 

encountered when attempting to match events. It follows that modest perturbations on high 423 

order curves may reflect the impact of lower order events that, at the local level and in the 424 

field, can appear every bit as significant as those associated with high order peaks. 425 

Conversely, detailed dating can show that what appears to be a minor event in the field – a 426 

mudstone on mudstone contact for example – conceals a more significant base level history, 427 

as with the contact between the Lower and Upper Sodus Shale in New York State (Brett et 428 

al., 1998) (see Supplementary data). It is against these difficulties that the correlations 429 

presented on Figs. 8 to 12 should be viewed. 430 

6.3. Analysis: global sea level curves (Fig. 8) 431 

In Fig. 8, a selection of some of the most widely cited global sea level curves for the late 432 

Hirnantian to early Telychian interval are compared with the inferred base level movements 433 

recognised in the Llandovery area. Informed by the plots of McKerrow (1979), the curve of 434 

Johnson et al. (1991b) established what many came to view as the ‘standard’ for Silurian sea 435 

level movements, and the ages it established for key high-stand events remain essentially 436 

unmodified in all Johnson's subsequent reviews (1996, 2006, 2010). Yet, from a comparison 437 

of some of the most recent and authoritative examples of global sea level curves by Haq and 438 
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Schutter (2008) and Johnson (2010), it is clear that a consensus is some way off. The 439 

suspicion also emerges (see below) that some of the most commonly used curves are over-440 

reliant on the data from a single region (e.g. Ross and Ross, 1996) and/or are a conflation of 441 

higher and lower order base level events, but are fully representative of neither. 442 

In the first instance it is worth comparing the late Rhuddanian to early Telychian portion of 443 

the high order Type Llandovery curve with the same part of many of the other curves. The 444 

broad alignment of independently constructed peaks appears to offer support for a global 445 

signal within the Type Llandovery data. Several recognise a high order Rhuddanian 446 

transgression that peaked in the revolutus Biozone (B) (e.g. Ross and Ross, 1996; Page et al., 447 

2007) or close to the revolutus–triangulatus biozonal boundary (e.g. Johnson, 1996, 2010). 448 

Loydell (1998) and Haq and Schutter (2008) delay the culmination of this event until the 449 

magnus Biozone and it is not inconsistent to suggest that flooding levels 4, 5 and 6 seen at 450 

Llandovery were lower order increments that contributed to this global high-stand. 451 

The lower sedgwickii Biozone is also widely seen as a period of elevated sea levels (C). 452 

Some see this as the peak of a prolonged deepening episode that spanned much of the 453 

preceding convolutus Biozone (e.g. Johnson, 2010), and to which lower order events (7, 8, 454 

and 9) may again have contributed. Others, by showing it as a pronounced, but short-lived 455 

deepening event (e.g. Ross and Ross, 1996), imply a wider significance for the basal 456 

sedgwickii Biozone flooding surface (9). The late sedgwickii-halli biozonal interval is widely 457 

recognised as a period of falling sea levels, shown by Johnson (1996), Ross and Ross (1996) 458 

and Page et al. (2007) to have reached its acme close to the base of the guerichi Biozone (F). 459 

Loydell's (1998) curve is notably at odds with the majority in its depiction of late Aeronian 460 

sea level movements. 461 

Many curves acknowledge the presence of a pre-sedgwickii Biozone Aeronian low-stand, but 462 

opinions differ as to its scale and timing. Ross and Ross (1996; also Page et al., 2007) restrict 463 

it to the convolutus Biozone. Others, by recognising its peak in the mid Aeronian leptotheca 464 

Biozone (e.g. Loydell, 1998, 2007; Johnson, 1996, 2010), imply a link with at least part of 465 

shoaling episode E. The depiction of a discrete early Aeronian lowering of sea level by Ross 466 

and Ross (1996) is replicated in the subsequent curves of Page et al. (2007) and Haq and 467 

Schutter (2008). It compares with a lower order progradation (Ceg0) seen at Llandovery, but 468 

the biostratigraphical dating of this global event is suspect (see Fig. 9 and Supplementary 469 

data). Evidence of other lower order events, including both mid (7) and upper (8) convolutus 470 

Biozone flooding levels is provided by the curves of Loydell (1998, 2007). In marked 471 

contrast to the Type Llandovery data, most global curves show the early-mid Rhuddanian as 472 

a period of steadily rising sea levels. There is no indication of a discrete persculptus Biozone 473 

deepening maximum (A), or of a subsequent shallowing event on the scale seen at 474 

Llandovery (D). Ross and Ross (1996) and Page et al. (2007) depict what appears to be a low 475 

order pre-revolutus Biozone regression, but the dating and global credentials of this event are 476 

again questionable (see below and Supplementary data). The marked guerichi Biozone 477 

deepening at Llandovery (10) appears to show the abrupt termination of the preceding 478 

progradation (F) and the rapid onset of deep and distal sedimentation. This is consistent with 479 
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the onset of regional subsidence (Davies et al., 2013) and of a period when contemporary 480 

orogenesis became the dominant influence on sedimentation within the Welsh Basin (e.g. 481 

Woodcock et al., 1996; Davies et al., 1997). A broadly coeval event widely recognised in the 482 

global datasets suggests that there was a coincidence of local and global forcing mechanisms, 483 

although the curves of Haq and Schutter (2008) and Johnson (2010) are inconsistent with 484 

this. 485 

6.4. Analysis: regional curves from circum-Iapetus provinces (Figs. 9, 10) 486 

Following the studies of Johnson (e.g. 1979, 1987; Johnson et al., 1985; Johnson et al., 487 

1991b) and Witzke (1992; Witzke and Bunker, 1996), Johnson (1996) recognised Laurentian-488 

based eastern Iowa as the ‘type district’ for his four Llandovery high-stand events. The 489 

adjacent, closely comparable succession in Illinois appears to have influenced Ross and Ross 490 

(1996, Fig. 2) in the construction of their sea level curve published in the same volume. Thus, 491 

the dating and interpretation of these mid USA successions has been critical in the evolution 492 

and application of the eustatic concept to the early Silurian in North America and globally. 493 

This is significant as the dating of many of the key events recognised in Iowa and Illinois is 494 

open to question (see Supplementary data) and has implications for their wider correlation. 495 

Despite this, recalibrated regional curves mainly from Laurentian North America and from 496 

Baltica (e.g. Baarli et al., 2003) offer insights into the number and scale of lower order base 497 

level events in these areas (Figs. 9, 10). 498 

The revolutus Biozone deepening maximum (B) and the sedgwickii Biozone transgression 499 

(9), deepening maximum (C) and subsequent progradation (F) appear to be widely recorded 500 

in many of the recalibrated Laurentian datasets (e.g. Harris and Sheehan, 1997, 1998). A 501 

deepening during the guerichi Biozone (10) is also acknowledged where rocks of this age 502 

have escaped intra-Telychian erosion (Kluessendorf and Mikulic, 1996), as on Anticosti 503 

Island and in Arctic Canada (e.g. Zhang and Barnes, 2002b; Melchin and Holmden, 2006). In 504 

contrast to the global datasets, several North American curves (Figs. 9, 10) suggest the 505 

presence of both early and mid Aeronian shallowing events, though, with the exception of the 506 

curve for Iowa (Fig. 9, curve 1), few endorse the scale and duration of prograde E seen at 507 

Llandovery. In addition to the base magnus Biozone transgression (6), multiple flooding 508 

events in strata believed to span the leptotheca and convolutus biozones (e.g. Harris et al., 509 

1998; Long, 2007) raise the possibility that flooding surfaces matching those that define 510 

parasequences at Llandovery may be present, as well as those that define Llandovery area 511 

sequences (7 and 8). On the other hand, it is clear that significant non-sequences interrupt 512 

many of these successions and, whilst offering evidence of shallowing and subaerial erosion, 513 

these may also account for the non-preservation of key flooding levels (see Section 8). Zhang 514 

and Barnes (2002b) recorded a marked lowstand on Anticosti Island that matches closely the 515 

upper convolutus Biozone prograde at Llandovery. It succeeds a pre-sedgwickii Biozone 516 

deepening episode (8) and underlies a flooding surface that marks the local FAD of 517 

sedgwickii Biozone graptolites (9). The recalibrated curves for Iowa and Illinois offer 518 

evidence for a comparable shoaling between the regional FADs of S. lens progressa and S. 519 

laevis (Johnson, 1975;Witzke, 1992). The data from Baltica (Norway, Sweden, Estonia and 520 
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Russia) are more varied (Fig. 10), consistent with deposition in tectonically active basins (e.g. 521 

Baarli et al., 2003; Dahlqvist and Bergström, 2005). In northern Estonia, Nestor and Einasto 522 

(1997) recognised flooding levels consistent with events 4, 5 and 6 at Llandovery. This level 523 

of detail is not replicated by other Baltic datasets, although most show a revolutus Biozone 524 

deepening episode (B) (e.g. Johnson et al., 1991a; Baarli et al., 2003). Many of the 525 

recalibrated Baltic curves also indicate a period of sustained Aeronian shallowing. In the 526 

Russian Timan–Petchora Basin, this peaked during the leptotheca Biozone, but it is shown 527 

elsewhere to have extended into the convolutus Biozone (E). The impact of a deepening that 528 

spanned the late convolutus to early sedgwickii biozonal interval, consistent with the 529 

conflation of flooding events 7, 8 and 9 and high-stand C, is seen throughout the Baltic 530 

region. Also widely acknowledged are a late Aeronian shallowing (F) and a subsequent 531 

guerichi Biozone deepening (10), the latter marked in Estonia by the transgressive base of the 532 

Rumba Formation (e.g. Nestor and Nestor, 2002; but see Supplementary data). 533 

Strata of persculptus Biozone age are absent from many circum-Iapetus sections (see Section 534 

7a), but where preserved in Iowa and Illinois, on Anticosti Island and in Arctic Canada, there 535 

is evidence of a deepening maximum (A) (e.g. Witzke and Bunker, 1996; Dewing, 1999; 536 

Zhang and Barnes, 2002b; Melchin and Holmden, 2006; Long, 2007). Other curves show a 537 

deepening episode extending from the Hirnantian that peaked at different times during the 538 

early Rhuddanian (e.g. Johnson et al., 1991a; Nestor and Einasto, 1997; Copper and Long, 539 

1998). Nonetheless, several regional base level curves, notably from North America, record a 540 

subsequent high-order regression that, in common with the Llandovery area (D), peaked prior 541 

to the revolutus Biozone and was followed by a deepening episode (4). 542 

The Cornwallis Island (Arctic Canada) curve of Melchin and Holmden (2006) differs 543 

significantly from other Laurentian, ‘Avalonian’ and Baltic datasets (Fig. 10). It shows the 544 

early–mid Aeronian as a period of slowly rising base level that culminated in an early 545 

convolutus Biozone high-stand, and the early sedgwickii Biozone as a time of falling base 546 

level that peaked well below the base of the guerichi Biozone. From a comparison of depth-547 

controlled conodont assemblages, Zhang et al. (2006) concluded that Anticosti Island and 548 

Cornwallis Island experienced very different tectonic and base level movement histories. 549 

6.5. Analysis: curves from other palaeoplates (Figs. 11, 12) 550 

Interpreting base level curves compiled for Llandovery successions that accumulated on other 551 

early Silurian palaeoplates is more challenging. Many of these curves appear to focus on high 552 

order events and very few extend down into the Hirnantian. An exception is the well-dated, 553 

high southern palaeolatitude Gondwanan succession examined by Underwood et al. (1998). 554 

This (Fig. 12, curve 21) provides evidence of a late Hirnantian flooding episode (2) that, in 555 

common with the Llandovery area, culminated in an upper persculptus Biozone highstand 556 

(A). A subsequent shoaling into the atavus to acinaces biozonal interval (commonly also 557 

referred to as the vesiculosus graptolite Biozone) is also recognised in the Murzuq Basin of 558 

Saharan North Africa (Legrand, 2003) (Fig. 12, curve 22), where Loydell et al. (2009; 2013) 559 

view it as evidence for a glacioeustatic sea-level fall. However, the likely impact of 560 

glacioisostasy in this region persuaded Johnson (2010) that the local record of base level 561 
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movements may not accurately reflect global events (see also Berry and Boucot, 1973). 562 

Certainly, curves for more northerly Gondwanan successions, which typically show the 563 

Rhuddanian as a time of generally rising and elevated base levels, more closely resemble 564 

many global datasets (Fig. 8). The Gondwanan curves for Australia (Jell and Talent, 1989; 565 

Talent et al., 2003) and the Himalayas (Talent and Bhargava, 2003) (Fig. 12, curves 23, 24), 566 

and for parts of Cathaysia (South China) (Johnson et al., 1985; also Rong et al., 2003) and 567 

Siberia (Artyushkov and Chekhovich, 2001; Yolkin et al., 2003) (Fig. 11) offer some support 568 

for a high order, revolutus Biozone flooding maximum (B). 569 

Many curves, including that for the Peri-Gondwanan Prague Basin (Fig. 12, curve 18), mirror 570 

the Llandovery data in their depiction of the early-mid Aeronian as a time of falling or 571 

lowered base levels. There is evidence locally of a shoaling peak close to the base of the 572 

convolutus Biozone (E) followed by a high-stand event that could be viewed as a conflation 573 

of flooding episodes 7, 8 and 9. However, a majority of the curves presented by Koren et al. 574 

(2003) for Kazakhstan (Fig. 11) show only a base sedgwickii Biozone transgression (9). 575 

Siberian datasets, including Tesakov et al. (1998), though they record Aeronian base level 576 

movements on a range of scales, are significant for the lateral variability in base level 577 

histories that they imply. Artyushkov and Chekhovich (2001) viewed this as evidence that 578 

regional isostasy was more influential than eustasy. Many curves associate the sedgwickii-579 

halli biozonal interval with a period of shoal deposition (F) and, though the form of the 580 

subsequent deepening episode differs markedly on curves for Cathaysia, Siberia, Peri-581 

Gondwana and Gondwanan North Africa and Australia, the guerichi Biozone is shown 582 

overlapping a period of elevated base levels in all these areas (e.g. Křiž et al., 2003; Jell and 583 

Talent, 1989; Talent et al., 2003). In contrast, the records of base level change during this 584 

latter interval in other parts of Gondwana, in India and in Kazakhstan for example, show this 585 

as a period of base level lowering. 586 

7. Glacioeustatic credentials 587 

Davies et al. (2009) assessed the latest Hirnantian facies present in the Type Llandovery area 588 

that encompass events 1–3 of Fig. 6. These record the pulsed early progress in Wales of the 589 

global transgression that immediately followed the period of maximum Gondwanan ice sheet 590 

expansion (e.g. Hambrey, 1985; Ghienne, 2003; Ghienne et al., 2014). They suggested that, 591 

following the deep erosion associated with the Hirnantian glacial maximum, it was only in 592 

basin margin settings, or where there was deeply incised palaeotopography, that the earliest 593 

phases of the late Hirnantian transgression were likely to be felt and its deposits preserved. 594 

Such palaeotopography was locally effective in excluding much of the late Hirnantian 595 

(persculptus Biozone) to Rhuddanian succession from the Laurentian interior (e.g. Witzke, 596 

1992; Ross and Ross, 1996; Johnson and Baarli, 2007), Baltica (e.g. Nestor, 1997) and Africa 597 

(e.g. Underwood et al., 1998). Such exclusion may account for the poor and inconsistent 598 

record of events within this interval (see Section 8). However, it is now acknowledged that 599 

this global transgressive event marked only the partial collapse of the ice sheet (e.g. Le Heron 600 

and Craig, 2008). The discovery of Llandovery glacigenic deposits in South America (e.g. 601 

Caputo, 1998) suggested to Dias-Martinez and Grahn (2007) that the locus of the 602 
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Gondwanan-based glaciation shifted over time, although facies of comparable age recently 603 

reported from Libya (e.g. Le Heron et al., 2013) confirm that a diminished ice mass 604 

continued to occupy parts of Africa. These findings support the widely held assumption that 605 

many Llandovery base level events, both high and low order, provide a record of sea level 606 

change linked to dynamic changes in the shape and extent of an extant South Polar Ice Sheet 607 

(e.g. Ross and Ross, 1996; Loydell, 1998, 2007; Nestor et al., 2003; Zhang and Barnes, 608 

2002b; Page et al., 2007; Haq and Schutter, 2008; Johnson, 2010; Munnecke et al., 2010). It 609 

is argued that the changes in global climate and ocean state associated with these glacial 610 

events are reflected in plots of stable isotope ratios and faunal flux, fostering the belief that 611 

these too provide a proxy record of Llandovery glacioeustasy (e.g. Melchin and Holmden, 612 

2006; Cramer et al., 2011a). The scale and duration of many Silurian base level events are 613 

also seen as consistent with glacioeustatic forcing (e.g. Johnson and McKerrow, 1991), 614 

vertical movements of 10s of metres over time periods of less than a million years generally 615 

being seen as too great for epeirogenic effects to achieve on their own (e.g. Miller et al., 616 

2005; Csato and Catuneanu, 2012). However, this is not to say that glacioeustasy alone was 617 

instrumental, or was always dominant, particularly in tectonic settings such as the faulted 618 

margin of the Welsh Basin, where high rates of subsidence were likely to have been a 619 

significant factor (cf. Gawthorpe et al., 1994). 620 

7.1. Analysis: known glacial events (Fig. 13) 621 

The limited dating available for the South American glaciogenic successions, reviewed by 622 

Kaljo et al. (2003), is based principally on chitinozoans recovered from interbedded marine 623 

deposits. These data suggest that an extensive South Polar ice mass continued to occupy that 624 

part of Gondwana during the early Rhuddanian. The late Rhuddanian deepening seen in most 625 

global and some regional curves appears to reflect the first major period of melting of the 626 

South American ice mass (e.g. Dias-Martinez and Grahn, 2007). Subsequently, according to 627 

Caputo's (1998) log of glacigenic deposits (Fig. 13), a re-advance during the triangulatus 628 

Biozone established an extensive, slowly down-wasting ice mass that was sustained 629 

throughout much of the Aeronian, prior to an abrupt and marked retreat at or close to the base 630 

of the sedgwickii Biozone. This preceded a late Aeronian to early Telychian re-advance and 631 

there is evidence also for a discrete late Telychian glaciation. Periods of ice retreat 632 

(interglacials), it can be assumed, were also periods of sea level rise. 633 

Given the paucity and nature of the fossil evidence, the suspicion persists that the dating of 634 

these glacial events is based partly on their ‘best fit’ to the ‘standard’ Llandovery sea level 635 

curve and lacks both independent corroboration and precision. At face value, the findings 636 

from South America can be seen broadly to endorse glacioeustatic credentials of the late 637 

Rhuddanian (revolutus Biozone) base level events seen at Llandovery (4, 5, B). Waxing and 638 

waning of the Aeronian ice sheet may account for the base level movements noted at the base 639 

of the magnus Biozone (6) and within the leptotheca-convolutus biozonal interval (7, 8), 640 

though the limited data from South America offer nothing to confirm this and these are the 641 

events that many other datasets fail to depict (see Section 8). Evidence of a discrete mid 642 

Aeronian ice advance on the scale and duration implied by the prograde seen at Llandovery 643 
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(E) is also lacking. However, episodes of interglacial deepening are seen to offer a ready 644 

explanation for the sedgwickii Biozone (9, C) and guerichi Biozone (10) deepening events. 645 

7.2. Analysis: proxy records of climate change (Figs. 13, 14) 646 

Key datasets include those compiled for a range of stable isotopes and for faunal events. 647 

Here, any alignment of trends and peaks with those shown by base level curves does not offer 648 

direct proof of glacially linked sea level movements, but does imply that there may have been 649 

a causative link (e.g. Munnecke et al., 2010). 650 

7.2.1. Isotopic trends and excursions 651 

Curves showing temporal variations in δ18O and δ13C are thought to reflect changes in global 652 

temperature and ice volume, and organic productivity and carbon burial respectively (e.g. 653 

Azmy et al., 1998, 1999; Cooper and Sadler, 2004; Page et al., 2007; Munnecke et al., 2010; 654 

Cramer et al., 2011a; McLaughlin et al., 2012; Melchin et al., 2013; Vandenbroucke et al., 655 

2013). A review of the causal relationships between environmental and isotopic flux is 656 

outside the scope of this paper (see Griffiths, 1998; Gradstein et al., 2012 and references 657 

therein). The mechanisms by which isotopic fractionation is achieved are hotly debated (e.g. 658 

Attendorn and Bowen, 1997; Melchin and Holmden, 2006; Stanley, 2010; Gouldley et al., 659 

2010) and the patterns of flux in oxygen and carbon isotope values do not always match one 660 

another (e.g. Long, 1993). Nevertheless, as many of the positive excursions seen in these 661 

isotope datasets appear to be widely correlatable, such curves have been seen to offer a proxy 662 

record of Late Ordovician and Silurian climatic events and, by extension, associated 663 

glacioeustasy. 664 

The abundant δ13C isotope data now available for the Hirnantian Series generally support 665 

linked climatic and sea level changes that facies and faunal variations appear to record, 666 

including a persculptus Biozone deepening maximum (A) (e.g. Underwood et al., 1997; 667 

Kaljo et al., 2008; Desrochers et al., 2010; Finnegan et al., 2011). Published curves for the 668 

Rhuddanian to early Telychian interval, including Cramer et al.'s (2011a) synthesis of 669 

published δ13C carb data, depict negative excursions consistent with the late Rhuddanian 670 

high-stand and its component events (4, 5 and B) (e.g. Melchin and Holmden, 2006; 671 

Gouldley et al., 2010). Support for the pronounced flooding surface (7) that terminated the 672 

convolutus Biozone Cegl prograde, for an early sedgwickii Biozone deepening episode (9), 673 

and for a deepening event that spanned the Aeronian–Telychian boundary (10), is also 674 

provided. Positive δ13C excursions in the early and late Aeronian have been linked to periods 675 

of global cooling, glacial advance and sea level fall (Fig. 13). Cramer et al. (2011a) 676 

recognised their early Aeronian positive excursion as peaking during the triangulatus 677 

Biozone. This would endorse the glacioeustatic credentials of the Ceg0 progradation and its 678 

defining flooding event (6), but it is unclear whether this level of precision is justified (e.g. 679 

Melchin and Holmden, 2006). The isotopic evidence for a sedgwickii-halli biozone shoaling 680 

event (F) is also ambiguous, both in terms of its timing and impact. The regional curves of 681 

Melchin and Holmden (2006) and Gouldley et al. (2010; based on Kaljo and Martma, 2000) 682 

differ from global sea level curves (Fig. 8) in providing support for a mid Rhuddanian 683 
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shallowing as seen at Llandovery (D). Isotope excursions on the brachiopod-derived δ18O 684 

curve of Azmy et al. (1998) broadly align with the main δ13C excursions and offer support for 685 

Llandovery highstands during the late Rhuddanian (B) and mid Aeronian and for early and 686 

late Aeronian glacially induced regressions (Fig. 13). In common with other datasets, support 687 

for a leptotheca-lower convolutus Biozone low-stand event (E) is lacking and the impacts of a 688 

base sedgwickii Biozone deepening are not seen. However, the processes that led to these 689 

excursions, particularly the role played by biodiagenesis, are debated, and many authors 690 

question the unambiguous relationship between sea levels and δ18O values (see Munnecke et 691 

al., 2010). 692 

7.2.2. Graptolite faunal flux 693 

Many of the flooding surfaces that define the Llandovery area prograde sequences are 694 

associated with the local FADs of biozonal graptolite assemblages. This implies an empirical 695 

relationship between base level events and changes in contemporary graptolite assemblages. 696 

Melchin et al. (1998) (also Storch, 1995) discussed the complex interplay of climatic, oceanic 697 

and ecological factors that likely contributed to the flux in Silurian graptolite populations. 698 

Cooper et al. (2014) pointed to an empirical relationship between Llandovery population 699 

dynamics and the global δ13C curve, from which they too inferred climatic influence. It 700 

follows that the plots produced by these studies provide a further proxy means of assessing 701 

the impacts of glacioeustasy at Llandovery (Fig. 14). 702 

In general, these plots fail to endorse biozonal scale, low order base level events, but trends 703 

that match the high order, Type Llandovery curve are clearly apparent. Cooper et al. (2014) 704 

recorded patterns of reduced extinction and elevated origination for highstands that span the 705 

persculptus–ascensus-acuminatus (A) interval and the revolutus–magnus biozones (B). The 706 

flux in populations also mirror the mid Rhuddanian (D) and mid Aeronian (E) shoaling 707 

episodes and the rising base levels associated with the convolutus-sedgwickii biozonal 708 

boundary (C), though in these cases the relationships between diversity, extinction and 709 

putative sea level movements appear contrary to that proposed by Melchin et al. (1998). The 710 

impacts of a late sedgwickii-halli Biozone shoaling event (F) and subsequent guerichi 711 

Biozone transgression (10) are also evident in the graptolite plots. 712 

7.2.3. Oceanic and climate models 713 

It is pertinent briefly to discuss the influential, if controversial oceanic model of Jeppsson 714 

(1990, 1998). Based on empirical associations of sedimentary facies and faunas, particularly 715 

patterns of conodont extinction, Jeppsson (1990, 1998) contended that the Silurian global 716 

ocean passed repeatedly between two distinct states: ‘primo episodes’ linked to periods of 717 

glacial advance; and ‘secundo episodes’ associated with times of ice retreat (see Johnson, 718 

2006). It follows that glacially driven movements in sea level should closely mirror the 719 

pattern of primo and secundo states. Page et al. (2007), in their extension to this model, 720 

argued for a cyclical, self-regulating mechanism. They contended that the sequestration of 721 

carbon in deep water black shales and shallow water carbonates during periods of elevated 722 

global temperature led to cooling, glacial re-advance, and sea level fall. This, in turn, 723 
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triggered the shutdown of mass sequestration, rising atmospheric CO2 levels then promoting 724 

the next warming phase. Whether glacioeustasy was the cause or the effect is a moot point, 725 

but it is clear that there should be a close alignment of chemostratigraphical and sea level 726 

events. 727 

Many dispute the universal applicability of the Jeppsson model and point to inconsistencies 728 

between its key events and those based on other sedimentary and fossil criteria (e.g. Johnson, 729 

2006). Nevertheless, Jeppsson's (1998) schematic model of changing sea level elevations 730 

offers support for curves that show the Rhuddanian and early Aeronian as a period of 731 

elevated sea levels (e.g. Loydell, 1998) (Fig. 14). There is no evidence for a putative early 732 

Aeronian glacial advance, but there is evidence for mid-Aeronian shallowing linked to the 733 

convolutus Biozone (E). Jeppsson's (1998) Sandvika Event records a primo-secundo 734 

transition that is consistent with an early sedgwickii Biozone deepening (9 and C), but his 735 

model is at odds with many other datasets in suggesting that the resulting high-stand persisted 736 

throughout the remainder of the biozone and much of the early Telychian. 737 

8. An index of Llandovery eustasy 738 

In the pursuit of ‘practical eustasy’, there is always a temptation to invoke the periodic 739 

prevalence of local forces to explain discrepancies between regional and global trends, both 740 

in timing and scale. Subsidence is always on hand to account for regional deepening events 741 

that fall outside eustatic templates, just as tectonic uplift can be used to account for 742 

unexpected shoaling episodes. The assumption by critics of deep-time eustatic research is that 743 

it is for the exponents of eustasy to demonstrate the widespread correlatability of events 744 

(Miall, 2004). Yet, the absence of objective proof for one forcing factor does not of itself 745 

confirm the importance of others. For the relative roles played by tectonism and isostasy in 746 

fashioning local stratigraphies to be properly quantified, the relative impact of contemporary 747 

eustasy in creating and destroying accommodation space must also be evaluated (e.g. 748 

Ettensohn and Brett, 1998; Artyushkov and Chekhovich, 2001, 2003; Dahlqvist and 749 

Bergström, 2005). The need to calibrate the ambient eustatic signal is essential to both camps, 750 

particularly during ‘icehouse’ periods when ongoing glacioeustasy can be anticipated (e.g. 751 

Zecchin 2007; Csato and Catuneanu, 2012). The Eustasy Index methodology presented 752 

herein is intended as a possible first step towards untangling these conflicting factors at the 753 

regional level. 754 

8.1. Eustasy index methodology 755 

The range of techniques used to compile the 62 datasets examined as part of this study, allied 756 

to their wide palaeogeographical distribution (Fig. 1; Table 1), supports their use in an 757 

attempt to quantify the role played by eustasy in shaping the Type Llandovery succession. 758 

Each of the twelve UK graptolite biozones that have been the focus for this study (upper 759 

persculptus to guerichi biozones) have been arbitrarily subdivided into three to create a 760 

matrix with 36 rows for scoring the levels of similarity (see Supplementary data). For each of 761 

the studied datasets (Figs. 7–14), every subdivision that displays a trend comparable to (or, 762 

for proxy datasets, inferred to be consistent with) the low order curve at Llandovery – and is 763 
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coloured blue or red for 50% or more of its duration – has been given a score of 1.0 (see 764 

Eustasy Index scores in Supplementary data). Segments displaying trends that compare more 765 

closely with the high order base level curve at Llandovery rather than the low order curve, 766 

indicated by the diagonal ornament on Figs. 7 to 14, are given a score of 0.5. 767 

Account is also taken of the incomplete nature of many datasets. Where this reflects 768 

limitations of outcrop or exposure, or, as for some proxy curves, the restricted range of the 769 

sampled interval (e.g. Underwood et al., 1997), the ‘missing’ subdivisions are omitted from 770 

the scoring process. More difficult to account for are gaps that record the local impacts of 771 

emergence and erosion. Those of short duration – a subdivision or less – are included since it 772 

is reasonable to infer that they record the impacts of a single, short-lived episode of local base 773 

level lowering. However, where non-sequences span several subdivisions and record 774 

prolonged and/or multiple phases of emergence, it is likely that evidence of local base level 775 

movements has been lost. Therefore, with the exception of the final subdivision prior to the 776 

resumption of deposition, these too are omitted from the scoring mechanism. Analysis of the 777 

levels of representation (Fig. 15) confirms that late Hirnantian and early Rhuddanian 778 

deposits, which might otherwise record the early progress of the post-glacial maximum 779 

transgression, have been widely excluded from many of the areas for which Llandovery base 780 

level and proxy curves have been compiled. The score for each subdivision across the 781 

complete range of datasets, expressed as a percentage of its level of representation, provides 782 

the Eustasy Index (EI) for that section of the Type Llandovery base level curve (Fig. 15 and 783 

Supplementary data): 784 

 EI = (EIr/tR)% (1) 785 

where EIr is the sum of the Eustasy Index raw scores for a subdivision and tR is the total 786 

number of datasets in which that subdivision is represented. 787 

The scores obtained for each subdivision of the Llandovery curve should be viewed as 788 

providing an indication only of the likelihood that eustasy was a significant factor rather than 789 

a measure of the relative importance of sea level movements in any absolute sense. Since 790 

Llandovery area events that obtain the highest EI scores are those recognised on a majority of 791 

the other datasets, it follows that eustasy was likely a factor in shaping these events wherever 792 

they have been identified. Conversely, intervals with low EI values, for which matching 793 

events in other successions are least apparent, are more likely to have been periods when 794 

regional influences on the Llandovery succession were dominant. Importantly, this need not 795 

imply that eustasy was insignificant during low scoring events (see below), or was not the 796 

dominant factor in shaping other datasets. 797 

8.2. Eustasy Index results (Fig. 15) 798 

At first sight, the results of this analysis appear paradoxical. Their high eustasy indices show 799 

that the Type Llandovery highstands that peaked during the persculptus (A), revolutus (B) 800 

and early sedgwickii biozone (C) align with episodes of global deepening, as does the basal 801 

guerichi Biozone flooding event (10). Many of the lower order flooding events that 802 
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contributed to these deepening episodes, in the early revolutus Biozone and linked to the 803 

appearance of magnus and mid and late convolutus biozonal assemblages, are also inferred to 804 

have had a strong eustatic component. However, the intervening lowstands are characterised 805 

by low Eustasy Index values, notably in the early–mid Rhuddanian and mid Aeronian 806 

intervals. 807 

The low eustasy indices for the principal Llandovery area progrades perhaps testifies to their 808 

accumulation along the margins of a tectonically active basin, a setting where regional 809 

epeirogenesis operated alongside eustasy to rejuvenate source areas and create 810 

accommodation space. Widespread source area uplift coincident with the early stages of the 811 

Scandian Orogeny and reactivation of the Tornquist Zone in Europe (e.g. Johnson et al., 812 

1991a; Baarli et al., 2003), and with late stages of the Taconic Orogeny in North America 813 

(e.g. Ettensohn and Brett, 1998; also Brett et al., 1998), can be invoked as an alternative or 814 

enhancing mechanism for the marked early–mid Rhuddanian shallowing not widely seen 815 

outside the circum-Iapetus realm (but see below). It is principally the datasets from this same 816 

region that offer evidence of a leptotheca to lower convolutus Biozone shoaling episode on 817 

the scale observed at Llandovery. However, such analysis illustrates the difficulties of 818 

‘practical eustasy’ as a thesis that requires us to focus on the similarities in the datasets. An 819 

alternative interpretation, consistent with its tectonic setting, is to see the influence of 820 

regional epeirogenesis on Type Llandovery base levels as normally dominant (cf. Gawthorpe 821 

et al., 1994). Periods with a high Eustasy Index can then be seen as episodes either of tectonic 822 

quiescence, during which global sea level movements were able preferentially to influence 823 

sedimentation, or when such movements were of sufficient magnitude and rate to overwhelm 824 

the regional signal. It may not be a coincidence that it is base level movements linked to 825 

interglacial high-stand events that are most clearly identified as eustatic at Llandovery (Fig. 826 

13). The rapid and substantial rises in sea level associated with the disintegration and collapse 827 

of maritime ice sheets are those most likely to overwhelm regional epeirogenic processes, 828 

whereas the slowly falling sea levels that accompany periods of gradual ice sheet expansion 829 

are less able to outstrip regional effects as the most active forcing factors (e.g. Berry and 830 

Boucot, 1973; Morton and Suter, 1996). Yet, it remains curious that at least two of the major 831 

lowstand episodes seen at Llandovery overlap with known periods of ice sheet expansion 832 

seen in South America (Fig. 13) when glacioeustatic drawdown would be anticipated to have 833 

had an impact. 834 

8.3. Significance of glacioeustatic, epeirogenic and orogenic interactions (Fig. 16) 835 

EI scores, as obtained for the Type Llandovery succession, are a function of global and 836 

regional forcing factors, the detailed form of any regional base level curve reflecting the 837 

interplay between eustasy and near-field orogenesis, epeirogenesis and sediment supply. High 838 

levels of subsidence can serve locally to exaggerate the impacts of marine transgressions, in 839 

terms of both rate and reach, and to offset and mask the effects of falling sea levels (cf. 840 

Artyushkov and Chekhovich, 2003). Changes in sea level on at first drained and then flooded 841 

shelves are also accompanied by the removal and then the imposition of hydrostatic and 842 

sediment load (e.g. Long, 2007). Such changes in load will be accommodated either by 843 
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isostasy or, in tectonically active settings, by the differential movement of faulted blocks (e.g. 844 

McGuire, 2012; Stammer et al., 2013; Steffen et al., 2014). Similar adjustments must have 845 

affected early Silurian source areas and depocentres, notably during periods of falling sea 846 

level when, it can be inferred, the deep erosion of a landscape supporting little vegetation 847 

(e.g. Wellman et al., 2013) resulted in the rapid transfer of sediment to marine shelves and 848 

basins (e.g. Davies and Gibling, 2010). Hence, glacioeustatic regressions and transgressions 849 

would themselves have been forcing factors in regional Silurian epeirogenesis. 850 

Accordingly, low Eustasy Index scores should not be taken as evidence that changes in sea 851 

level were insignificant during the development of Llandovery area lowstands (Fig. 16). 852 

Coeval glacioeustasy likely contributed to these base level events, but, as sediment source 853 

areas were exposed, the rapid transfer of sediment to the subsidence prone basin margin 854 

triggered a self-sustaining epeirogenic response that quickly outstripped eustasy as the 855 

dominant forcing factor. Local base level movements then diverged from global trends. 856 

Viewed in this way, Eustasy Index results can be seen not simply as offering a measure of 857 

when eustatic forcing was dominant, but also of changing rates of eustasy (or eustatic flux). 858 

Intervals with high eustasy indices appear to equate with periods of rapid and/or frequent sea 859 

level movement. Periods with lower scores may record times when sea levels changed more 860 

slowly and epeirogenic forcing was able to dominate. These may have been periods of slowly 861 

rising or static sea level, but can also be seen as consistent with the slow, but possibly 862 

substantial falls in sea level that accompanied episodes of sustained glacial advance. Such 863 

analysis negates the need to invoke episodic tectonic events. It implies a self-regulating 864 

mechanism to account for why global and regional influences alternated in their impacts on 865 

local sedimentation, and it explains why the eustasy indices for parts of the Type Llandovery 866 

succession fail to track precisely the pronounced falls in sea level that must have 867 

accompanied known periods of ice sheet growth in South America (Caputo, 1998; Dias-868 

Martinez and Grahn, 2007; Fig. 13). This model can be applied more widely. It is likely to 869 

have been interglacial flooding events that were most successful in drowning cratonic 870 

interiors and therefore these that are recorded preferentially by base level curves for cratonic 871 

successions. It is clear too that ‘practical eustasy’ as a methodology has tended to focus on 872 

the timing of flooding events rather than lowstands (e.g. Johnson et al., 1991b) and therefore 873 

unsurprising that Johnson's (1996, 2006, 2010) ‘standard’ sea level curve for the early 874 

Silurian, based on a ‘type district’ in Laurentian Iowa, is also biased towards such events. 875 

Subsequently, in Wales, the Telychian onset of a more dynamic phase of regional tectonism, 876 

though it seems initially coincident with glacioeustatic deepening, signalled a long-term 877 

departure from the far field influence of glacial activity on sedimentation. The erosion of 878 

upper Aeronian and lower Telychian strata across much of Laurentia and eastern Baltica 879 

suggests that broadly coeval effects were again widely felt throughout circum-Iapetus regions 880 

where, in Europe, they record an encroaching Scandian orogenic front (e.g. Kirkland et al., 881 

2006). 882 

8.4. Wider implications 883 
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The Eustasy Index calculations for the Llandovery succession have implications for global 884 

sea level models. Contrary to Haq and Schutter (2008), these calculations strongly endorse 885 

the separate early and late Aeronian highstand events that the majority of global curves depict 886 

(Fig. 8). Johnson (2010) departed from previous models (e.g. Johnson, 1996) in showing the 887 

early Telychian as a lowstand, but the Llandovery area data offer support for curves that 888 

recognise this as a time of rising or elevated sea levels (e.g. Johnson et al., 1991b; Loydell, 889 

2007; Page et al., 2007). Of particular interest is the high Eustasy Index obtained for a 890 

discrete late persculptus Biozone highstand seen at Llandovery (Fig. 15). 891 

The Type Llandovery base level curves fail to offer support for the precise timing, duration 892 

and scale of glacial lowstands. Nevertheless, glaciogenic deposits in South America show 893 

that separate episodes of Gondwanan ice re-advance during the Aeronian (Fig. 13; see 894 

Section 7) overlap two of the main Llandovery area lowstands characterised by reduced rates 895 

of eustatic flux (see above). The Llandovery area findings challenge researchers to look for 896 

evidence of such activity during the comparable Rhuddanian interval also. The findings of 897 

Dias-Martinez and Grahn (2007) imply that an extensive ice mass was in place in South 898 

America at this time. The work in Africa of Underwood et al. (1998), Legrand (2003) and 899 

Loydell et al. (2009; 2013) suggests this may, in part, have been the product of a discrete 900 

intra-Rhuddanian re-advance (Fig. 12) for which some proxy datasets offer support (Figs. 13, 901 

14). Confirmation of such an event has implications for the interpretation of shallow and deep 902 

water Rhuddanian facies in Wales previously seen as unrelated to eustatic events (e.g. Davies 903 

and Waters, 1995; Schofield et al., 2009; Davies et al., 2013). It would also imply that all the 904 

most widely cited global curves (Fig. 8) may be in error in depicting the late Hirnantian to 905 

late Rhuddanian as a period of almost uninterrupted rising sea levels. 906 

It follows that the Eustasy Index methodology should now be applied more widely and that 907 

many of the datasets examined herein could be the focus of similar analysis. The results of 908 

such studies will serve to distinguish the impacts of local epeirogenesis and, when viewed 909 

collectively, allow the ‘standard sea level curve’ for the Llandovery to be refined. Moreover, 910 

this methodology has the potential to be used in assessing the base level credentials of 911 

correlatable marine successions of any age. 912 

9. Conclusions 913 

For the first time, a detailed and biostratigraphically well-constrained sequence stratigraphy is 914 

available for the Type Llandovery Series succession in mid Wales. The recognition of a 915 

series of prograde sequences with bounding flooding surfaces has enabled the construction of 916 

both high and low order relative base level movement curves for those parts of the succession 917 

that preceded the onset of Telychian tectonism in Wales. Qualified comparisons with widely 918 

cited sea level curves, isotope data, examples of facies and faunal flux and nascent climatic 919 

models allow the relative importance of global (eustatic) and regional (tectonic/isostatic) 920 

forcing to be evaluated, and the far field impacts of glacioeustasy to be tested. 921 

The concept of a Eustasy Index emerges as a useful tool to evaluate the potentially complex 922 

interplay of local, regional and global forcing factors that shaped base level curves. Its 923 
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application to the Llandovery succession suggests the presence of ‘eustatic windows’ linked 924 

to interglacial global highstands. In contrast, the glacioeustasy that accompanied the slow re-925 

growth of contemporary ice sheets is suggested to have triggered regional epeirogenic 926 

responses that saw base level patterns during the main Llandovery area lowstands diverge 927 

from global trends, negating the need to invoke episodic tectonic events. Such an analysis 928 

invites speculation that a significant ice advance unrecognised by current global Silurian sea 929 

level models occurred during the mid Rhuddanian. Subsequently, the Telychian response to 930 

the Scandian Orogeny, though initially coincident with glacioeustatic deepening, signalled a 931 

long-term departure from the far field influence of glacial activity on sedimentation in Wales. 932 

It is anticipated that future application of the Eustasy Index methodology to other marine 933 

successions will similarly highlight the impacts of local epeirogenesis and, in so doing, allow 934 

a more precise history of global sea level activity to be elucidated, both during the 935 

Llandovery and for other time intervals. 936 
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Figure Captions 1455 

Fig. 1. Global Llandovery palaeogeography (after Torsvik, 2012, 440Ma) showing the 1456 

distribution of tectonic plates and the locations of sections used in this study (numbers are 1457 

those used on Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12). Abbreviation: Su, Southern 1458 

Uplands. Note, according to Ladenberger et al. (2012), the collision between Laurentia and 1459 

Baltica that initiated the northern Europe Scandian Orogeny was already in progress during 1460 

earliest Llandovery times (but see Kirkland et al., 2006). Cathaysia is commonly referred to 1461 

as South China. 1462 

Fig. 2. a) Key areas of Llandovery aged rocks in the UK; b) Llandovery Series rocks in 1463 

Wales; c) Type Llandovery area showing location of traverse lines used in the construction of 1464 

Fig. 4 (after Davies et al., 2013). Abbreviations: BF, Bala Fault; CSFZ, Church Stretton Fault 1465 

Zone; ELD, English Lake District; LL, Llandovery town; LPWB, Lower Palaeozoic Welsh 1466 

Basin; PL, Pontesford Lineament; SSU, Scottish Southern Uplands; TL, Tywi Lineament; 1467 

WBFS, Welsh Borderland Fault System. 1468 

Fig. 3. Facies model for Rhuddanian and Aeronian strata at Llandovery showing the 1469 

sedimentary and faunal characteristics of the principal facies (after Davies et al., 2013). 1470 

Benthic Communities are those of Ziegler et al. (1968a); BA refers to the broadly equivalent 1471 

Benthic Associations of Boucot (1975); BI refers to the Bioturbation Index of Taylor and 1472 

Goldring (1993). For other abbreviations see Fig. 4. 1473 

Fig. 4. Architectural models for the Type Llandovery succession (after Davies et al., 2013): 1474 

a) lithostratigraphy and thickness; b) chronostratigraphy model calibrated using UK graptolite 1475 

biozonation of Zalasiewicz et al. (2009); c) as b, but recast to show distribution of facies belts 1476 

and progradational sequences (numbers refer to facies belts of Fig. 3). See Fig. 2 for location 1477 

of lines of traverse. Abbreviations for stratigraphical nomenclature: BrF, Bronydd Formation; 1478 

CcF; Crychan Formation; Ceg, Cefngarreg Sandstone Formation; Cer, Cerig Formation; ChF, 1479 

Chwefri Formation; db, slump-disturbed units; DD, Derwyddon Formation; GHF, Garth 1480 

House Formation; Gol, Goleugoed Formation; Rdg, Rhydings Formation; TfF, Trefawr 1481 

Formation; Wow, Wormwood Formation; Ydw, Ydw Member; Yst, Ystradwalter Member. 1482 

Note in b use of symbols such as Ceg0, Ceg1, etc. to distinguish separate prograde units 1483 

within individual formations; and in b and c alternative base positions for the Aeronian and 1484 

Telychian stages based either on current GSSPs (*) or internationally applied biozonal 1485 

criteria (see Fig. 5 and Davies et al., 2013). 1486 

Fig. 5. Compilation of selected biostratigraphical ranges and biozonal schemes in use for the 1487 

late Hirnantian and Llandovery series. Principal sources for columns: A, Zalasiewicz et al. 1488 

(2009); B, Cocks et al. (1984), Baarli (1986; also Baarli and Johnson, 1988), Temple (1987) 1489 

and Davies et al. (2013); C, Aldridge and Schonlaub (1989), Dahlqvist and Bergström 1490 

(2005), Mannik (2007) and Cramer et al., 2011a and Cramer et al., 2011b; D, Verniers et al. 1491 

(1995), Loydell et al. (2010), Nestor (2012) and Davies et al. (2013); E, Davies et al. (2013); 1492 

F, Burgess (1991); G, Brett et al. (1998); H, Loydell (2011); I, Bergström et al. (2009) and 1493 

Cramer et al. (2011a) with selected GTS 2012 (Spline) Ages of Melchin et al. (2012). Notes: 1494 
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1, historic base of the Silurian System in Wales (see Davies et al., 2009; note that recent 1495 

syntheses suggest that the FADs of both taugourdeaui Biozone chitinozoans (t) and 1496 

persculptus Biozone graptolites (p) are significantly younger in Wales than in other parts of 1497 

the world; see Supplementary data); 2, base of former Idwian Stage; 3, base Aeronian 1498 

according to internationally applied criteria ( Melchin et al., 2012); 4, approximate base of 1499 

former Fronian Stage; 5, former base Telychian of Cocks et al. (1970); 6, base Telychian 1500 

based on internationally applied criteria ( Cocks, 1989 and Melchin et al., 2012); 7, historic 1501 

base Wenlock Series, but see discussion in Melchin et al. (2012); T = onset of post-glacial 1502 

maximum transgression in Wales (see Supplementary data for discussion re revised age of 1503 

this event); GSSP = positions of current stage stratotypes (see Davies et al., 2013). In Column 1504 

B solid lines show known ranges of brachiopod taxa in the Type Llandovery area; dashed 1505 

lines show known ranges in Wales and the Welsh Borderlands; and dotted lines show known 1506 

ranges in other areas. In other columns horizontal dashed lines denote uncertainty. Note the 1507 

persculptus and convolutus biozones are expanded to allow FADs and LADs to be better 1508 

illustrated; post-guerichi biozones are foreshortened; subdivisions 1–4 of the upper 1509 

persculptus Biozone refer to the successive morphotypes of Normalograptus? parvulus 1510 

recognised in Wales by Blackett et al. (2009). For additional sources and discussion see the 1511 

notes and numbered links [in square brackets] to information submitted as Supplementary 1512 

data. 1513 

Fig. 6. Generalised log of the late Hirnantian to early Telychian succession in the Type 1514 

Llandovery area showing sequence stratigraphy and derived base level movement curves. UK 1515 

graptolite biozone bases are taken at the first appearances (FADs) of diagnostic biozonal 1516 

assemblages using the criteria of Zalasiewicz et al. (2009) (see also Fig. 5). GSSPI — relative 1517 

position of Aeronian Stage GSSP; GSSPII — relative position of Telychian Stage GSSP (see 1518 

text and Supplementary data). See Fig. 2 and Fig. 3 for lithostratigraphical abbreviations and 1519 

explanation of facies belts. N.B. sequence stratigraphy has not been applied to Telychian 1520 

strata and parasequence-scale base level movements within the convolutus Biozone have 1521 

been omitted for clarity. *See Supplementary data for usage of upper persculptus Biozone; 1522 

numbers 1, 2 and 3, 4 show inferred ranges of Blackett et al.'s (2009) divisions (see Fig. 5). 1523 

Fig. 7. Comparison of the Type Llandovery relative base level curves with other UK 1524 

Llandovery datasets (see Fig. 1 and Fig. 2 for locations). Coloured blocks identify trends in 1525 

these datasets inferred to be consistent with the base level changes recognised at Llandovery 1526 

(see text) without necessarily implying a causal relationship; diagonal ruling is used for 1527 

segments of datasets consistent only with inferred high order base level movements at 1528 

Llandovery. All datasets have been recalibrated to fit the standard UK graptolite biozonal 1529 

scheme of Zalasiewicz et al. (2009); the biozones are not drawn to scale, and are divided into 1530 

three or, in the case of the atavus-acinaces and sedgwickii-halli biozonal intervals, six 1531 

arbitrary subdivisions to facilitate comparisons between the datasets (see Section 8). Numbers 1532 

[in square brackets] refer to notes provided as Supplementary data; dashed vertical lines on 1533 

subsequent figures indicate the presence of putative non-sequences (see Section 8a). 1534 
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Fig. 8. Comparison of the Type Llandovery relative base level curves with a selection of 1535 

published late Hirnantian to early Telychian global sea level curves showing levels of 1536 

correspondence (see Fig. 7 for explanation). 1537 

Fig. 9. Comparison of the Type Llandovery relative base level curves with a selection of 1538 

published late Hirnantian to early Telychian regional base level curves for Laurentia showing 1539 

levels of correspondence (see Fig. 7 for explanation). The curve of Zhang and Barnes (2002b) 1540 

is simplified; that of Dewing (1999) shows the late Hirnantian–Rhuddanian portion only. 1541 

Fig. 10. Comparison of the Type Llandovery relative base level curves with a selection of 1542 

published late Hirnantian to early Telychian regional base level curves for Laurentia and 1543 

Baltica showing levels of correspondence (see Fig. 7 for explanation). 1544 

Fig. 11. Comparison of the Type Llandovery relative base level curves with a selection of 1545 

published late Hirnantian to early Telychian regional base level curves for Siberia, 1546 

Kazakhstan and Cathaysia (South China) showing levels of correspondence (see Fig. 7 for 1547 

explanation). 1548 

Fig. 12. Comparison of the Type Llandovery relative base level curves with a selection of 1549 

published late Hirnantian to early Telychian regional base level curves for Peri-Gondwana 1550 

and Gondwana showing levels of correspondence (see Fig. 7 for explanation). Note, the curve 1551 

for the Murzuq Basin is a conflation of two overlapping curves from different parts of the 1552 

basin. 1553 

Fig. 13. Comparison of the Type Llandovery relative base level curves with a selection of 1554 

published proxy datasets (including distribution of South American glacial facies and isotope 1555 

curves) for the late Hirnantian to early Telychian showing levels of correspondence (see Fig. 1556 

7 for explanation). 1557 

Fig. 14. Comparison of the Type Llandovery relative base level curves with a selection of 1558 

published datasets of trends in late Hirnantian to early Telychian graptolite populations and 1559 

the oceanic events of Jeppsson (1998), showing levels of correspondence (see Fig. 7 for 1560 

explanation). 1561 

Fig. 15. Eustasy Index for late Hirnantian to early Telychian base level movements in the 1562 

Type Llandovery area based on a comparison of the Type Llandovery relative base level 1563 

curve with the 62* regional and global datasets presented in Fig. 7, Fig. 8, Fig. 9, Fig. 10, 1564 

Fig. 11, Fig. 12, Fig. 13 and Fig. 14 (see Supplementary data for detailed breakdown of 1565 

scores). Shaded areas indicate base level events that score incrementally higher than the mean 1566 

EI value (see Supplementary data) considered those most likely to include a dominant 1567 

eustatic component. *The 62 datasets exclude the Type Llandovery relative base level curves, 1568 

but include the part curve of Dewing (1999) used on Fig. 9; the Welsh Basin turbidite 1569 

sandbodies shown on Fig. 7 are considered as a single dataset. 1570 

Fig. 16. Matrix of global and regional forcing factors that interact to influence Eustasy Index 1571 

scores (see text). 1572 
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Plate caption 1573 

Plate 1. Coquina of adult and juvenile Pentamerus oblongus valves, solitary rugose corals 1574 

and bivalves in topset sandstone facies, Derwyddon Formation, Crychan Forest track section, 1575 

UK National Grid Reference [SN 853 385] ( Torsvik, 2012). 1576 

 1577 

Table caption 1578 

Table 1. Range of palaeogeographical (see Fig. 1) and proxy datasets used in the calculation 1579 

of the Eustasy Index for Type Llandovery base level movements as shown on Fig. 15 (see 1580 

text and Supplementary data). 1581 



































Palaeogeographical and 
proxy datasets  

Relevant 
text 

figure 

Number 
of 

datasets 

UK (Avalonian & Iapetus)* 7 6 
Laurentia  9,10 13 
Baltica 10 6 
Siberia 11 5 
Kazakhstan 11 1 
Cathaysia (South China) 11 2 
Peri-Gondwana 12 3 
Gondwana 12 6 
Global 8 7 

Proxy 
datasets 

Glacial deposits 13 1 
Isotopes 13 5 
Graptolite flux 14 6 
Oceanic model 14 1 

Total number of datasets  62 
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Supplementary data 

Biostratigraphical notes and background to correlations used to recalibrate base level 
and proxy curves; numbers refer to those shown [in square brackets] on Figures 5, 7-13 

In Wales, chitinozoans identified as, or comparable to, Spinachitina taugourdeaui are present in non-
graptolitic strata that underlie the lowest occurrence of persculptus Biozone graptolites 
(Vandenbroucke, 2008; Vandenbroucke et al. 2008; Davies et al., 2009, 2013; Challands et al. 2014). 
However, published data suggest that the S. taugourdeaui Biozone equates with part of the 
persculptus Biozone (Melchin, Holmden & Williams, 2003; Ghienne et al., 2014) and that both 
biozones embrace the upper part of the Late Ordovician glacial maximum and linked HICE event. 
Taken at face value, this implies that strata (Garth House Formation and its correlatives) deposited 
during the initial post-glacial maximum transgression (Davies et al. 2009)  must now be considered to 
be of persculptus Biozone age even though they pre-date the regional first appearance of persculptus 
Biozone graptolites. In post-dating the glacial maximum, the occurrences of S. taugourdeaui and S. cf. 
taugourdeaui chitinozoans in Wales are higher/younger than elsewhere and in need of further 
investigation (Challands et al. 2014). Late first appearances of persculptus Biozone graptolites are a 
feature of many late Hirnantian successions (e.g. Melchin et al., 2013) and it seems that strata 
assigned to the persculptus Biozone in Wales must now be interpreted as spanning only its upper part. 
Strata that intervene between the glacial maximum low-stand event and the base of the ascensus-
acuminatus Biozone in Wales are here assigned to an upper persculptus biozonal interval equivalent 
to the Hi2 time slice of Bergström et al. (2009) (See Fig. 5, note [20] below). However, for eustasy 
index assessments (see Section 8), this period has continued to be treated as the equivalent of a single 
biozone. 

Subspecies of the Stricklandia brachiopod lineage, S. lens lens and S. lens prima, previously thought 
to range into the revolutus (cyphus) graptolite Biozone, are now known to be restricted to earlier 
strata. It is their successor, S. lens intermedia, that has its FAD at about the base of the revolutus 
Biozone. Critically, key elements of the Stricklandia and Eocoelia brachiopod lineages co-existed. 
The ranges of S. lens progressa and E. hemispherica and their successor species, S. laevis and E. 
intermedia, all overlap in the lower sedgwickii Biozone. Stricklandia lens progressa and E. 
hemispherica range into this interval from the underlying convolutus Biozone, whereas S. laevis 
ranges from the sedgwickii Biozone into rocks of Telychian age (Fig 5). These finding endorse those 
of Baarli & Johnson (1988), who established that species and subspecies of Stricklandia co-existed 
within evolving Norwegian populations. This emphasises the importance of last appearances (LADs) 
of key taxa for Silurian correlation (e.g. Cocks et al., 1984) in addition to first appearances (FADs). 
Noteworthy amongst other brachiopods used for Llandovery correlation are species of the 
pentamerids Virgiana, Borealis, Pentamerus and Pentameroides (e.g. Bassett, 1989; Jin & Copper, 
2008) (Fig 5). 

The new work shows that the fisherii acritarch Biozone is confined to the pre-revolutus graptolite 
Biozone interval and, in contrast to previous reports (Hill & Dorning in Cocks et al., 1984), that the 
microcladum Biozone completely, and estillis Biozone partly, pre-date the sedgwickii Biozone. 
Gracilisphaeridium encantador, the eponymous species of the G. encantador acritarch Biozone, has 
its FAD in the Type Llandovery area in the guerichi Biozone, lower than envisaged by Davies et al. 
(1997). An initial study of Type Llandovery chitinozoans by De Permentier & Verniers (2002), and a 
more detailed assessment of the electa, maennili and dolioliformis biozones by Davies et al. (2013), 
showed in particular that Eisenackitina dolioliformis occurred in the upper convolutus Biozone at 
Llandovery and therefore stratigraphically lower than reported in Baltica (e.g. Nestor, 2010). 

There is a paucity of information on conodont assemblages from the Type Llandovery area due to 
facies constraints. The single record of an I. discreta–I. deflecta Biozone (= D. kentuckyensis Biozone, 
Aldridge, 1985) assemblage from the Bronydd Formation is consistent with the formation’s 
Rhuddanian age (Cocks et al., 1984). For many Llandovery successions around the world, notably 
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those dominated by shallow water carbonates, conodonts provide the principal means of dating and 
correlation. Hence, to meet the objectives of this paper, it is important briefly to discuss the evolving 
conodont biozonal scheme for the Llandovery Series, and its shortcomings. Dahlqvist & Bergstom 
(2005) and Mannik (2007) provided reviews of conodont biostratigraphical research that reflect 
extensive recent work, particularly in the Baltic region (see also Rubel et al., 2007; Loydell, Nestor & 
Mannik, 2010), but also in North America (e.g. Zhang & Barnes, 2002a; Kleffner, 2004; Kleffner, 
Barrick & Drachen, 2004). The level of subdivision now achieved in the Telychian is beginning to 
rival that provided by graptolites, but establishing a detailed conodont biozonation for the Rhuddanian 
and Aeronian has proved elusive. Until quite recently just two biozones were recognised within this 
interval, the D. kentuckyensis Biozone and the succeeding D. staurognathoides Biozone (e.g. 
Aldridge, 1985). Zhang & Barnes (2002a) put forward a more detailed subdivision based on the 
succession on Anticosti Island , Québec, but the wider applicability of their scheme has been 
questioned (e.g. Dahlqvist & Bergstom, 2005). Their O. hassi Biozone, spanning the Hirnantian–
Llandovery boundary, is applicable in North America (e.g. Mikulic et al., 1985), but has not been 
recognised elsewhere (e.g. Mannik, 2007). 

Most relevant to this study has been the erection and widespread acceptance of the Pranognathus 
tenuis Biozone in place of the upper part of the D. kentuckyensis Biozone (see Dahlqvist & Bergstom, 
2005). The presence of the index taxon distinguishes lower–middle Aeronian rocks. However, the 
relationship between this conodont biozone and the graptolite biozonal scheme is ambiguous. 
Melchin, Cooper & Sadler (2004), Cramer et al. (2011b) and Melchin, Sadler & Cramer (2012) all 
located its base within the triangulatus Biozone and its top in the leptotheca Biozone. However, in an 
intervening paper, Cramer et al. (2011a) placed its base in the convolutus Biozone and its top within 
the sedgwickii Biozone, albeit with boundaries that indicated uncertainty with respect to the graptolite 
biozonation (Cramer et al., 2011a, fig. 3). Discoveries by Loydell, Nestor & Manick (2010) in Latvia 
confirm that the FAD of P. tenuis lies within the triangulatus Biozone there. In Norway, Aldridge & 
Mohamed (1982) recovered the taxon from the same levels that Johnson et al. (1991) report S. lens 
progressa (see Fig 10, note [9]) and, in the UK, it is known at different localities to co-occur with E. 
hemispherica and convolutus Biozone graptolites, but not with E. intermedia or sedgwickii Biozone 
graptolites (Aldridge, 1972, 1975). In the light of the revised brachiopod ranges established in the 
Llandovery area, these findings suggest that the P. tenuis conodont Biozone ranges from the 
triangulatus Biozone into, but not above the convolutus Biozone. Below the P. tenuis Biozone, the 
short lived Aspeludia? expansa conodont Biozone (Armstrong, 1990) spans the cyphus (revolutus)–
triangulatus biozonal boundary (e.g. Loydell, Nestor & Mannik, 2010) (Fig 5). 

Following Davies et al.’s (2013) re-appraisal of the current GSSPs for the Aeronian and Telychian 
stages, both erected in the Llandovery area, the base Aeronian GSSP is now known to be in the 
middle of the triangulatus Biozone rather than at its base. Moreover, the FAD of S. laevis is now 
known to be below the Telychian GSSP and significantly below the first appearance of guerichi 
Biozone graptolites. Consequently, it should not now be used as a proxy for the base of the Telychian 
Stage. In addition, Cocks et al.’s (1984) use of the brachiopod Eocoelia curtisi and the acritarch 
Deunffia monospinosa in the Type Llandovery succession have been called into question by Davies et 
al.’s (2010, 2011, 2013) discovery that key specimens recorded by Cocks et al. (1984) came from a 
synsedimentary melange. In particular, the presence of E. curtisi by itself can no longer be taken as 
evidence of a post-sedgwickii Biozone age, following the work of Doyle, Hoey & Harper (1991), who 
showed that its FAD at Girvan, southern Scotland, was below beds yielding upper sedgwickii Biozone 
graptolites. 
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Figure 5. Compilation of selected biostratigraphical ranges and biozonal schemes in use for the 
late Hirnantian and Llandovery series. 

1. The ascensus-acuminatus Biozone is recognised as a single biozone in the UK, but is 
increasingly shown as two separate biozones in other areas and on international charts (e.g. 
Melchin, Sadler & Cramer, 2012). 

2. The atavus and acinaces biozones are commonly indistinguishable in many regional accounts 
both in the UK and elsewhere (e.g. Davies et al., 1997). 

3. The base of the revolutus Biozone is commonly shown as slightly younger than the cyphus 
Biozone it replaces (see Zalasiewicz et al., 2009). 

4. The halli Biozone is now well established in the UK, but continues to be conflated with the 
sedgwickii Biozone in many schemes (e.g. Melchin, Sadler & Cramer, 2012). 

5. Following the widespread adoption of the guerichi Biozone, the terms sensu lato (s.l.) and sensu 
stricto (s.s.) are used to distinguish the former and modern usages, respectively, of the 
turriculatus Biozone (see Davies et al., 2013). 

6. See Cocks & Rickards (1969), Baarli (1986) and Davies et al. (2013). 
7. Eocoelia hemispherica is unknown in the Type Llandovery area below the upper convolutus 

Biozone (Davies et al., 2013), and Baarli & Johnson (1988) suggested that this is the case 
worldwide. However, Cocks et al. (1984; also Cocks, 1989; Bassett, 1989) placed its FAD in the 
leptotheca Biozone. The earliest record of the genus is from Rhuddanian rocks in South America 
(Zeigler, 1966). 

8. Baarli & Johnson (1988) recognised Borealis osloensis as extending into the range of S. lens 
progressa. 

9. e.g. Loydell, Nestor & Mannik (2010)  
10. See Biostratigraphical notes above. 
11. Former base of the Pterospathodus celloni Biozone (see Mannik, 2007). 
12. Known ranges of Spinachitina taugourdeaui and S. cf. taugourdeaui in Wales, but not 

internationally; see above and Challands et al. (2014) for discussion. 
13. Former base of the Eisenackitina dolioliformis Biozone (e.g. Loydell, Nestor & Mannik, 2009). 
14. See Kiipli et al. (2010). 
15. Former base of the Gracilisphaeridium encantador Biozone (Davies et al., 1997). 
16. See Davies et al. (2011, 2013). 
17. See Burgess (1991). 
18. Brett et al. (1998) recorded Zygobolba excavata Biozone ostracodes from the same beds as 

Eocoelia intermedia, the Wallington Limestone Member (Reynales Limestone Formation) and 
the overlying lower Sodus Shale Formation in the lower part of the Clinton Group, western and 
central New York State. 

19. Brett et al. (1998) correlate the interval from the Zygobolba decoris Biozone to the 
Mastigobolbina lata Biozone to the P. celloni s.l. conodont Biozone, i.e. from the former base of 
the P. celloni Biozone (see [11] above) to the top of the restricted celloni Biozone as depicted on 
Fig. 5. 

20. In the absence of published isotope data, the marked facies changes that mark the onset of the 
late Hirnantian, post glacial maximum transgression at Llandovery and throughout Wales (see 
Davies et al., 2009) are taken to mark the intra-persculptus Biozone boundary between the Hi1 
and Hi2 times slices of Bergström et al. (2009) and, by inference, the end of the HICE excursion. 

 

Figure 7. Other UK datasets 

1. The absence of Eocoelia indicates a pre-leptotheca Biozone age for shelly assemblages from the 
‘Pentamerus Beds’ (= Venusbank Fm. of Cocks et al., 1992) in the Hamperley Borehole, 
Shropshire. Otherwise, Cocks & Rickards (1968) regarded the assemblages from the Hamperley 
Borehole as being identical to those of the mid–late Aeronian Eoceolia Benthic Community. This 
supports a magnus Biozone age (see Fig 5, note [7]) for the underlying flooding event that 
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introduced marine faunas. The onset of Silurian sedimentation in this region was within the range 
of S. lens intermedia and therefore no older than the revolutus Biozone. 

2. In the Shelve and Church Stretton areas of Shropshire, Cocks & Rickards (1968) and Zeigler, 
Cocks & McKerrow (1968) widely recognised forms of S. lens that are transitional between S. 
lens intermedia and S. lens progressa. The presence of such forms in the Hamperley Borehole, 
associated with convolutus Biozone graptolites but 15 m below a sedgwickii Biozone graptolite 
assemblage (Cock & Rickards, 1968), is consistent with the mid convolutus Biozone age now 
established for that transition, and serves to date the flooding episode recorded by the 
Stricklandia Benthic Community assemblage, to which they belong (Johnson, Rong & Kershaw, 
1998). 

3. Zeigler, Cocks & McKerrow (1968) recognised E. intermedia in the basal beds of the Venusbank 
Formation along the southern flank of the Shelve Inlier at Norbury, Shropshire, which dates the 
marine inundation at this locality as sedgwickii Biozone in age. 

4. Within an otherwise anoxic Rhuddanian succession, Cullum & Loydell (2011; see also Cave & 
Hains, 1986) reported an oxic interval within the ‘cyphus Biozone’ in the Rheidol Gorge, mid 
Wales. 

5. Davies et al. (1997, p. 87) reported halli Biozone graptolites in the upper part of the ‘M. 
sedgwickii shales’ in mid Wales.   

6. Loydell (1991) recognised graptolite assemblages from strata at Dob’s Linn, Southern Uplands, 
previously assigned to the now defunct early Telychian maximus Subzone, as being diagnostic of 
the late Aeronian halli Biozone. 

 

Figure 8. Published global sea level curves 

1. See note [1] for Fig. 9. 
2. See notes [2] and [3] for Fig. 9. 
3. Late Aeronian deepening. Long acknowledged as a period of falling sea levels, debate has 

centred on whether this peaked during the convolutus (e.g. Loydell, 1998) or sedgwickii biozones 
(see [4] and [5] below). Based on data presented by Wills & Smith (1922), Loydell (1998) 
emphasised the anoxic nature of convolutus Biozone rocks in North Wales as justification for 
locating the highstand in this biozone. However, extensive recent work on rocks of this age in 
mid Wales show this to have been a period during which oxic and anoxic bottom conditions 
alternated within the Lower Palaeozoic Welsh Basin.  

4. Basal sedgwickii Biozone highstand. This was first recognised as a ‘global’ feature by McKerrow 
(1979) and is now well entrenched in the literature. Graptolite dating was based on the Type 
Llandovery collections of Jones (1925), which underpinned his original definition of the basal 
Upper Llandovery C1 interval and which were used in turn to calibrate ranges for the 
Stricklandia (Williams, 1951) and Eocoelia (Ziegler, 1966; also Ziegler, Cocks & McKerrow, 
1968) brachiopod lineages. Modifications by Cocks et al. (1984) did not impact on this early 
work. Thus, in many areas, the dating of a basal sedgwickii Biozone highstand has been based on 
the calibrated brachiopod biostratigraphy, specifically the presence of Stricklandia lens 
progressa. New work in the type area has since shown, however, that the FAD of S. lens 
progressa and the localities where it is most abundant are stratigraphically below lower 
sedgwickii Biozone graptolites. Hence, the presence of this brachiopod subspecies on its own 
cannot be used as evidence of a sedgwickii Biozone age. Moreover, the ranges of S. lens 
progressa and its successor species, S. laevis, overlap in rocks of sedgwickii Biozone age, so S. 
laevis cannot be used in isolation as a proxy for the guerichi graptolite Biozone (= lower 
turriculatus Biozone of earlier usage). It is also now reasonable to infer the presence of Eocoelia 
hemispherica, E. intermedia and E. curtisi in rocks of sedgwickii Biozone age. It follows that the 
sedgwickii Biozone (or mid Aeronian) deepening phase depicted in many of the key sections 
used to construct regional and global sea level curves, including those of Johnson (e.g. 1996, 
2006; Johnson, Rong & Yang, 1985 and Johnson et al., 1991) and Ross & Ross (1996), must be 
regarded with circumspection as these were commonly dated by brachiopod lineages and lack 
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independent graptolitic evidence of age. Nevertheless, there is clear evidence at Llandovery that 
the incoming of sedgwickii Biozone graptolites was linked to a marked regional transgression 
within the overlapping ranges of S. lens progressa and S. laevis. 

5. Late Aeronian lowstand. Based on his analysis of graptolitic facies, Loydell (1998) rejected the 
evidence for a deepening event of early sedgwickii Biozone age. He suggested that the presence 
of oxic facies in many areas, bracketed by dark graptolite-bearing units of convolutus Biozone 
age below and guerichi Biozone age above, showed that the sedgwickii-halli biozonal interval 
was a period of sustained regression. In other areas, he cited the absence of sedgwickii Biozone 
aged rocks as evidence of contemporary emergence and erosion. The overstepping nature of 
sedgwickii Biozone rocks at Llandovery and in the Welsh Borderland counters this assessment. 
At Llandovery, lower sedgwickii Biozone transgressive facies (Ydw Member; Davies et al., 
2013) are preserved beneath a thick, shoaling upwards sequence. In other areas, above their 
transgressive base, rocks of the sedgwickii-halli biozonal interval record deposition only under 
shoal conditions, but the evidence overall suggests that these form part a single T-R cycle. On 
Baltica, in Danish and Swedish sections where sedgwickii Biozone graptolites are unrecorded, 
bioturbated mudstones succeed graptolitic facies that yield the upper convolutus Biozone marker 
Cephalograptus cometa extrema, and underlie beds with ‘lower’ turriculatus (= guerichi) 
Biozone graptolites (Johnson, Kaljo & Rong, 1991). Loydell (1998) cited this as evidence against 
a basal sedgwickii Biozone highstand. Oxic facies also succeed C. c. extrema-bearing graptolitic 
facies in the Welsh Basin (e.g. Cave & Hains, 1986; Davies et al., 1997), but there they underlie 
the FAD of lower sedgwickii Biozone assemblages within the basin-wide M. sedgwickii Shales 
Member. Loydell (1994, 1998) invoked basin isolation to explain the presence of organic-rich 
graptolitic mudstones at this level in Wales, despite evidence on the adjacent platform for a 
coeval marine transgression (see Fig. 7, note [3]). It is arguably the Danish and Swedish sections 
that are aberrant. There, within condensed successions, the absence of sedgwickii Biozone 
graptolites could indicate either omission, or bioturbation or erosion of an attenuated graptolite-
bearing transgressive unit as sea level fell during the later part of the interval (i.e. regressive 
submarine erosion), or enhanced tectonic activity in basins adjacent to an advancing Scandian 
orogenic front (see Section 8). 

 

Figure 9. Published circum-Iapetus sea level curves: Laurentian interior and Appalachian 
Foreland Basin 

1. Ross & Ross (1996) recognised a lowstand event linked to the Mosalem Formation of Iowa and 
the equivalent Schweizer Member (Wilhelmi Fm.) of Illinois that they considered to be mid 
Rhuddanian (‘vesiculosus’ Biozone), but reassessments of age discussed below now suggest that 
it is of persculptus Biozone age. Graptolites from these units were assigned by Ross (1962, 1964) 
to the late acuminatus or early vesiculosus (= atavus–acinaces, see Fig. 5) biozones (= mid 
Rhuddanian). Berry & Boucot (1970) reassigned the fauna to the mid Rhuddanian–lower 
Aeronian interval. Ross & Ross (1996) implied that the graptolite bearing beds marked a 
deepening event, but accounts of sections in Illinois by Willman (1973; Willman & Atherton, 
1975) and in Iowa by Johnson, Rong & Yang (1985; Johnson, 1987) and Witzke (1992) provided 
no evidence of a subsequent shallowing. The contact with the succeeding Tete des Morts 
Formation (= Birds Member, Wilhelmi Fm) was described as gradational and the Mosalem and 
Tete des Morts formations were reported by Witzke (1992) to form part of an uninterrupted 
period of deepening. Witzke & Bunker (1996) gave an alternative view, suggesting that the 
Mosalem Formation might form a ‘discrete T-R cycle’. The top of the shoaling phase shown by 
Ross & Ross (1996) was subsequently adopted and widely correlated by subsequent workers in 
the US as an intra-Rhuddanian sequence (or sub-sequence) boundary (e.g. Harris et al., 1998), 
despite a lack of firm biostratigraphical evidence to support the correlation. Loydell et al. (2002) 
recognised the graptolite fauna as being persculptus Biozone or, at the youngest, early ascensus-
acuminatus Biozone in age. The implications of this revised dating were apparently not fully 
digested by Page et al. (2007), who seem to have followed Ross & Ross (1996) closely in the 
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construction of their global curve. The event must be significantly older than first thought and is 
perhaps more likely to compare with one of the intra-persculptus Biozone events seen at 
Llandovery (Davies et al., 2009). 

2. Johnson, Rong & Yang (1985) associated the earliest of their Llandovery deepening episodes 
with the Blanding Formation of Illinois and Iowa, considered by them to be basal Aeronian in 
age. Johnson (1996) subsequently matched this highstand with the older Tete des Morts 
Formation (see above), a unit previously included in the Rhuddanian but shown by Johnson 
(1996) as spanning the Rhuddanian-Aeronian boundary in accord with Berry & Boucot (1970; 
see above). The pitting and erosion displayed by the top of the Tete des Morts Formation 
(Willman, 1973) justified its recognition by Ross & Ross (1996) as indicating a stage boundary 
lowstand event. Loydell et al.’s (2002) graptolite revisions (see above) called both of these 
interpretations into question. Llandovery rocks in both Iowa and Illinois comprise condensed 
dolomitic carbonate successions. Erosional diastems and hardgrounds have been recognised and 
cryptic omission surfaces are likely to be present. However, the Tete des Morts Formation and its 
equivalents are widely shown to succeed the Mosalem Formation conformably (e.g. Ross & 
Ross, 1996) and the revised dating suggests that it is unlikely to extend above the lower 
Rhuddanian. The pitted top of the Tete des Morts Formation might record the effects of an intra-
Rhuddanian lowstand widely recognised in other North American successions rather than a stage 
boundary lowstand as argued by Ross & Ross (1996). This implies a significant non-sequence 
beneath the transgressive base of the Blanding Formation (= Elwood Fm), and suggests that the 
latter unit was deposited during a late Rhuddanian highstand (Witzke, 1992; also Metzger, 2005). 
In Illinois, Mikulic et al. (1985) recorded the conodont Ozarkodina hassi in both the Bird 
Member (see [1] above) and overlying Elwood Formation. Zhang & Barnes (2002b) recognised 
an O. hassi Biozone as spanning the Hirnantian–Rhuddanian boundary, but O. hassi itself is 
known to range into the early Aeronian (e.g. Loydell, Nestor & Mannik, 2010). 

3. FAD of S. lens intermedia. Johnson’s (1987) and Johnson, Kaljo & Rong’s (1991) designation of 
a global highstand at or just above the Rhuddanian–Aeronian boundary owed much to its 
recognition and dating in the Iowa area at a time when the FAD of S. lens intermedia was linked 
to the base of the triangulatus Biozone. Following work in Norway by Baarli (1986), who placed 
the FAD of Stricklandia lens intermedia in the cyphus (= revolutus) graptolite Biozone, Johnson 
et al. (1991) favoured an older placement (i.e. pre-triangulatus Biozone) for this deepening 
episode in Iowa (Laurentia) and globally. However, in all subsequent reviews, Johnson (1996, 
2006) continued to refer to a highstand peak ‘at or near’ to the stage boundary. Davies et al. 
(2013) confirmed the biostratigraphical recalibration of the FAD of S. lens intermedia in the 
Llandovery area. In Iowa, Stricklandia lens intermedia is first recorded in the Blanding 
Formation (Witzke, 1992), possibly deposited during a late Rhuddanian highstand (see [2]).  

4. FAD of S. lens progressa. Following on from [3], the stratigraphy spanning the Rhuddanian–
Aeronian stage boundary subsequently became linked to a shallowing episode associated with a 
period of glacial re-advance in South America (Johnson, 1996, 2006; see Section 7.a). However, 
the position of the Rhuddanian–Aeronian contact is poorly constrained in many areas, including 
the critical successions in Iowa and Illinois. Above the deepening event recorded by the Blanding 
Formation, the presence of Stricklandia lens progressa mid-way through the overlying Sweeny 
Member (Hopkinton Fm.) has been taken as evidence of a sedgwickii graptolite Biozone age (e.g. 
Johnson, Rong & Yang, 1985; Johnson, 1987). However, the revised range of this subspecies at 
Llandovery now suggests that the earliest Iowan assemblages likely equate with the convolutus 
Biozone (see also Baarli, 1986). The base of the Sweeny Member (= base Drummond Mbr, 
Kankakee Fm) is recorded as a marked unconformity in the Illinois Basin and in Wisconsin by 
Ross & Ross (1996). The erosive lowstand event recorded by the unconformity appears to have 
been widely recognised as a sequence boundary (e.g. Brett et al., 1998) and could account for the 
removal of late Rhuddanian to early Aeronian strata in Iowa, Illinois and more widely in North 
America. However, Ross (1962), Willman (1973), Mikulic et al. (1985) and Witzke (1992) 
recognised the contact between the Blanding Formation and the Sweeny Member, and their 
equivalents, as gradational. If this is the case, the Blanding Formation together with the lower 
levels of the Sweeny Member must span the whole of the revolutus–leptotheca biozonal interval. 
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It follows that the lower to mid Aeronian would have been a protracted period of condensed 
shoal facies deposition bracketed by well-constrained highstand events. Therefore, and contrary 
to Ross & Ross (1996), Page et al. (2007) and Haq & Schutter (2008), evidence for a discrete 
early Aeronian shallowing phase is considered to be lacking in these key sections. 

5. FAD of S. laevis.  Johnson, Rong & Yang (1985; Johnson, 1987) considered the appearance of S. 
laevis in the Iowan Farmers Creek Member to establish an early Telychian guerichi (= lower 
turriculatus s.l.) Biozone highstand. However, the FAD of this species at Llandovery is now 
established as occurring within the sedgwickii Biozone. In the absence of other dating 
constraints, the assumption must be that this is also true in Iowa and throughout the circum-
Iapetus realm (e.g. Johnson, Cocks & Copper, 1981; Johnson et al., 1991; Brett et al., 1998). 

6. Following Kluessendorf & Mikulic (1996), Witzke & Bunker (1996) recognised the top of the 
Picture Rock Member as a regional unconformity (disconformity).  The Farmers Creek Member 
(below the Picture Rock Member) bears Stricklandia laevis whereas the overlying Johns Creek 
Quarry Member (basal Scotch Grove Formation) contains the late Llandovery genera 
Costistricklandia and Pentameroides. The unconformity could therefore account for the removal 
or non-deposition of early to mid Telychian strata in Iowa. However, Kluessendorf & Mikulic 
(1996) contended that erosion pre-dated the first appearance of celloni Biozone conodonts in the 
Brandon Bridge Member (Joliet Formation) of Illinois and Wisconsin, and since Witzke (1992) 
recorded conodonts of the celloni Biozone in the upper Picture Rock Member, it seems more 
likely that the level of the erosive event/lowstand? in Iowa is within or at the base of the Picture 
Rock Member rather than at the top. In either case, unambiguous evidence for an early Telychian 
highstand is lacking throughout these states. 

7. It follows that the rocks immediately below this regional disconformity in Illinois (Plaines 
Member, Kankakee Formation), placed by Ross & Ross (1996) in the griestoniensis Biozone, are 
also much older. Traditionally the Pentamerus-rich Plaines Member has been correlated with the 
upper part of the Iowan Sweeny Member, distinguished locally as the Marcus Formation, 
implying that it lies within the range (convolutus–sedgwickii biozones) of S. lens progressa 
(Witzke, 1992).  

8. The Ozarkodina hassi conodont Biozone of Zhang & Barnes (2002a) spans the Hirnantian–
Rhuddanian stage boundary. 

9. S. lens is first recorded in the Merrimack Formation on Anticosti Island (Jin & Copper, 2010). 
10. Graptolites no younger than the triangulatus Biozone have been reported from the lower part of 

the Gun River Formation (Johnson, Cocks & Copper, 1981; Jin & Copper, 1999; Zhang & 
Barnes, 2002). 

11. Upper levels of the Gun River Formation were reported to contain D. staurognathoides Biozone 
conodonts by Zang & Barnes (2002a). This implies an age no older than the sedgwickii Biozone, 
but see discussion by Dahlqvist & Bergstom (2005) and Biostratigraphical Notes above. 

12. Graptolites in the succeeding Jupiter Formation, from below the distinctive Panderodus 
conodont-bearing interval of the Goeland Member (= Member 3 of Zhang & Barnes, 2002b), are 
consistent with the convolutus Biozone (Johnson, Cocks & Copper, 1981; Jin & Copper, 1999). 

13. The FAD of sedgwickii Biozone graptolites coincides with the transgressive base of the East 
Point Member (Johnson, Cocks & Copper, 1981; Jin & Copper, 1999; Zhang & Barnes, 2002b). 
Johnson, Cocks & Copper (1981) also reported E. curtisi and turriculatus s.l. Biozone graptolites 
close to the top of the Jupiter Fm. 

14. Age of the Medina Group. The upper Whirlpool, Power Glen and lower Cabot Head formations 
are said to contain diverse Silurian shelly assemblages suggestive of an ‘early–middle 
Rhuddanian’ age (Brett et al., 1998). 

15. Age of lower Clinton Group. Kleffner (2004; quoted in Dahlqvist & Bergstrom, 2005 and 
Cramer et al., 2011a) reported tenuis Biozone conodonts from the upper Neahga Shale Formation 
and the overlying Reynales Limestone Formation (Hickory Corner Member). Current 
understanding suggests that this conodont biozone spans the ‘mid’ triangulatus- convolutus 
biozonal interval (see Section 2 for background and discussion). 

16. Following on from [11], the overstepping base of the Reynales Limestone (Furnaceville Hematite 
Member and its lateral equivalents) is recognised as a significant non-sequence (Brett et al., 
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1998). This can now be seen to separate the level of the first appearance of tenuis Biozone 
conodonts (upper Neahga Shale) from the overlying tenuis-bearing levels of the Reynales 
Limestone. If the occurrence of tenuis Biozone conodonts within the lower Clinton Group is 
taken to encompass the total range of the biozone, the basal Reynales Limestone non-sequence 
likely spans much or all of the late triangulatus-early convolutus biozonal interval. 

17. The uppermost beds of the Reynales Limestone (Wallington Member), in common with the 
succeeding lower Sodus Shale Formation, contain E. cf. intermedia (Brett et al., 1998), 
suggestive of a sedgwickii Biozone age. 

18. Brett et al. (1998) noted the presence of a ‘shale-on-shale unconformity’ at the contact between 
the lower and upper members of the Sodus Shale Formation. The presence above this contact of 
E. curtisi, decora Biozone ostracodes and celloni Biozone conodonts shows that the boundary 
marks a further significant non-sequence that accounts for the local absence of strata of upper 
sedgwickii to turriculatus s.s. biozone age, comparable to that recognised in Illinois by 
Kluessendorf & Mikulic (1996) (see [8] above). 

19. The FAD S. lens progressa, reported by Baarli, Brande & Johnson (1992) to occur above the Big 
Seam. 

20. The presence of forms transitional between Pentamerus oblongus and Pentameroides suberectus 
in the S. laevis-bearing Ida Seam suggests that a significant non-sequence, accounting for the 
local absence of much of the late Aeronian and early Telychian, is present at the base of this unit. 

 
 
Figure 10. Published circum-Iapetus sea level curves: Laurentian (continued) and Baltica 
 
1. Harris at al. (1998) cited the presence of Virgiana mayvillensis in the uppermost Mayville 

Formation to infer a late Rhuddanian age for the associated high-stand event. This is based on the 
restricted occurrence of the species in Canada, notably in the Merrimack Formation on Anticosti 
Island as confirmed by Jin & Copper (2010).  

2. LAD of D. kentuckyensis Biozone conodonts. Harris et al. (1998) reported conodont assemblages 
ranging from the upper part of the Byron Dolostone and throughout the overlying Hendricks 
Formation of the Door Peninsula, Wisconsin, as being indicative of the upper part of the I. 
discreta–I. deflecta Biozone (= D. kentuckyensis Biozone, Aldridge, 1985). Though this was 
prior to the erection of the tenuis conodont Biozone, it can now be inferred that these too pre-date 
the sedgwickii graptolite Biozone (see Fig. 5 and Biostratigraphical notes above). 

3. Harris et al. (1998) recognised the regional unconformity identified in Illinois by Kluessendorf & 
Mikulic (1996) [see note 6 for Fig. 9? above] as forming the boundary between the Wisconsin 
Manistique and Waukesha formations. However, their report of both Pentamerus and 
Pentameroides in the Manistique Formation suggests that this unit contains strata of mid 
Telychian (griestoniensis Biozone) age that postdate the regional unconformity. Consequently, 
the regional hiatus is more likely to be either within or at the base of the Manistique Formation. 

4. FAD of Pentamerus (Sheehan, 1980). Virgiana-bearing assemblages present in the lower part of 
the High Lake Member (Laketown Dolomite Fm) can now be regarded as no younger than the 
magnus Biozone (e.g. Johnson, 1987). Their replacement in the upper part of the member by 
assemblages containing Pentamerus, above a non-sequence that Harris & Sheehan (1996, 1998) 
associated with their S2/3 sequence boundary, implies a flooding episode within the convolutus 
Biozone. 

5. Hurst, Sheehan & Pandolfi (1985) recognised major facies changes at the base of the Gettel 
Member and its correlatives within the Laketown Dolomite Formation, associated with the FAD 
of the mid–late Telychian genus Pentameroides (Sheehan, 1980). This implies that a significant 
hiatus separates these units from the underlying Pentamerus-bearing High Lake Member, 
regarded by Harris & Sheehan (1996, 1998) as being exclusively Aeronian in age.   

6. FAD S. lens intermedia according to Baarli (1986). 
7. LAD Borealis borealis according to Johnson et al. (1991). 
8. FADs S. lens progressa and tenuis Biozone conodonts according to Aldridge & Mohamed 

(1982), Baarli (1986) and Johnson et al. (1991). Though previously taken to indicate a sedgwickii 
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Biozone age, Davies et al. (2013) placed the FAD of S. lens progressa in the convolutus 
Biozone. 

9. Norwegian Oslo succession. In the Asker area, on which the Norwegian curve is based, Aldridge 
& Mohamed (1982) recorded a primitive form of D. staurognathoides just below the top of the 
Solvik Formation. In the light of these findings, Dahlquist & Bergstrom (2005) placed the base of 
the D. staurognathoides conodont Biozone at the same level as the boundary between the Solvik 
Formation and the overlying Rytteråker Formation, within the local range of S. lens progressa 
(Baarli & Johnson, 1988; Johnson et al. 1991). Following Davies et al. (2013), this suggest that 
the base of the S. laevis-bearing Rytteråker Formation, and the deepening event associated with it 
in the Asker area (e.g. Johnson et al. 1991), though not marking the local FAD of S. laevis, lies at 
or very close to the convolutus–sedgwickii biozonal boundary (in agreement with Worsley et al., 
1983). Baarli & Johnson (1988) recognised the range of E. hemispherica, found in the Skien 
district, as overlapping the lower part of the range of S. lens progressa. 

10. The earliest examples of definite S. laevis occur in the top of the Rytteråker Formation and basal 
Vik Formation, in transgressive strata that Baarli & Johnson (1988) correlated with the base of 
the turriculatus s.l. (guerichi) Biozone. However, Johnson et al. (1991) suggested that the 
transition from S. lens progressa occurred at a lower level in the Rytteråker Formation of the 
Asker and Syling areas, suggesting that the top Rytteråker–basal Vik occurrences there lay 
within and not at the base of the range of S. laevis. 

11. FAD triangulatus Biozone graptolites in the lower part of the Saarde Formation in the Ikla 
borehole (Rubel, 1977; Johnson et al., 1991). 

12. FAD S. lens progressa in the Saarde Formation, at a depth of 355 m in the Ikla borehole (Rubel, 
1977). This was taken by Johnson et al. (1991; also Nestor & Nestor, 2002) to indicate a 
sedgwickii Biozone age, but the taxon is now known to have its FAD in the convolutus Biozone 
(Davies et al., 2013). 

13. FADs of S. laevis and E. dolioliformis and the age and relationships of the Rumba Formation. 
Nestor (1976) recognised that the base of the Rumba Formation overlay a regional unconformity 
in Estonia, but that the magnitude of the unconformity was reduced in the distal succession 
proved in the Ikla borehole. Gouldey et al. (2010) suggested that this non-sequence was formed 
in a submarine setting. Most authors appear to recognise the base of the Rumba Formation as 
marking the abrupt onset of a deepening episode, which has been interpreted as a sedgwickii 
Biozone event (e.g. Nestor, 1997; Kaljo & Martma, 2000). In contrast, Johnson et al. (1991), 
Nestor & Nestor (2002; also Nestor, et al., 2003) and Loydell, Nestor & Mannik (2010; and 
references therein) regarded the base of the Rumba Formation as a basal Telychian flooding 
episode. This appears to have been based, in part, on the understanding, no longer valid, that the 
FAD of S. laevis, 1.2 m above the base of the Rumba Formation (Rubel, 1977), equated with the 
FADs of guerichi Biozone graptolites and dolioliformis Biozone chitinozoans. At the top of the 
Rumba Formation, Mannik (2007) recorded the base of the P. eopennatus conodont 
Superbiozone (base of the P. eopennatus ssp. n. 1 Biozone) in the top metre of the formation in 
the Estonian Viki core. This biozone was unproven in the Latvian Kolka-54 core, where 
graptolite assemblages suggest a non-sequence and the possible removal or non-deposition of 
strata equivalent to the uppermost Rumba Fm (Loydell, Nestor & Mannik, 2010). Rubel et al. 
(2007) also noted that the P. eopennatus ssp. n 1 Biozone had not been identified in the Estonian 
Viirelaid core, and suggested a possible gap or condensed interval in the upper part of the Rumba 
Formation there. The top of the formation in the Ikla core, Estonia, was identified as an 
unconformity that Gouldey et al. (2010) again considered to be submarine in origin. 
Geochemical fingerprinting by Kiipli, Kiipli & Kallaste (2006) of the ‘O’ Bentonite in the upper 
part of the Rumba Formation showed its equivalence to the widespread Osmundsberg Bentonite, 
which is known elsewhere in the Baltic region to overlie turriculatus s.s. Biozone graptolites. In 
her review of east Baltic chitinozoan assemblages, Nestor (2012) showed the Rumba Formation 
as spanning the turriculatus-crispus biozonal boundary, and the current consensus places the 
base of the formation at the local base of the turriculatus s.l. (guerichi) Biozone (e.g. Kaljo & 
Martma, 2000; Gouldey et al., 2010). These correlations are reflected in Figure 10. However, 
from the revised Llandovery area data, the reported occurrences of dolioliformis Biozone 



10 

 

chitinozoans and S. laevis in the Rumba Formation are compatible with an age as early as the 
sedgwickii Biozone.  Hence, it is possible that the formation represents a highly condensed 
succession, bounded by and possibly containing non-sequences, that spans much or all of the 
sedgwickii - guerichi - turriculatus biozonal interval. 

14. Following on from [12] and [13], many authors have associated the widespread non-sequence 
seen below the Rumba Formation throughout much of Estonia with a late Aeronian (sedgwickii 
Biozone) shoaling episode and also with glacioeustatic forcing (e.g. Nestor & Nestor, 2002). 
However, if the current consensus placing the base of the Rumba Formation at the base of the 
turriculatus s.l. Biozone is accepted, and given that S. lens progressa can no longer be regarded 
as indicative of the sedgwickii Biozone (see [12] above), the possibility emerges that the whole 
of the sedgwickii Biozone is unrepresented in the Ikla section. The likely presence of a 
stratigraphical break at the base of the Rumba Formation in the Ikla drill core is additionally 
significant as the C13 isotope curve obtained for this borehole is widely used in texts assessing 
Llandovery isotope trends, yet an equivalent gap in the isotope record is commonly not shown 
(e.g. Munnecke & Mannik, 2009; Gouldey et al., 2010) (see Fig. 13). 

 
 
Figure 11. Published curves for Siberia, Kazakhstan and Cathaysia (South China) 
 
1. Tesakov et al. (1998) located the post-glacial deepening maximum in Siberia above the base of 

the acuminatus Biozone and below the FAD of cyphus Biozone graptolites. However, they 
provided inconsistent and in places contradictory data for the dating of younger flooding events, 
which undermines the reliability of their sea level curve. 

2. Tesakov et al. (1998) recognised a high-stand event associated with the convolutus Biozone, but 
which they also recognised as basal Aeronian. 

3. Tesakov et al. (1998) recognised a high-stand event that significantly precedes the FAD of 
turriculatus Biozone graptolites. They associated it with the FAD of celloni Biozone conodonts, 
but Artyushkov & Chekhovich (2001) placed this event within the staurognathoides conodont 
Biozone. 

4. In the Hanjiadian district of the Yangtze Platform, south China, Johnson, Rong & Yang (1985) 
recognised a graptolite diversity maximum spanning the cyphus and gregarius biozones as an 
evidence of a deepening episode. 

5. Mu, Chen & Rong (1989) recognised the Shihniulan Formation of the Hanjiadian district as 
spanning the sedgwickii Biozone. 

6. The northwards younging base of the Xiangshuyuan Formation, of cyphus Biozone age in the 
Leijatun district, must be significantly younger in the more northern Longjingopo district 
(Johnson, Rong & Yang, 1985; Mu, Chen & Rong, 1989). 

7. Johnson, Rong & Yang (1985) associated the FAD of Stricklandia traversa, a species endemic to 
China, with the base of the turriculatus s.l. Biozone. Consequently, this does not correlate with 
the FAD of S. laevis in the UK and more widely, as they contended. 
 
 

Figure 12. Published curves for Peri-Gondwana and Gondwana 
 
1. Jell & Tallent (1989) presented graptolite dates and facies descriptions for the Cadia Group. 

These imply the presence of a high-stand event linked to the Bridge Creek Limestone, which 
spans the cyphus (revolutus)–triangulatus biozonal boundary, and of a subsequent shallowing 
linked to the ‘Upper Clastic Member’. The post glacial deepening maximum appears to have 
been reached during the magnus Biozone, marked by the maximum extent of the Cadia Shale 
Formation. 

2. Jell & Tallent (1989) recognised a significant hiatus separating levels of the Cadia Shale of 
leptotheca and possible early convolutus biozone age from the transgressive, early Telychian 
Cobbler’s Creek Limestone Formation. 
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Figure 13. Proxy datasets 
 
1. DiazMartinez & Grahn (2007) report the Rhuddanian chitinozoan Belonechitina cf. postrobusta 

from marine sediments underlying Llandovery glacigenic deposits in Peru and Bolivia. 
2. Caputo (1998) reported early Aeronian ‘Monograptus gregarius’ Biozone graptolites from 

marine sediments immediately overlying glacigenic deposits in the Amazon Basin. 
3. Caputo (1998) viewed the presence of early Telychian chitinozoans in marine rocks ‘lateral to 

tillites’ as evidence for a glacial advance that peaked during the late Aeronian (see also Johnson, 
2006). 

4. Marked negative C isotope excursions coincide with the Rumba Formation (e.g. Munnecke & 
Mannik, 2009), and Kaljo & Martma (2000) recognised a non-sequence beneath the lowest of 
these excursions, which coincides with the base of the Rumba Formation. They associated the 
onset of this excursion and the base of the Rumba Formation with the base of the sedgwickii 
Biozone, but the consensus view now places the base of the Rumba Formation and therefore the 
negative δ13C excursion at the base of the Telychian Stage. See notes [13] and [14] for Figure 10.  
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