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Acoustic recordings were carried out in two different glacial lakes (i.e. Lough Na Fooey, Ireland and 

Windermere, U.K) using different Passive Acoustic Monitoring approaches. At Lough Na Fooey, a 

vessel-based survey over pre-established sampling stations covering the entire lake surface (together with 
a bottom survey) was carried out, while a moored sampling was carried out around the clock at selected 

sites in the shallow, gravel littoral shores of  Windermere. Lough Na Fooey soundscape lacked both the 

biophony and anthrophony component. Night-time recordings from Windermere were characterized by 
biophony sources, such as invertebrate (family Corixidae) and fish air passage sounds. Day-time acoustic 

recordings from Windermere were characterized by consistent boat traffic noise. Classification models 

were used to investigate which sonic sources contributed to the detected noise levels. The results indicate 

anthropogenic noise as an important factor ruling freshwater soundscapes. Based on the results obtained, 

it is recommended that further studies focus on a wider geographical and temporal range in order to start 

filling the knowledge and legislative gaps regarding anthropogenic noise monitoring in inland waters. 
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1. INTRODUCTION 
Anthropogenic noise is proven to elicit a wide range of physiological, perceptual and behavioral effects on 

aquatic life (e.g. Slabbekoorn et al., 2010), where some studies have investigated behavioral and physiological 

effects of boat noise on freshwater species. Altered nesting behavior was reported for the longear sunfish Lepomis 

megalotis (Mueller, 1980), while Graham & Cooke (2008) reported a dramatic increase in heart rate and a slight 

decrease in stroke volume in the largemouth bass (Micropterus salmoides). Wysocky et al. (2006) demonstrated 

that ship noise elicited a cortisol stress response in the common carp (Cyprinus carpio), the gudgeon (Gobio gobio) 

and the perch (Perca fluviatilis), regardless of their hearing sensitivities.  

Fresh water makes up only 0.01% of the water on Earth and covers approximately 0.8% of the planet’s 

surface, yet this small area of aquatic habitat supports almost 6% of all described species (Dudgeon et al., 2006). 

The biological communities inhabiting freshwater habitats constitute a valuable natural resource in economic, 

cultural, aesthetic, scientific and educational terms; however, inland freshwater habitats are experiencing far 

greater declines in biodiversity than terrestrial ecosystems (Dudgeon et al., 2006). Although it is well recognized 

that the biological communities inhabiting inland aquatic habitats currently face unprecedented threats from human 

activities (Winfield, 2013), and anthropogenic pressures often act in a multimodal fashion (Halfwerk & 

Slabbekoorn, 2015), anthropogenic noise pollution has been rarely measured and reported in inland water 

ecosystems (Amoser et al., 2004; Seppänen & Nieminen, 2004; Wysocki et al., 2007; Bolgan et al., 2016a). 

Furthermore, fewer studies have described inland water soundscapes in comparison to marine soundscapes (e.g. 

Stober, 1969; Nystuen, 1986; Lugli & Fine, 2003; Amoser et al., 2004; Seppänen & Nieminen, 2004; Lugli & 

Fine, 2007; Amoser & Ladich, 2005; Wysocki et al., 2007; Amoser & Ladich, 2010).  

To date, a wide range of mathematical models are applied to acoustic data. Modelling of underwater 

sound propagation has been an established practice for decades; several modelling approaches have been 

developed, each with different suitability according to frequency range, computational requirements and ability to 

account for spatial variability (Farcas et al., 2016). On the other hand, the incorporation of acoustic data into 

models to calculate animal density and abundance is still a relatively young field (Cholewiak et al., 2013). 

Different modelling approaches have been developed for calculating animal density and abundance on the basis of 

the rate of animal vocalisations (Dawson & Efford, 2009; Efford et al., 2009; Marques et al., 2012; Cholewiak et 

al., 2013) or for investigating the relationships between measured acoustical data and geospatial data, with the 

scope of predicting acoustical conditions in environments with an unknown and potentially innumerable amount of 

acoustic sources (Mennitt et al., 2014). To the best of our knowledge, classification models have never been 

applied to investigate which environmental features may contribute to determine acoustic levels in freshwater 

soundscapes. The aims of this study were to apply classification models to i) investigate which environmental 

characteristics might influence noise level in a glacial lake in which anthropogenic noise was effectively absent 

(i.e. Lough Na Fooey, Ireland) and to ii) investigate the contribution of anthropogenic noise to the noise levels of a 

large multi-use glacial lake with numerous powered boats (i.e. Windermere, U.K). 

  

2. MATERIALS AND METHODS 

A. LOUGH NA FOOEY: A GLACIAL LAKE FREE OF 

ANTHROPOGENIC NOISE 

i. Acoustic survey 
Surrounded by Galway’s Mamturk mountains to the South and Mayo's Partry mountains to the North, Lough Na 

Fooey (53° 34′ N, 9° 32′ W;  altitude 24 m; 248 hectares) is a long and narrow rectangular shaped glacial lake 

bordering counties Galway and Mayo on the West coast of Ireland (Rooney et al., 2014) (Fig. 1a). During the 

acoustic sampling carried out at Lough Na Fooey, no boats were in operation on the lake (with the exclusion of the 

6-m long angler fancy boat used for the survey); no harbors occur on the lakeshore, making Lough Na Fooey the 

perfect candidate for addressing noise levels in the effective absence of anthropogenic pressures. Thirty-six pre-

defined sampling stations ensured an even coverage of the entire lake system at Lough Na Fooey (Fig. 1b). 

Acoustic recordings were taken at each station between October and December 2013 (1 to 2 repetitions per 

station). A total of 46 acoustic samples (10 minutes duration each, total of 460 minutes of recordings) were 

collected using an uncalibrated omni-directional hydrophone Magrec HP40 (hydrophone sensitivity -204 dB re 

1V/Pa; hydrophone frequency response 10 Hz- 160 kHz). The hydrophone was connected to a waterproof stereo 

monitor box Magrec HP26, mounting a Magrec HP02 pre-amplifier (differential output, gain 29 dB) powered by 

batteries. The monitor box was connected to a ZoomH2N Handy recorder generating .wav files (sampling rate 44.1 

kHz, 24-bit). At each sampling station, a 15 L manually operated Van Veen grab was used to collect a sediment 

sample, in order to assign each sampling station to one of four main granulometric categories (i.e. cobbles and 
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stones; medium sand; muddy sand; mud). Furthermore, at every sampling station, additional data recorded 

included; i) surface water temperature (deep sounder Garmin FishFinder 140),  ii) bottom depth (deep sounder 

Garmin FishFinder 140), iii) sea state (visual estimation, Beaufort scale), iv) weather condition (visual estimation), 

v) wind speed and direction (hourly data obtained from the National Meteorological Service, measuring station 40 

km distant from Lough Na Fooey).  

 
 

Figure 1-Recording sites and semi-moored PAM set-up. a) The location of Lough Na Fooey (Ireland) and 

Windermere (United Kingdom) is indicated; b) Lough Na Fooey: the 36 recording stations are depicted; c) 

Windermere; recording sites are indicated; d) semi-moored PAM set-up used at Windermere (custom-built 

hydrophone support).  
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ii. Acoustic analysis 
All acoustic recordings were analysed for biological sound presence using Raven 1.5 for Windows (Bioacoustic 

Research Program, Cornell Laboratory of Ornithology, Ithaca, NY, USA), by audial and visual assessment of the 

spectrograms (sampling rate 44.1 kHz, 24 bit). Unwanted noise (such as cable noise, platform noise, wave slap 

noise) was cut from each recording prior to the frequency analysis. The frequency analysis of each acoustic 

recording consisted of a Fast Fourier Transformation based on a Hanning window at 4096 points (from 63 Hz to 22 

kHz). The spectral values of all the recordings were converted in linear scale and then summed in wider 

bandwidths, discriminating for high and low frequency contents, i.e. Low sonic band (63-2000 Hz,) and High sonic 

band (2 kHz- 20 kHz). 

 

B. WINDERMERE: A LARGE MULTI-USE LAKE 
i. Acoustic survey 
Windermere (54° 22′ N, 2° 56′ W;  altitude 39 m; 1473 hectares) is the largest natural lake in England: situated in 

the English Lake District, UK (Fig. 1a), it is composed of a mesotrophic north basin (max depth 64 m, area 8.1 

km2) and a eutrophic south basin (max depth 64 m, area 6.7 km2) (Miller et al., 2015). The lake is an important 

multi-use resource for the local economy, in terms of both general tourism (with an associated extensive ferry 

network) and recreational fishing. Windermere has consistent boat traffic during daytime hours, mainly of small 

recreational boats (with outboard engines) and cruise ferries (with inboard diesel engines), in addition to canoes, 

kayaks, rowing boats and sailing boats. 

During November 2014, acoustic recordings were collected over three shallow water stations in the North basin of 

Windermere (i.e. 2 recording stations within the Red Nab site, and one recording station at the North Thompson 

Holme site) (Fig. 1c). Acoustic recordings were carried out for durations of 24 hours at each site using a semi-

moored PAM configuration (Fig. 1d), with the exception of the first recording site within the Red Nab site (i.e. 

Red Nab 1), where recordings were conducted for 18 hours, from 15:00 to 09:00, due to technical limitations. In 

particular, four cycles of recordings were carried out over the 2 different sites within the Red Nab site and one 24-

hour recording was carried out at the North Thompson Holme site (total of 108 hours of recordings). Bottom and 

hydrophone depth were the same in all recording sites (bottom depth=1.20 m; hydrophone depth=0.70 m); 

furthermore, all recording sites were characterized by a cobble type of substratum. All acoustic recordings were 

obtained using a calibrated omni-directional hydrophone Aquarian H2a (sensitivity -180 dB re 1V/Pa; frequency 

response 10 Hz-100 kHz) connected to a ZoomH1 Handy recorder (sampling rate 44.1 kHz, 24-bit) operating on 

an external power bank (Power walker N95LH, 10000 mAh) and recording .wav files.  Prior to each recording, the 

signal was calibrated using a generator of pure wave of known voltage (100 mV RMS @1 kHz). Additional 

information collected for each hour of recording at each site included; i) wind speed, wind direction and water 

temperature (data were taken from the Centre for Ecology & Hydrology automatic monitoring buoy situated in the 

lake’s south basin) and ii) weather conditions (i.e. no precipitation, shower and heavy rain, data obtained from the 

UK National Meteorological Service).  

 

ii. Acoustic analysis 
All acoustic recordings were sectioned per hour, where acoustic analysis consisted of; i) quantification of sound 

sources, ii) Acoustic Complexity Index calculation and iii) spectral analysis in 1/3 octave band (dB re 1µPa). In 

order to estimate presence and rate of biological sound sources, visual inspection was conducted using Raven 1.5 

for Windows (Bioacoustic Research Program, Cornell Laboratory of Ornithology, Ithaca, NY, USA) on the first 10 

min of each hour of recordings (listening period τ1= 10 min). Where biological sources (i.e. fish air passage 

sounds, see Bolgan et al. 2016b,  and macroinvertebrate sounds) occurred, they were counted and categorized, 

while anthropogenic noise (i.e. boat noise) was quantified as the percentage of occurrence over the selected 

listening period τ1 (10 min). The same 10 min listening periods (τ1) were processed through the open source 

acoustic program Wavesurfer (v1.8), using a plug-in soundscape-meter developed by Pieretti et al. (2011) in order 

to calculate the Acoustic Complexity Index (ACI). The ACI was calculated across the frequency range of 63–

22,000 Hz using an FFT size 512, Hanning window. Subsequently, following McWilliam & Hawkins (2013), ACI 

values were plotted and visually evaluated to establish the peak energy locus, in order to give a more localized 

sound profile. ACI values were finally averaged for the frequency band 400- 6000 Hz, for each hour of recording 

and for each recording cycle. Spectral analysis, on the other hand, was conducted over the entire 1 hour samples. 

Instantaneous Sound Pressure Level (LSP, L-weighted, 63 Hz–20 kHz, RMS fast) was measured per second along 

each hour of acoustic samples using SPECTRA Plus 5.0 software (Pioneer Hill Software, WA, U.S.A.; windows 

Hanning, FFT overlap 75%, averaging fast). This software utilizes the Discrete Fast Fourier Transform algorithm 

to compute the frequency spectrum among the 1/3 octave bands (frequency range 63-20000 Hz). The equivalent 

continuous SPLs were further calculated for each hour averaging the LSP over the entire one hour sample (after 
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linear scale conversion). In order to conduct the statistical analysis, the intensity levels characterising the 1/3 

octave bands were converted to a linear scale and then summed in wider bandwidths, discriminating for high and 

low frequency contents i.e. Low sonic band (63-2000 Hz) and High sonic band (2 kHz- 20 kHz). 

 

C. STATISTICAL ANALYSIS 
Statistical analysis was carried out using SPSS Modeller. Data were first inspected for type of distribution: acoustic 

data were found not to be normally distributed (Shapiro-Wilk, p<0.01).  Subsequently, the outcome of different 

models for continuous numeric range outcomes (i.e. acoustic levels; Random Forest, CART, CHAID, linear 

regression and generalized linear regression) were generated and compared using the Auto Numeric function of 

SPSS Modeller. Models were compared based on correlation scores and relative error (McCormick et al. 2013). 

Chi-square Automatic Interaction Detector (CHAID), a technique created by Kass in 1980, was the model which 

provided the highest correlation scores and the lowest relative errors within all datasets (i.e. both Lough Na Fooey 

and Windermere) and was therefore used to discover the relationship between acoustic and environmental 

variables. CHAID analysis builds a predictive model, or tree, to help determine how variables best merge to 

explain the outcome in the given dependent (target) variable (McCormick et al. 2013). The CHAID node generates 

decision trees using chi-square statistics to identify optimal splits (McCormick et al. 2013). Unlike the CART Tree 

and QUEST nodes, CHAID can generate non-binary trees, meaning that some splits have more than two branches 

(McCormick et al., 2013). Although initially developed to deal with categorical dependent variables (Kass 1980), 

the CHAID models actually accommodate a variety of variables: target and input fields can be numeric 

(continuous) or categorical and no assumption on data distribution is made (McCarty & Hastak, 2007; McCormick 

et al., 2013). The CHAID procedure has been largely used in social and medical sciences (Elphinstone, 1986; 

Chung et al., 2004; Welte et al., 2004; Tan et al., 2005; Menendez et al., 2006) and, although less frequently 

employed, has also proven useful in biological studies (Schroder et al., 1992; Wolter & Menzel, 2005; Menendez 

et al., 2006). 

The CHAID procedure was used on the Lough Na Fooey dataset in order to investigate how different 

environmental variables (i.e. depth, wind speed and direction, water temperature and type of bottom) might 

contribute to explain the detected noise levels in a freshwater environment free of anthropogenic noise and of 

biophonic sources. The CHAID procedure was used on the Windermere dataset considering night-time and day-

time separately, in order to investigate the influence of anthropogenic noise (which was present only during day-

time hours) on the detected noise levels of shallow freshwater soundscapes characterized also by biophonic sources 

(mainly macroinvertebrate sounds). Different CHAID analyses were carried out for each environment. For the 

Lough Na Fooey dataset, three CHAID models were created; the first used the broadband SPL as target variable, 

the second used the Low Frequency band and the third targeted the High Frequency band. In all cases, the 

predictors used were: weather condition, water temperature, depth, type of bottom, wind speed, wind direction. For 

the Windermere dataset, eight models were created, four for the night-time hours and four for the day-time hours. 

The target variables (for both day and night) were:  SPL, Low sonic band, High sonic band and ACI. The 

predictors were: weather condition, water temperature, wind speed, wind direction, number of fish sounds, number 

of macroinvertebrate sounds and boat noise rate. 

 

3. RESULTS 
A. LOUGH NA FOOEY 
i. Wideband 
The strongest predictors of the broadband sound pressure levels at Lough Na Fooey were bottom depth, wind 

speed and wind direction (Fig. 2). In particular, bottom depth appears as the main factor regulating the broadband 

sound pressure levels at Lough Na Fooey. In depths greater than 4 m wind speed was the main predictor of the 

detected SPL, while in shallower stations, wind direction also appeared to contribute. 

ii. Low sonic band 
The strongest predictors of the low frequency (i.e < 2 kHz) sound pressure levels at Lough Na Fooey were bottom 

type, wind speed and bottom depth (Fig. 2).  

iii. High sonic band 
The strongest predictors of the high sonic band levels (i.e > 2 kHz)  at Lough Na Fooey were wind speed and wind 

direction. Bottom depth also appeared to influence the high sonic band, especially in conditions of high wind speed 

(i.e. winds stronger than 12 mph) (Fig. 2). 
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B. WINDERMERE DURING NIGHT-TIME HOURS 
i. SPL  
The presence or absence of rain appears to be the main factor affecting the broadband sound pressure levels in 

Windermere shallow waters during night-time hours (i.e. when no anthropogenic pressure in terms of boat traffic is 

present). In fact, the strongest predictors of the broadband sound pressure levels were weather condition (i.e. rain 

or not rain), wind direction, number of macroinvertebrate sounds and wind speed (Fig. 3). In the absence of rain, 

the presence of macroinvertebrate calls (i.e. presumed Corixidae spp.), together with wind characteristics (speed 

and direction) were the main factors influencing the broadband sound pressure levels. 

ii. Low sonic band 
The presence or absence of rain appears to be the main factor ruling the low frequency band (i.e < 2 kHz) sound 

pressure level in Windermere shallow waters during night-time hours (Fig. 3). 

iii. High sonic band 
The strongest predictors of the high frequency (i.e > 2 kHz) sound pressure levels in Windermere shallow waters 

during night-time hours were weather conditions, wind direction and number of macroinvertebrate sounds (Fig. 3). 

In particular, in the absence of rain, macroinvertebrate sounds appear to be the main factor ruling the high 

frequency band levels. The macroinvertebrate sounds detected in the shallow stations of Windermere were 

compared in their sound features (i.e. period between sounds of the same burst, period between sound bursts, 

sound peak frequency, pulse period, pulse peak frequency) with Corixidae cleaning sounds recorded in controlled 

conditions (i.e. aquaria, N=60 sounds kindly provided by Kevin French, unpublished data). Sound features were 

found to be similar (Mann Whitney test p-value> 0.05); therefore the macroinvertebrate sounds recorded in 

Windermere were considered as belonging to the Corixidae family. The pulse peak frequency of these sounds 

recorded in Winderemere was 3639 ± 80 Hz. 

iv. ACI 
The strongest predictors of the ACI were number of macroinvertebrate and fish sounds, water temperature and  

wind characteristics (Fig. 3). In particular, the main factor influencing the ACI in Windemere shallow waters 

during night-time hours was the presence of macroinvertebrate sounds. Furthermore, when water temperature was 

lower than 8.5 °C fish sounds also appeared to influence the ACI (Fig. 3). 

 

C. WINDERMERE DURING DAY-TIME HOURS 

i. SPL  
During day-time hours, Windermere is characterized by frequent boat traffic, mainly of small recreational boats 

(with outboard engines) and cruise ferries (with inboard diesel engines), in addition to canoes, kayaks, rowing 

boats and sailing boats. Boat noise appears to be the main factor affecting the broadband sound pressure levels in 

Windermere shallow waters during day-time hours. Under conditions of high boat traffic (i.e. boat noise rate > 

80%), the presence of rain also appeared to influence the broadband sound pressure levels, while wind speed 

contributed to the broadband levels under conditions of lower boat traffic (i.e. boat noise rate <80%) (Fig. 4). 

ii. Low sonic band 
The low frequency bands sound pressure levels are mainly influenced by the rate of boat traffic. When boat noise 

is present in more than 80% of the acoustic sample, this is the only factor determining the low frequency bands 

pressure levels. When boat noise is present in less than 80% of the acoustic sample, wind speed and direction also 

appear to contribute to the low frequency pressure levels (Fig. 4). 

iii. High sonic band 
The high frequency bands levels were mainly influenced by the rate of boat traffic. When boat noise is present in 

more than 80% of the acoustic sample, this is the only factor determining the high frequency bands pressure levels. 

When boat noise is present in less than 80% of the acoustic sample, wind speed and direction also appear to 

contribute to the high frequency pressure levels (Fig. 4). 

iv. ACI 
The strongest predictors of ACI values detected during day-time hours in Windermere were number of 

macroinvertebrate and fish sounds, wind speed, boat traffic and water temperature (Fig. 4). 
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Figure 2- CHAID trees and predictor importance of the wideband, low frequency and high frequency band 

levels at Lough Na Fooey.  
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Figure 3- CHAID trees and predictor importance of the broadband, low frequency and high frequency 

band levels in Windermere during night-time hours. 
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Figure 4- CHAID trees and predictor importance of the broadband, low frequency and high frequency 

band levels in Windermere during day-time hours. 
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4. DISCUSSION 
Acoustic data were collected at different depths and over different bottom types at Lough Na Fooey during day-

time hours and revealed a geophony dominated soundscape, i.e. both biophony and anthrophony sources were not 

detected. CHAID procedures identified depth as the main factor regulating the broadband sound pressure levels, 

with wind characteristics also contributing. In particular, in depths greater than 4 m, wind speed was the main 

predictor of the SPL, while in shallower stations wind direction also appeared to contribute. These results might be 

explained considering that, at Lough Na Fooey, the shallowest stations were located in closer proximity to the lake 

shore. The influence of wind direction on the sound pressure levels of these shallower, littoral stations might be 

explained considering the potential influence of mountainous formations, such as the Mamturk and the Partry 

mountains, on the wind energy that could actually reach the water column. The benthic habitat appears to be the 

strongest factor influencing the low frequency bands levels at Lough Na Fooey. The influence of the benthic 

habitat on the detected low frequency levels can be explained considering the cut-off phenomenon, i.e. the critical 

frequency below which the shallow-water channel ceases to act as a waveguide, causing acoustic energy to 

propagate directly into the bottom (Jenson et al., 2011). In shallow-water environments, sediments cause effective 

attenuation of sounds originating and propagating in the water column through both compressional wave 

absorption and the excitation of shear waves (Officier, 1958; Rogers & Cox, 1988).  The effective attenuation of a 

particular sediment on the sound wave is the total transmission loss resulting from both intrinsic attenuation, 

scatter attenuation and energy conversion process. Different sediment types are characterized by different 

attenuation properties, where less coarse sediments have stronger attenuation properties, i.e. higher cut-off 

frequencies (Kibblewhite, 1989). The results of this first, preliminary application of classification models show 

that, in the absence of biophony and anthrophony sources, the low frequency component of inland waters 

soundscapes is influenced by the type of bottom, especially in shallow areas. Results highlighted by the CHAID 

procedures suggests that the information about the type of substrate may be encoded in the low frequency 

component of inland lakes’ soundscapes. Further investigations are required both to validate this hypothesis and to 

investigate whether animals might be able to discriminate and rely on this information to locate important areas for 

their biological cycle. 

 

In Windermere, acoustic data were collected at the same depth and over the same bottom type during 

night-time and day-time hours. Night-time acoustic recordings from Windermere were characterized by biophonic 

sources, such as macroinvertebrate (family Corixidae) and fish air passage sounds (see Bolgan et al., 2016b for a 

description of these sounds in a captive setting). Both weather conditions, wind characteristics and the presence of 

biophonic sources appeared to influence the soundscape of shallow gravel littoral environments during night-time 

hours and in the absence of boat traffic. The strong influence of rain on the detected noise levels, especially in the 

low frequency band, can be explained considering both the limited depth at which these recordings were collected 

(less than 1.5 m depth) and the (known) spectral characteristics of rain noise. Rain droplets hitting the air-water 

surface have been demonstrated to produce noise with most energy mainly below 5 kHz (Urick, 1984), thus 

explaining the strong influence of weather conditions on the low sonic levels highlighted by the CHAID procedure 

on the Windermere night-time hours dataset. In particular, rain droplets have been shown to produce low frequency 

noise by means of three main processes; i.e. the impact itself, the oscillations of the air-water surface and the 

oscillations of the entrained air carried by the rain droplet below the water surface) (Urick, 1984). On the other 

hand, the influence of macroinvertebrate calls on the night-time sound pressure levels, especially in the high sonic 

band, can be explained considering both quantity and spectral characteristics of macroinvertebrate sounds. 

Macroinvertebrate sounds were detected across all sites (Red Nab 1 and 2 and North Thompson Holme) and in 

some cases, a constant chorus was detected. As these sounds overlapped, the precise number could not always be 

determined, but more than 1300 sounds across the 10 minute listening period (τ1) were calculated. The peak 

frequency (i.e. the most energetic frequency) of the pulses characterising macroinvertebrate sounds recorded in 

Winderemere was 3639 ± 80 Hz, thus explaining the influence of this type of biophonic source on the high 

frequency bands levels. Macroinvertebrate sounds were found as the main predictor of the ACI during night-time 

hours. The ACI, originally developed by Farina & Morri (2008), is an algorithm designed to produce a direct 

quantification of complex biotic sound patterns by calculating the variability of the acoustic intensity of audio-

recordings. In the last 5 years, some studies have begun to investigate the possible applications of terrestrial 

ecoacoustic indices such as ACI to the marine environment (Harris et al. 2016). In both terrestrial and marine 

soundscapes, the ACI was found to be positively correlated to both number of vocalizations and traditional species 

diversity indexes (such as Pielou’s Evenness and Shannon’s index) (Harris et al., 2016). The results of this first 

application of classification models to inland waters soundscape seems to suggest the ACI as an effective acoustic 

metric to detect macroinvertebrate calls in shallow, littoral areas. Furthermore, the CHAID procedure highlighted 

the influence of water temperature and fish air passage sounds on the ACI. This might be explained considering 
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that the fish air passage sounds recorded in Windermere were air passage sounds likely emitted by Arctic charr 

(Salvelinus alpinus) during its spawning season (see Bolgan et al., submitted) over littoral spawning grounds. In 

Windermere, Arctic charr is known to enter the lake shore margins to spawn during November, when temperature 

generally drops below 8 °C (Miller et al., 2015). This might explain the influence of this biophonic source on the 

ACI in relation to water temperature (i.e. in warmer littoral waters, these sounds are unlikely to occur). Even if the 

emission of macroinvertebrate calls was most consistent during night-time hours, it has to be noted that these calls 

were emitted also at sunrise and sunset, thus influencing the ACI also during day-time hours. Also boat noise 

influenced the ACI in Windermere during day-time hours. These results seem to confirm the ACI as an effective 

metric to detect biophonic sources in contrast to anthropogenic sources in inland shallow water environments, 

where lower values of ACI correspond to intense boat traffic and higher values of ACI indicate the presence of 

biophonic sources (in accordance with literature, Pieretti  et al., 2011). Concluding, the ACI appears as an effective 

metric to characterize the biophonic and the anthropogenic component of inland water soundscapes. 

 

During day-time hours, Windermere is characterized by frequent boat traffic, mainly of small recreational 

boats (with outboard engines) and cruise ferries (with inboard diesel engines), in addition to canoes, kayaks, 

rowing boats and sailing boats. This preliminary application of classification models to freshwater soundscapes 

seems to indicate that when anthropogenic noise is present, this represents an important factor ruling the acoustic 

environments of the biological communities inhabiting these environments. In fact, CHAID procedures identified 

boat noise as the main contributor to the broadband pressure levels in Windermere shallow water stations during 

day-time hours. In particular, both the low and the high frequency sound pressure levels were mostly influenced by 

the rate of boat traffic. When boat noise was present in more than 80% of the acoustic sample, this was the only 

factor ruling both the low and the high frequency bands sound pressure levels. When boat noise was present in less 

than 80% of the acoustic sample, wind speed and direction also appeared to contribute to the low and high 

frequency sound pressure levels. Noise energy generated by shipping traffic is known to be mainly concentrated 

below 1 kHz (Nakahara, 1999), however, the additional contribution of boat noise to the high frequency bands (i.e. 

>2kHz) in the shallow waters of Windermere during day-time hours can be explained considering both the type of 

noise sources (i.e. type of boat and propeller) and the extent of environmental filtering. Seppänen & Nieminen 

(2004) found that, in a Finnish Lake, inboard diesel-powered boats produced most of their noise at high 

frequencies (1000-4000 Hz) with SPLs of 133 dB re 1µPa. Furthermore, outboard engines were the loudest, 

producing noise with SPL of 140 dB re 1µPa at 50-100 m distance and with the most energy centred to high 

frequencies (above 1000 kHz). The results of Seppänen & Nieminen (2004) are comparable to the values recorded 

in Windermere (Bolgan et al., 2016a). The intense traffic of both cruise ferries (i.e. with inboard engines) and 

small recreational boats (i.e. with outboard engines) in Windermere could therefore explain the overall high 

frequency content of boat noise recorded at this lake. Finally, regarding environmental filtering, it should be noted 

that this study was conducted in very shallow waters (less than 1.5m deep). The cut-off phenomenon could 

therefore contribute to the relatively reduced amount of low frequency energy detected in Windermere. 

Anthropogenic noise is a complex and challenging source of pollution to quantify as it varies in duration, 

amplitude and frequency content, and as it can also be modified by the medium through which it travels (Shannon 

et al. 2015). It has to be noted that this present study is strongly limited by the extremely restricted sample size (i.e. 

models were built on ca. 115 hours of recordings versus the over 270,000 hours used in previous acoustic 

modelling studies, e.g. Mennitt et al., 2014). Furthermore, although aquatic spectral and temporal soundscape 

composition have been proved to vary over relatively short geographical and time scales (e.g. Radford et al., 2010), 

this study did not involve simultaneous long-term recordings over different sampling stations. This study therefore  

lacks significant temporal and spatial resolution, failing to account for the potential, consistent variation of sonic 

sources occurring over relatively small areas and short periods of time. Considering these limitations, this study 

can be considered as a restricted, preliminary implementation of classification models to inland water soundscapes. 

However, it nevertheless represents the first application of such models to inland water soundscapes. Furthermore, 

it highlights for the first time the strong influence of anthropogenic noise pollution on the soundscape of a large 

multi-use lake in which frequent shipping, recreational fisheries and the nationally rare Arctic charr (Winfield et 

al., 2008) co-exist. Considering that the results of this study suggest that when anthropogenic noise is present, it 

constitutes the main factor ruling the acoustic environments of the biological communities inhabiting inland water 

environments, further studies addressing noise levels, sources and effects in freshwater environments are 

recommended across a wider geographical, temporal and taxonomic range. On a regulatory level, it might be 

advisable to consider expanding freshwater environmental legislation to include underwater noise levels as an 

indicator of inland water quality and ecological status, using a similar legislative approach to that adopted under 

the Marine Strategy Framework Directive (MSFD) of the European Union (Commission Decision 2010/477/EU). 

The MSFD requires European Member States to develop strategies in order to achieve and maintain Good 

Environmental Status (GES) in European Seas (European Commission 2008). Two indicators for underwater noise 

are used to describe the GES. In particular, Indicator 11.2.1 focuses on low frequency ambient noise, with the main 
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contributor given by commercial shipping noise. It requests monitoring of the yearly trends of underwater noise 

level within the 63 and the 125 Hz 1/3 octave bands (centre frequency), measured in different observation stations. 

In the case of freshwater environments, the first step toward a possible amendment of the Water Framework 

Directive of the European Union (WFD; 2000/60/EC) and corresponding legislation elsewhere in relation to noise, 

would involve year-round monitoring in important, multi-use systems in order to identify which frequency bands 

are most indicative of the actual levels of noise in inland waters. Once the appropriate frequency bands (i.e. 

indicators) are identified, acoustic monitoring of inland waters noise pollution could be carried out across wide 

geographical scales using a standardized approach. Ultimately, potential mitigation measures such as the definition 

of noise-free areas (i.e. fish spawning grounds, essential fish habitats), and seasonal restriction of noisy activities 

during sensitive biological periods should be considered (Shannon et al., 2015). 
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