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Summary 20 

Interactions between microorganisms and rocks play an important role in Earth system 21 

processes. However, little is known about the molecular capabilities microorganisms require 22 

to live in rocky environments. Using a quantitative label-free proteomics approach, we show 23 

that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy 24 

some elemental requirements, resulting in increased rates of cell division in both 25 

magnesium- and iron-limited media. However, the rocks also introduced multiple new 26 

stresses via chemical changes associated with pH, elemental leaching and surface 27 

adsorption of nutrients that were reflected in the proteome. For example, the loss of 28 

bioavailable phosphorus was observed and resulted in the up-regulation of diverse 29 

phosphate limitation proteins which facilitate increase phosphate uptake and scavenging 30 

within the cell. Our results revealed that despite the provision of essential elements, rock 31 

chemistry drives complex metabolic reorganisation within rock-dwelling organisms, 32 

requiring tight regulation of cellular processes at the protein level. This study advances our 33 

ability to identify key microbial responses that enable life to persist in rock environments.  34 

35 
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 36 

Introduction 37 

The majority of Earth’s biomass is located in sub-surface habitats. Indeed, Whitman et al 38 

(1998) suggest that the terrestrial subsurface has the largest reservoir of prokaryotic cells on 39 

Earth, whilst Kallmeyer et al (2012) estimate sub-seafloor prokaryotic abundance to be at 40 

least equal to that of seawater. These sub-surface habitats range from rocks just millimetres 41 

below the surface (Friedmann and Ocampo, 1976) to the deep continental and ocean crust 42 

(Mason et al., 2009; Reith, 2011; Orcutt et al., 2011; Nyyssönen et al., 2014).  43 

In any sub-surface habitat, microorganisms will be in proximity to rocks, which are highly 44 

heterogeneous and reactive substrates (Jones and Bennett, 2013). Several studies have 45 

described the microbial release of bioessential elements from rocks (e.g Vandevivre et al., 46 

1995; Uroz et al., 2009) and microbially induced changes in rock redox chemistry (e.g. Gadd, 47 

2010 and references therein). However, even in the absence of active microbial weathering, 48 

rock chemistry can affect the structure, composition and metabolic activities of microbial 49 

communities (Mason et al., 2009; Kelly et al., 2011; Nyyssönen et al., 2014).  Although these 50 

effects are well documented, these studies have relied on genome-level approaches that fail 51 

to capture the intracellular responses induced by environmental changes. This is particularly 52 

key in ecosystems with complex geochemistry, such as rock environments. Even 53 

transcriptomics-based approaches, which provide information on functional gene 54 

expression, are known to poorly correlate with protein expression (Nie et al., 2007).  55 

Proteomics technologies, however, enable quantification of thousands of proteins in a 56 

complex sample. This allows us to directly observe changes in the functions of cells in 57 

response to environmental perturbations. The large number of proteins detected makes 58 A
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proteomics an excellent tool for capturing the complexity of bacterial responses to 59 

environmental changes (Armengaud, 2013). 60 

We hypothesised that changes associated with the release of elements from rock, whilst 61 

potentially providing nutrients, would also subject cells to physiological stresses that are 62 

directly related to rock geochemistry. We explore this by quantifying changes in protein 63 

expression in the presence of rock using the bacterium Cupriavidus metallidurans CH34 as a 64 

model strain. This provides a snapshot of major processes occurring within the cells and 65 

allows us to capture the complexity of such an interaction. We conducted three major 66 

experiments: 1) We compare growth, chemical changes and protein expression with and 67 

without basaltic rock added to optimal growth media to explore the effects of the presence 68 

of rock on the bacterial proteome, 2) We then investigate the effect of increased pH caused 69 

by the addition of rock to  disentangle the contribution of this perturbation to changes in 70 

the proteome, and 3) Finally we compare growth, chemical changes and protein expression 71 

with basalt added to nutrient-limited growth medium, to assess the ability of C. 72 

metallidurans CH34 to use basalt as a source of iron and magnesium. 73 

Our results show that the presence of the rocks induced geochemical changes that correlate 74 

with changes in the proteome expression profiles of C. metallidurans. The shifts in protein 75 

expression are primarily associated with nutrient limitation and stress responses, despite 76 

the provision of some bioessential elements by the rock. These experiments provide new 77 

insights into the stressors and benefits for microorganisms dwelling in rocky environments. 78 

Results 79 

Changes in fluid chemistry and cell division 80 A
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In order to assess how the presence of rock influences fluid chemistry and microbial 81 

processes, cells were cultured in 50 ml of "optimal growth media" (See Experimental 82 

Procedures) with 5 g of sterile basalt and fluid chemistry was measured. This was compared 83 

to abiotic changes in fluid geochemistry induced by the presence of rocks in identical 84 

conditions, but without cells. Addition of rock to optimal growth media (see Experimental 85 

Procedures) was associated with several geochemical changes in both Cupriavidus-86 

inoculated (biotic) and non-inoculated (abiotic) experiments. At the end of the experiment, 87 

after 260 hours, phosphorus concentrations in the abiotic media had decreased in the 88 

presence of rock compared to media without rock (t(2) = 73.2, P = 0.0002, Fig. 1D). All 89 

abiotic conditions with rock resulted in significantly increased iron, calcium, silicon and 90 

aluminium concentrations in relation to control samples without rock (Fig. 1A, 1B, 1E, 1F;  Fe 91 

t(2) = 47.4, P = 0.0004; Ca t(2) = 42.6, P = 0.0006; Si t(2) = 89, P = 0.0001; Al t(2) = 70.6, P = 92 

0.0001). Cupriavidus-inoculated cultures had approximately the same concentration of 93 

phosphorus with rock as cultures without rock, both of which were much lower than in the 94 

original medium (Fig. 1D). Zinc and manganese concentrations in the supernatant of 95 

experiments with rock were consistently lower compared to media without rock (Fig. 1G, 96 

1H; Mn t(2) = 11.9, P = 0.007; Zn t(2) = 21.8, P = 0.002). 97 

In cultures without rock added, the pH remained stable at pH 7 in abiotic treatments but 98 

increased from pH 7 to approximately pH 7.5 in biotic experiments. In the presence of rock, 99 

in both Cupriavidus-inoculated and non-inoculated media, we observed an increase from pH 100 

7 to approximately pH 8 (not shown). Cultures grown in optimal media in the presence of 101 

rock showed lower growth rates and lower final cell densities than cultures grown in 102 

optimal media (pH 7) without rocks (Fig. 2). To assess whether the reduction in cell density 103 A
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in the presence of the rocks was caused by pH, cells were cultured in the same growth 104 

media, but with the pH increased from pH 7 to pH 8 and with no rock added. This led to a 105 

similar decrease in optical density as was observed in the presence of rock (Fig. 2). 106 

Phosphorus partitioning assays were conducted to gain a detailed understanding of the 107 

changes in phosphorus chemistry in the experiments. In both the abiotic (t(3) = 18.2314, P = 108 

<0.001; Fig. 3A) and biotic (t(3) = 6.2519, P = <0.001; Fig. 3A) experiments, total phosphorus 109 

was observed to decrease in the presence of rock (Fig. 3). These data can be further 110 

analysed in relation to the different components of the phosphorus pool. In the biotic 111 

experiments most of the measured phosphorus was observed as particulate phosphorus, 112 

which is presumed to be cell biomass (this observation explains why ICP-OES did not detect 113 

a difference in phosphorus concentrations between biotic experiments with and without 114 

rock, since the filtering step in the methodology would remove particulate phosphorus). In 115 

the abiotic experiments, the phosphorus is primarily reactive soluble phosphorus (Fig. 3D).  116 

The lower phosphorus concentrations in the presence of rock in both abiotic and biotic 117 

experiments cannot be explained by precipitation of the phosphorus. Although theoretical 118 

calculations of the abiotic solution chemistry in the presence of rock show the solution is 119 

saturated with respect to three calcium phosphate minerals (See Supplementary 120 

Information, Fig. S1), the particulate phosphorus concentrations in the presence and 121 

absence of rock in the abiotic controls were negligible and no significant difference was 122 

observed (t(1) = 2.094, P = 0.28; Fig. 3C). The lower concentrations of soluble phosphorus in 123 

the presence of rock suggest removal of phosphorus from solution, perhaps by binding to 124 

the rock surface.  125 

Proteome changes in the presence of basalt 126 A
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A total of 1685 proteins were identified and quantified across all experimental treatments. 127 

This represents nearly 25 % of all of the protein-coding genes in the C. metallidurans CH34 128 

genome (Janssen et al., 2010).  Good technical reproducibility across biological triplicates 129 

was observed, with each triplicate having a correlation coefficient of >0.99 when compared 130 

to the mean of the triplicates.  131 

When the proteomes of cultures grown in optimal medium with and without rock were 132 

compared, fifty-two proteins have significantly higher abundance when rocks are present 133 

(3% of the detected proteins). Table 1 lists the proteins that were of higher abundance in 134 

cells grown in the presence of rock compared to cells grown in optimal media without rock. 135 

These included a diverse suite of proteins associated with low levels of phosphorus (Table 136 

1). Putatively up-regulated proteins were associated with two phosphate limitation-related 137 

strategies: increase of phosphate uptake from outside of the cell and scavenging of 138 

phosphate from intracellular reserves (Table 1).  139 

Proteins involved in import of phosphate into the cell from outside, represented pathways 140 

for transport of phosphate in three forms: phosphate, phosphonate and phosphite (see 141 

Table 1). These included the PstS protein from the phosphate-specific transport system that 142 

is involved in free phosphate import, and the high affinity phosphate uptake system 143 

proteins PhnD and PtxB that are likely involved in transport of phosphonate and 144 

phosphonate esters, or phosphite. 145 

Proteins associated with intracellular phosphorus scavenging typically degrade larger 146 

phosphate-containing compounds. The patatin (PatD) and phospholipase C (PlcN) enzymes, 147 

for example, release phosphorus from phospholipids (Titball, 1993; Banerji and Flieger, 148 A
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2004). PhoD is an alkaline phosphatase enzyme thought to be a scavenging mechanism by 149 

which bacteria generate free phosphate groups from many types of molecules.   150 

In addition to the low phosphorus response, we observed an increased abundance of 151 

proteins involved in alternative energy generating pathways in the membrane and cellular 152 

redox homeostasis (Table 1). These included proteins associated with hydrogen oxidation 153 

(i.e. hydrogenotrophy) (oxygen-tolerant membrane-bound hydrogenase formation protein 154 

HoxQ) and an enzyme involved in sulphite oxidation (sulfite:cytochrome c oxidoreductase 155 

SorA). We also observed an increase in the abundance of the entire set of proteins involved 156 

in formate oxidation (FdhA, FdhB, Rmet_2759, FdhC). These Fdh enzymes catalyse the 157 

oxidation of formate to CO2 and H+ and have been associated with stress responses in 158 

Desulfovibrio vulgaris (Zhou et al., 2011).  159 

The remaining proteins that have higher relative abundance in the conditions with rock 160 

present were primarily associated with diverse membrane and periplasmic transport 161 

processes, and regulatory processes such as signalling and transcription regulation (Table 1).  162 

Forty-five proteins are significantly less abundant in the presence of rock relative to the 163 

control and are shown in Table 2. These represent 2.7% of the detected proteins.  164 

We observed a decrease in abundance of metal cation responses and efflux systems with 165 

rock present. ZniA, ZniB and ZntA all have a specific affinity for zinc and cadmium. We also 166 

observed reduced relative abundance  of the HmzP two-component transcriptional 167 

regulator, a metal cation resistance protein, and a ferric reductase (Rmet_3017) located 168 

downstream of hmzP in the genome. 169 A
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Lower abundance of proteins associated with consumption of high energy, phosphorus-170 

containing compounds such as ATP and NADPH was observed, relative to the control. For 171 

example, four ATPases have decreased abundance (Rmet_0297, Rmet_1426, Rmet_2164 172 

and Rmet_3358), as are oxidoreductase enzymes associated with energy metabolism.  173 

Other putatively down-regulated proteins included those involved in transcription, biotin 174 

synthesis, oxidoreductase reactions, transport and signalling (Table 2). Although typically 175 

associated with phosphorus homeostasis, an alkaline phosphatase and a phosphoesterase 176 

enzyme have decreased relative abundance in the presence of rock. However, these also 177 

had significantly lower abundance in the proteome of cells grown at pH 8 compared to the 178 

control (See following section). All proteins which have lower abundance both in the 179 

presence of rock and in cells cultured at pH 8 are highlighted in Table 2. 180 

Proteome changes at pH 8 181 

Across all experimental treatments, rock-induced variation in protein expression was 182 

accompanied by an increase in pH in the growth media. The effect of an increase in pH was 183 

characterised in isolation in order to separate the influence of pH from other factors 184 

introduced by the presence of rock. Final optical density at pH 8 (Fig. 2) was low in 185 

comparison with cells at pH 7. Growth rate and final cell density at pH 8 was 186 

indistinguishable from those observed in the presence of rock (Fig. 2).  187 

Cultures grown in medium at pH 8 had 21 proteins with significantly higher abundance and 188 

25 proteins with significantly lower abundance compared with cells grown in medium at pH 189 

7. Only 5 of these were also of decreased abundance in the proteome of cells grown in rock-190 

amended media and are highlighted in Table 2. In both cultures grown at pH 8 and those 191 A
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grown in the presence of rock, a putative type-4 fimbrial biogenesis protein (PilY1), 192 

isocitrate lyase (AceA), alkaline phosphatase (PhoA1), acid phosphatase (AcpA) and a 193 

putative metallo-dependent amidohydrolase were significantly decreased in abundance. 194 

These proteins did not appear to be functionally related to one another and represented 195 

individual proteins, the production of which appeared to be pH-dependent. 196 

Effect of initial element limitation on the proteome 197 

To assess the importance of the rocks as providers of bioessential elements, experiments 198 

were conducted with basalt added to growth media deprived of iron or magnesium. A 199 

greater than two-fold decrease in mean cell density relative to the control was observed in 200 

medium without iron, and no growth was observed in medium without magnesium in the 201 

absence of rock (Fig. 4). The addition of rock to all of these media resulted in almost 202 

identical growth curves across all conditions, with these data being indistinguishable from 203 

the growth curves obtained for optimal medium with rock (Fig. 4).  204 

Multivariate analysis of the protein expression data was performed for cultures incubated in 205 

optimal medium in the absence of rock, and three types of growth media (optimal growth 206 

medium, medium with iron removed and medium with magnesium removed) in the 207 

presence of rock (see Experimental Procedures). This identified two main clusters defined by 208 

the presence or absence of rocks (Fig. 5). While these clusters were only 20 % dissimilar 209 

(based on a group-average clustering of Bray-Curtis similarity values), the observed 210 

difference was highly significant (2-way nested PERMANOVA: pseudo-F1,10 = 19.552, P = 211 

<0.001). A significant effect of medium type was also observed (2-way nested PERMANOVA: 212 

pseudo-F3,10 = 4.060, P = 0.002). No significant variation in multivariate dispersion was 213 A
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observed between samples incubated in the presence or absence of rock (PERMDISP: F4,10 = 214 

0.440, P = 0.916), or in different types of media (PERMDISP: F1,10 = < 0.001, P = 0.983).  215 

All of the three media types in the presence of rock were 85 % similar (Fig. 5). However, 216 

cultures with rock, but in which the medium was limited by magnesium or iron were more 217 

similar to one another than to cultures in optimal media in the presence of rock (Monte 218 

Carlo P for: optimal + rock vs no Fe + rock: 0.0327; optimal + rock vs no Mg + rock: 0.0228;  219 

no Mg + rock vs no Fe + rock: 0.209). Further information on these results is provided in the 220 

Supplementary Information (Table S3).  221 

In the absence of rock, cultures at pH 8 showed a higher similarity to cultures at pH 7 than 222 

they did to any of the cultures in the presence of rock (Fig. 5) (Table S4).  223 

Figure 6 shows that a core set of proteins were consistently increased or decreased (26 and 224 

20 proteins, respectively) in the presence of rock, regardless of whether the cultures were 225 

starved of a specific element (Fe or Mg) or not. This observation is consistent with the 226 

results shown in Fig. 5, supporting our finding that differences in protein expression were 227 

primarily attributable to the presence or absence of rock, as opposed to elemental 228 

starvation. 229 

Proteins differentially expressed in all conditions (optimal + rock, no iron + rock, and no 230 

magnesium + rock) are highlighted in Tables 1 and 2. The increased abundance of phosphate 231 

limitation proteins, the formate dehydrogenase regulon and proteins also differentially 232 

regulated at pH 8 (See Proteome Changes at pH 8) dominated this group of common 233 

proteins. 234 

Discussion 235 A
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To better understand the mechanisms microorganisms require to inhabit a rock 236 

environment, we investigated whether volcanic rocks induce specific microbial responses 237 

that are directly linked to geochemical changes induced by elemental leaching from rock. 238 

We used quantitative label-free proteomics to explore the molecular adaptations used by a 239 

model microorganism (Cupriavidus metallidurans CH34) grown in the presence of basalt.  240 

Our results showed that when iron and magnesium was limited in the original medium, the 241 

addition of basalt was able to improve microbial growth, showing that basalt provides a 242 

source of these essential elements to the organisms. Nevertheless, the presence of basalt 243 

suppressed overall growth rates by increasing the pH from 7.0 to 8.0, outside the optimum 244 

growth pH for this organism. 245 

An increase in pH in the presence of basalt is consistent with current knowledge on basalt 246 

glass dissolution, which begins with the release of monovalent and divalent cations (as 247 

observed in our elemental analysis) via metal-proton exchange that consumes protons and 248 

could increase fluid pH (Oelkers and Gislason, 2001). A decrease in both growth rate and 249 

final biomass abundance in the presence of rock, driven by abiotic rock-water interactions, 250 

shows how the rock itself can induce stress to organisms.  251 

Whilst rock-induced shifts in pH appeared to drive the decrease in growth rate, multivariate 252 

analysis of the proteome data (Fig. 5) revealed that increased pH is not the main factor 253 

influencing protein expression in the presence of rock. 254 

 A common response observed across all conditions with rock present was the up-regulation 255 

of proteins associated with phosphate limitation (Table 1). Phosphorus is partitioned 256 

differently in biotic and abiotic treatments such that biotic treatments have high particulate 257 A
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phosphorus concentrations (as phosphorus is partitioned into cells) and abiotic treatments 258 

have the highest concentration of soluble phosphorus. However, regardless of partitioning 259 

effects, the total phosphorus concentration is lower in the presence of rock both with and 260 

without cells. As three calcium phosphate minerals are super-saturated at the ionic 261 

concentrations observed, the loss of phosphorus could, theoretically, have been driven by 262 

calcium phosphate precipitation (Fig. S1). However, the lack of particulate phosphate in 263 

experiments with rock rules out abiotic precipitate formation (Fig. 3C). Particulate 264 

phosphorus is high in biotic cultures and soluble (total and reactive) phosphorus is low but 265 

this is a result of soluble phosphorus uptake by cells and not mineral precipitation. 266 

Together, the low abiotic precipitation and low total phosphorus concentrations when rock 267 

is added, are consistent with phosphate sorption onto the rock surface rather than 268 

phosphate mineral formation. The sorption of phosphates to mineral surfaces has been 269 

studied extensively and occurs when phosphates sorb to metal oxyhydroxides via ligand 270 

exchange, an OH- or an H2O molecule is released from the surface resulting in the formation 271 

of a phosphate surface complex (e.g. Frossard et al., 1995). It is likely that this phosphorus 272 

sequestration results in exhaustion of available P before all the carbon source has been used 273 

and drives cells into an early, phosphorus limitation-induced stationary phase in the 274 

presence of rock as well as acting to limit biomass yield and drive protein expression.  275 

These results show that the presence of rock  not only induce stress by changing the pH of 276 

the solution, but also by reducing phosphorus availability, exerting a dominant effect on 277 

microbial proteome response. The observation that the proteome response was 85% similar 278 

regardless of whether the original medium was complete or limited in iron or magnesium 279 

shows that in rock environments, the stress induced by the mere presence of rock has the 280 A
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potential to be a more prominent influence on microbial physiology than micronutrient 281 

limitation. 282 

It is unclear whether C. metallidurans CH34 has the ability to solubilise mineral phosphates, 283 

facilitating the direct scavenging of phosphorus from a rock surface, or whether the 284 

increased abundance of these proteins assists in the accumulation of phosphate from 285 

organic sources. However, the ability of C. metallidurans to overcome phosphorus 286 

sequestration could confer a key advantage in the colonisation of rock habitats which are 287 

characterised by numerous pathways for phosphate removal. 288 

We also observed an up-regulation of proteins involved in alternative metabolisms such as 289 

hydrogen and sulphite oxidation (Table 1) in the presence of rock. This may result from a 290 

need to utilise a diverse range of energy-producing processes because of the lack of 291 

phosphorus. In particular, the up-regulation of the formate dehydrogenase operon 292 

(observed here in all conditions in the presence of rocks) has been linked to stress responses 293 

by previous studies. For example, in Desulfovibrio vulgaris, the expression of the fdhBAC 294 

genes is associated with diverse stress responses where they are thought to be involved in 295 

enhancing energy required for stress-alleviating processes by increasing the flow of reducing 296 

equivalents through formate (Zhou et al., 2011). Consistent with this is the down-regulation 297 

of proteins associated with high energy phosphorus-containing compounds such as ATP 298 

(Table 2) that probably act to limit the consumption of these molecules due to their low 299 

availability.  300 

Consistent with the reduction of zinc and manganese concentrations in the presence of 301 

rock, we observed a decreased abundance of various zinc efflux proteins. It is unclear why 302 

the concentrations of these cations are lower in the presence of rock, but nevertheless, the 303 A
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results suggest a direct response of the bacterial proteome to the presence of trace 304 

elements.   305 

From both the element and proteome analysis, there is no evidence that C. metallidurans 306 

CH34 has an active role in rock weathering in this case. Our observations are more 307 

consistent with passive uptake of abiotically leached elements, and cellular responses to 308 

abiotic surface reactions induced by the fluid-rock interactions. 309 

By modifying the pH, releasing elements and sequestering phosphorus, rocks impose upon 310 

cells a multiple-stress extreme environment that influences cell growth and requires the up 311 

and down-regulation of a diverse suite of proteins. The use of label-free quantitative 312 

proteomics has helped us capture the diversity of this response, highlighting the complex 313 

array of physiological changes that microorganisms elicit in response to rock environments. 314 

A comprehensive understanding of geochemistry must be coupled with detailed knowledge 315 

of microbial responses to nutrient starvation and other physiological stresses, if we are to 316 

truly understand the factors that drive the ability of microorganisms to colonise and actively 317 

persist within rock environments. More broadly, this study highlights the need to quantify 318 

the subtle complexities of microbial interactions with their environment.  319 

Experimental Procedures 320 

Substrate and organism selection 321 

The Gram-negative beta-proteobacterium Cupriavidus metallidurans CH34 was the model 322 

organism for this study. C. metallidurans CH34 was selected as it has a versatile suite of 323 

metabolic capabilities, is found within numerous natural and anthropogenic extreme 324 

environments, and is well suited to life in stressful rock habitats (Olsson-Francis et al., 2010). 325 A
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It is particularly well-known for its resistance to heavy metals (Janssen et al., 2010; 326 

Monsieurs et al., 2011). In addition, the full genome sequence of this strain is available and 327 

its gene functions are well-annotated, making C. metallidurans an excellent model organism 328 

for proteomics studies (Janssen et al., 2010). 329 

We used a poorly crystalline basaltic rock as the model substrate. Basalt is a common 330 

igneous rock that, due to the active volcanism present early in Earth history, is likely to have 331 

been very important for early life (Moorbath, 2005). In a poorly crystalline rock, elements 332 

are more homogeneously distributed throughout the substrate rather than partitioned into 333 

specific minerals. As each experimental replicate contains a sub-sample of rock, this helps 334 

make our experiments more controlled and reproducible by reducing the variability 335 

between rocks used in each flask. 336 

The basalt was collected from Skaptafell, Iceland (64°45'58"N 23°38'59"W). The rock 337 

composition, as determined by X-Ray Fluorescence (PANalytical PW2404, PANalytical, UK), was 338 

44% SiO2, 15% Al2O3, 12% CaO, 11% Fe2O3, 7% MgO, 3% TiO2, 1% Na2O, 1% K2O, 0.4% P2O5,  339 

0.2% MnO, with 5.6% lost on ignition. The rock also contained trace elements in the 340 

following concentrations: 426ppm Sr, 353ppm V, 303ppm Cr, 284ppm Ba, 139ppm Cu, 341 

128ppm Zr, 111ppm Zn, 98ppm Ni, 45ppm Sc, 55ppm Ce, 36ppm Nb, 29ppm Nd, 22ppm La, 342 

19ppm Y, 17ppm Rb, 1.5ppm Th, and 1.2ppm Pb. The basalt was crushed and sieved to 343 

isolate the 1 - 2.5 mm size fraction. This was rinsed in ddH2O and dried overnight at room 344 

temperature before autoclaving at 121°C for 20 minutes. 345 

 346 

Culturing and growth 347 A
cc

ep
te

d 
A

rti
cl

e



17 

This article is protected by copyright. All rights reserved. 

C. metallidurans was routinely cultured at 30°C in Tris salts minimal medium (MM284) at pH 348 

7 with 0.2 % (w/v) sodium gluconate and ferric ammonium citrate as the iron source, as 349 

described previously (Mergeay et al., 1985).  350 

Reagent grade chemicals were used for media preparation (Sigma-Aldrich, UK). Previously 351 

described MM284 has only enough phosphorus (as Na2HPO4.2H2O) for complete 352 

consumption of the carbon source. The onset of the stationary phase is triggered when the 353 

carbon source is exhausted but phosphorus is also low by this time point. We do not 354 

supplement the medium with an excess of additional phosphorus. 355 

In order to assess stresses induced by the presence of rock, we cultured cells (starting cell 356 

concentration = 2 x 104 CFU ml-1) in 50 ml of "optimal growth media" (i.e. MM284 + 357 

gluconate) with 5 g of sterile basalt added. All cultures were grown in acid-washed (to 358 

remove any metal contamination), sterile 100 ml Nalgene polymethylpentene flasks instead 359 

of glass flasks that occasionally interfere with inorganic leaching analysis. Cultures were 360 

capped with sterile foam bungs to allow gas exchange with the atmosphere. Each test 361 

condition was run in triplicate (n = 3). As it was unclear whether the presence of rock would 362 

subject the cells to physical shear stress during continuous shaking, experiments were 363 

conducted under static conditions with manual mixing at 24-hour intervals. Optical density 364 

at 600 nm was measured daily by visible spectrometry (FLUOstar Optima, BMG Labtech, UK) 365 

as a proxy for cell growth. Optical density was measured on 200µl of culture in a 96 well 366 

microplate (path length = 6.31mm). 367 

A complete set of abiotic controls were run in tandem by adding 50 ml of media to 5 g 368 

sterile basalt in triplicate. These were not inoculated with cells and were kept at 30°C 369 

alongside the biotic replicates and also shaken every 24 hours. The control samples were 370 A
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used to quantify abiotic leaching from the rocks and to ensure that no particulate material 371 

might interfere with optical density measurements in the cultures with cells.  372 

To isolate effects related to pH changes we also investigated the proteomes of cells grown 373 

in the same media (i.e. MM284 + gluconate) with the pH adjusted to pH 8 (with NaOH). To 374 

compare the proteomes of cells initially limited of a specific element, and thus required to 375 

obtain that element from the rock, we used media with the (Fe(III)NH4.citrate) or 376 

magnesium (MgCl2 . 6H2O) source omitted and basalt added. These elements were selected 377 

as they comprise two of the main inorganic cations required for bacterial growth and are 378 

major constituents of basaltic rocks (Madigan et al., 2014). Optical density was also 379 

monitored in the iron- or magnesium-limited media alone to establish if the basalt was 380 

providing elements essential to growth. Abiotic triplicates of iron- and magnesium-limited 381 

media with rock were established as described above. 382 

The experiment was conducted for 260 hours after which cells from all flasks were 383 

harvested and all following analyses conducted.  384 

Elemental analysis 385 

Final inorganic element concentrations at the end of the experiment were measured to 386 

compare changes in chemistry induced by the rocks and cells during the experiment. 387 

Cultures were centrifuged (4500 rpm, 5 minutes, 10°C), the supernatant filtered through a 388 

0.22µm filter and final inorganic element concentrations in the cell-free supernatant 389 

determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Details 390 

on the analysis are provided in the Supplementary Information and in Table S1. 391 

Phosphorus partitioning assays 392 A
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To better understand phosphorus chemistry in the experiments, phosphorus partitioning 393 

assays were conducted to complement the ICP-OES analysis. The ICP-OES phosphorus 394 

analysis indicates only the phosphorus concentrations after the sample has been filtered 395 

and does not indicate what form of phosphorus is present. The phosphorus partitioning 396 

assays resolves the concentration of phosphorus that is: soluble and reactive, soluble and 397 

unreactive and in a particulate form. Particulate phosphorus is not measured directly but 398 

calculated by subtracting the concentration of the total soluble phosphorus (TSP) from the 399 

total phosphorus (TP).  400 

Soluble Reactive Phosphorus (SRP) concentrations were determined following the method 401 

of Murphy & Riley (1962). This method uses a reagent of ammonium molybdate, potassium 402 

antimony tartrate, and L-ascorbic acid in 1 M of sulphuric acid, which reacts with the 403 

phosphate ion to form a phospho-molybdenum blue complex. Concentrations were 404 

determined by measuring absorbance at 882 nm in relation to known standards. Total 405 

phosphorus (TP) concentrations were determined on unfiltered samples, which were 406 

digested using a solution of sulphuric acid and potassium persulphate to convert all forms of 407 

phosphorus to SRP, which was then measured in a similar way to that described above. The 408 

method used was as described for TP by Wetzel and Likens (2000), with an added 409 

acidification step (0.1 ml of 30 % H2SO4 was added to the samples before addition of 410 

persulfate). Total Soluble Phosphorus (TSP) concentrations were determined in the same 411 

way as described for Total Phosphorus, but using a filtered sample. Particulate phosphorus 412 

concentrations were calculated by subtracting TSP from TP. 413 

Proteome analysis 414 A
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Cells were harvested by centrifugation (4500 rpm, 5 minutes, 10°C) after 256 hours of 415 

growth. Cells were lysed in 8M sterile urea with regular vortexing to release proteins. 416 

Proteins were broken down into their constituent peptides by trypsin digest (LeBihan et al., 417 

2010). Peptides were analysed on a reverse phase microcolumn using a 140 minute gradient 418 

(controlled by a binary HPLC system 1200, Agilent, UK) coupled to a hybrid LTQ-Orbitrap XL 419 

mass spectrometer (Thermo-Fisher, UK) in data dependent mode, controlled through 420 

Xcalibur 2.0.7 software as described previously (Martin et al., 2012; Le Bihan et al., 2010). 421 

Eight microliters of sample in loading buffer was injected onto the analysis column. 422 

Peak selection, normalisation and quantification were performed using Progenesis LC-MS 423 

(version 4.0, Nonlinear Dynamics, UK). Peptides (charges 2+, 3+ and 4+) were identified by 424 

MASCOT (Matrix sciences, UK, version 2.3) searches of MSMS data against the NCBI protein 425 

database subset (Tatusova et al., 2014) for Cupriavidus metallidurans (6766 sequences), 426 

using a trypsin/p enzyme restriction with a maximum missed-cut value of 2. Variable 427 

methionine oxidation and fixed cysteine carbamidomethylation were used in all searches. 428 

Precursor mass tolerance was set to 7 ppm and MSMS tolerance to 0.4 amu. The 429 

significance threshold (p) was set below 0.05 (MudPIT scoring).  430 

P-values for fold changes between experimental condition and control (media without rock) 431 

were determined by one-way ANOVA on arcsinh-transformed protein intensities in 432 

Progenesis LC-MS (LeBihan et al., 2010). Differentially expressed proteins were considered 433 

significant with an average intensity ratio of at least two-fold and a P-value less than 0.05 if 434 

detected with two or more peptides per protein with a MASCOT identification score greater 435 

than 20. 436 A
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Protein functions were assigned using functional annotation available on the UniProt 437 

Protein Knowledge Base (The UniProt Consortium, 2014) and cross-referenced with expert 438 

manual annotation of the Cupriavidu2Scope Project on the MAGE platform (Janssen et al., 439 

2010).  440 

A Bray-Curtis similarity matrix based on the protein expression data was analysed using the 441 

PRIMER statistical package (version 6.1.13) with the PERMANOVA+ add-on (version 1.0.3) 442 

(Clarke & Gorley, 2006; Anderson et al., 2008). Following non-metric multidimensional 443 

scaling ordination, a 2-way nested permutational analysis of variance (PERMANOVA; 444 

Anderson et al., 2001) was performed with ‘Medium type’ and ‘Presence of rock’ as the 445 

factors (Type III sums of squares, 9999 unrestricted permutations of the raw data). Since 446 

different sets of growth media were used in the presence and absence of rock, the factor 447 

‘Medium type’ was nested under the factor ‘Presence of rock’. Post-hoc pairwise 448 

comparisons were performed using the same PERMANOVA settings, with the exception of P 449 

values being derived by a Monte Carlo approach due to low numbers of permutations 450 

(Anderson et al., 2008). Variation in within-group dispersion was assessed using a test for 451 

the homogeneity of multivariate dispersions (PERMDISP, 9999 permutations) (Anderson, 452 

2006). 453 
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Figures 565 

Figure 1. Comparison of final inorganic ion concentrations in culture supernatant of optimal 566 

medium condition and optimal media with rock added (biotic and abiotic) at the end of the 567 

experiment as analysed by ICP-OES. Abiotic refers to treatments not inoculated with cells, 568 

biotic refers to those which have been inoculated. Light grey = rock added, Dark grey = no 569 

rock. A) Iron concentration B) Calcium concentration C) Magnesium concentration D) 570 

Phosphorus concentration E) Silicon concentration F) Aluminium concentration G) Zinc 571 

concentration H) Manganese concentration. Abiotic = non-inoculated treatments, Biotic = 572 

inoculated treatments. Data shown are means ± SD (n = 2 except in biotic with rock, n = 3). 573 

 574 

Figure 2. Growth curves of Cupriavidus metallidurans CH34 in optimal medium at pH 7, at 575 

pH 8 and with basaltic rock. The data shown are means ± SD (n=3). 576 

 577 

Figure 3. Comparison of a) Total phosphorus b) Total Soluble Phosphorus  c) Particulate 578 

Phosphorus and d) Soluble Reactive Phosphorus measured with and without rock present in 579 

inoculated and non-inoculated cultures. Data are shown as means ± SD (n = 3). 580 

 581 

Figure 4. Comparison of growth of Cupriavidus metallidurans CH34 in different nutrient 582 

availability conditions showing improvement in growth compared to magnesium and iron 583 

starved cultures with all rock-containing conditions falling within a similar range regardless 584 

of initial nutrient conditions. Data are shown as means ± SD (n = 3). Labels: optimal pH7 = 585 

optimal media at pH 7 with no rock, optimal + rock = optimal media with rock present, - Fe + 586 A
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rock = media with no iron added but rock present, - Fe no rock = media with no iron added 587 

and no rock present, - Mg no rock = media with no magnesium added and no rock present, -588 

Mg + rock = media with no magnesium added but rock present. Abiotic refers to treatments 589 

not inoculated with cells, biotic refers to those which have been inoculated. 590 

 591 

Figure 5. Non-metric multidimensional scaling (nMDS) ordination of Cupriavidus 592 

metallidurans CH34 cultures incubated in different types of growth media in the presence or 593 

absence of basalt. The ordination (stress = 0.07) was derived from a Bray-Curtis similarity 594 

matrix calculated from normalised protein expression data (Materials and Methods). 595 

Similarity thresholds (%) are based on group-average clustering. See Figure 4 for label 596 

descriptions. 597 

 598 

Figure 6. Venn diagrams displaying the number of proteins which show similar increases or 599 

decreases in abundance in different experimental groups  600 

Supplementary Information Figure Captions 601 

Figure S1: Logarithmic mineral saturation index in non-inoculated flasks of optimal media 602 

plus rock shows that the fluid is super-saturated with respect to the phosphate minerals 603 

hydroxyapatite, vivianite and whittlockite. Temperature was fixed at 30°C and pH was fixed 604 

at pH 8.  605 
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Table 1. Proteins with increased abundance in optimal media with rock added compared to optimal media without rock added. 606 

Replicon Protein description Protein 
name 

Locus Tag COG classes Uniprot 
accession no. 

X = common 
to all with 
rock 

MASCOT 
score 

No. peptides 
used for 
identification 

Fold 
change 

p-value 

Phosphorus limitation 

CHROM 1 periplasmic phosphate binding 
protein 

PstS Rmet_2185 P YP_584333.1 - 2864 36 2.15 1.8E-03 

CHROM 1 phosphonate C-P lyase system PhnL Rmet_0761 P YP_582916.1 x 27 5 2.71 7.8E-03 

CHROM 1 phosphonate-binding periplasmic 
protein 

PhnD Rmet_0774 P YP_582929.1 - 2128 32 2.02 5.5E-04 

CHROM 1 phosphonate-binding periplasmic 
protein 

PtxB Rmet_2994 P YP_585136.1 - 2675 27 2.03 6.8E-03 

CHROM 1 putative Patatin-like 
phospholipase 

PatD Rmet_0151 R YP_582306.1 x 152 3 2.11 2.4E-04 

CHROM 2 phospholipase C PlcN Rmet_4192 M YP_586328.1 x 1464 31 2.98 3.5E-03 

CHROM 1 alkaline phosphatase PhoD Rmet_2583 P YP_584729.1 x 298 9 5.84 1.7E-04 

Alternative energy metabolisms  

CHROM 1 membrane-bound [NiFe]-
hydrogenase formation protein, 
involved in nickel incorporation 

HoxQ Rmet_1290 - YP_583444.1 x 132 4 2.44 7.9E-03 

CHROM 2 sulfite:cytochrome c 
oxidoreductase molybdenum 
subunit  

SorA Rmet_4891 R YP_587022.1 - 141 5 2.27 2.8E-03 

CHROM 1 formate dehydrogenase, gamma 
subunit 

FdhC Rmet_2758 C YP_584900.1 x 132 4 4.21 4.5E-03 

CHROM 1 conserved hypothetical protein; 
putative exported lipoprotein 

- Rmet_2759 - YP_584901.1 x 102 3 7.42 6.6E-05 

CHROM 1 formate dehydrogenase, beta 
subunit with 4Fe-4S iron-sulfur 
domain 

FdhB Rmet_2760 C YP_584902.1 x 299 7 10.82 6.5E-05 

CHROM 1 formate dehydrogenase alpha 
subunit, with Fe4-S4 domain 

FdhA Rmet_2761 C YP_584903.1 x 1109 24 4.15 1.1E-04 

CHROM 1 disulfide oxidoreductase - Rmet_0109 Q YP_582264.1 - 109 4 2.07 2.4E-03 A
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CHROM 1 aldo/keto reductase - Rmet_3081 R YP_585222.1 - 69 5 3.02 5.7E-03 

Membrane & periplasm proteins 

CHROM 1 colicin transporter of the, tol-pal 
system, periplasmic component  

TolB Rmet_2675 U YP_584817.1 - 799 15 2.05 5.0E-03 

CHROM 1 taurine ABC-type transporter, 
periplasmic component 

TauA Rmet_2859 P YP_585001.1 - 109 8 2.13 2.2E-02 

CHROM 2 DL-methionine ABC-type 
transporter, periplasmic 
substrate-binding component 

MetQ Rmet_4988 P YP_587119.1 - 526 8 2.47 6.9E-04 

CHROM 2 ABC-type transporter involved in 
toluene tolerance, periplasmic 
component 

Ttg2 Rmet_4167 Q YP_586303.1 - 424 10 2.09 3.0E-05 

CHROM 1 ABC-type transporter, solute-
binding periplasmic component 

- Rmet_2122 P YP_584270.1 - 265 10 2.29 3.8E-03 

CHROM 2 ABC-type transporter, 
periplasmic component* 

- Rmet_5638 - YP_587766.1 x 456 7 3.02 2.5E-04 

CHROM 2 metal cation RND-type 
transporter, membrane protein  

HmyB Rmet_4121 M YP_586257.1 x 404 8 7.85 5.0E-06 

CHROM 1 putative lipoprotein - Rmet_3083 S YP_585224.1 - 190 6 2.59 5.3E-03 

CHROM 1 Putative lipoprotein precursor - Rmet_0997 - YP_583152.1 x 33 3 4.59 1.2E-03 

CHROM 1 beta N-acetyl-glucosaminidase NagZ Rmet_2413 G YP_584559.1 x 163 6 5.70 5.1E-04 

CHROM 1 phosphotransferase involved in 
extracellular matrix synthesis 

EplL Rmet_2726 M YP_584868.1 - 47 2 2.38 4.9E-02 

CHROM 1 surface antigen-like outer 
membrane lipoprotein 

- Rmet_0849 M YP_583004.1 x 99 3 2.63 2.4E-04 

CHROM 2 Extra-cytoplasmic solute 
receptor, periplasmic protein 

Bug Rmet_5294 S YP_587422.1 x 50 5 4.79 2.5E-03 

CHROM 2 Extra-cytoplasmic solute 
receptor, periplasmic protein  

Bug Rmet_5869 S YP_587997.1 - 51 2 2.78 4.9E-04 

CHROM 1 Extra-cytoplasmic solute 
receptor, periplasmic protein 

Bug Rmet_0982 S YP_583137.1 - 199 7 2.30 9.4E-05 

CHROM 1 Extra-cytoplasmic solute 
receptor, periplasmic protein 

Bug Rmet_1184 S YP_583339.1 - 481 11 2.07 1.5E-03 
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CHROM 1 DNA polymerase III subunit HolC Rmet_2806 L YP_584948.1 - 20 2 2.04 5.7E-04 

CHROM 1 ribonucleotide-diphosphate 
reductase, subunit beta 

NrdB Rmet_3087 F YP_585228.1 - 217 4 2.01 7.2E-03 

CHROM 1 cell division protein ZapD Rmet_3112 S YP_585253.1 - 214 5 2.46 1.8E-02 

CHROM 1 LysR family transcriptional 
regulator 

 Rmet_3446 K YP_585587.1 x 34 3 2.45 3.4E-04 

CHROM 2 GntR family transcriptional 
regulator 

- Rmet_5631 K YP_587759.1 x 28 5 9.01 2.5E-03 

CHROM 1 BolA family transcriptional 
regulator 

BolA Rmet_3251 K YP_585392.1 x 29 3 5.13 1.8E-03 

CHROM 2 cold-shock responsive 
transcriptional repressor 

Csp Rmet_5818 K YP_587946.1 - 257 3 2.39 1.0E-02 

CHROM 1 50S ribosomal protein L28 RpmB Rmet_2870 J YP_585012.1 x 137 3 2.03 3.7E-02 

Other 

CHROM 2 short-chain 
dehydrogenase/reductase SDR 

FabG Rmet_4414 IQR YP_586548.1 - 39 3 2.50 8.5E-03 

CHROM 1 methylmalonate-semialdehyde 
dehydrogenase 

MmsA Rmet_0206 C YP_582361.1 - 361 9 2.01 1.5E-03 

CHROM 1 acyl-CoA-binding protein - Rmet_1394 I YP_583546.1 - 184 7 2.03 6.6E-04 

CHROM 1 hemolysin-like Acyl-CoA N-
acyltransferase 

- Rmet_2176 R YP_584324.1 - 29 2 2.45 8.8E-03 

CHROM 2 GCN5-related N-acetyltransferase - Rmet_5884 KR YP_588012.1 x 58 4 4.26 2.4E-04 

CHROM 2 homogentisate 1,2-dioxygenase, 
involved in phenylalanine & 
tyrosine degradation 

HmgA Rmet_4374 Q YP_586508.1 x 54 2 4.66 4.5E-04 

CHROM 2 putative glyoxalase or 
dioxygenase 

- Rmet_4030 E YP_586167.1 x 71 2 3.13 1.0E-03 

CHROM 1 conserved hypothetical protein - Rmet_2632 - YP_584778.1 - 183 5 2.32 5.7E-03 

CHROM 1 diguanylate cyclase PleD Rmet_0867 T YP_583022.1 - 66 5 3.20 4.7E-02 

CHROM 1 phosphoglycolate phosphatase CbbZ1 Rmet_1514 R YP_583666.1 x 44 2 3.46 6.7E-03 

CHROM 1 putative polyphosphate kinase Ppk Rmet_0550 S YP_582705.1 x 114 7 2.58 3.2E-02 

CHROM 1 sulfate/thiosulfate import ATP-
binding protein 

CysA Rmet_1378 P YP_583530.1 - 62 2 2.58 3.4E-03 A
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CHROM 1 sulphate adenylyltransferase 
subunit 1 

CysN Rmet_2812 P YP_584954.1 x 852 14 2.84 8.8E-04 

 607 

Differentially expressed proteins were considered biologically significant with an average intensity ratio of at least two-fold and a p-value less 608 

than 0.05 if detected with two or more peptides per protein with a MASCOT identification score greater than 20. P(MC) = Monte Carlo P-value. 609 

Column “X = common to all with rock” indicates whether this protein was also increased in abundance in the other media types with rock 610 

added i.e. minus Fe + rock and minus Mg + rock. 611 

612 
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Table 2. Proteins with lower abundance in optimal media with rock added compared to optimal media without rock added. 613 

Replicon Protein description Protein 
Name 

Gene 
Locus tag 

COG 
classes 

Uniprot 
accession 
no. 

X = common 
to all rock 
conditions 

MASCOT 
score 

Peptides used 
for 

identification 

Fold 
change 

p-value 

Metal homeostasis 

CHROM1 transcriptional 
regulator, part of two 
component system with 
HmzS 

HmzR Rmet_3016 TK YP_585158.1 - 64 6 >500 2.8E-04 

CHROM1 ferric reductase, 
FAD/NAD(P)-binding 

- Rmet_3017 P YP_585159.1 x 71 4 15.1 2.6E-03 

CHROM2 P-type ATPase involved 
in Zn(II), Cd(II), Ti(I) and 
Pb(II) resistance 

ZntA Rmet_4594 P YP_586725.1 x 190 8 4.4 1.1E-02 

CHROM2 RND metal efflux pump, 
part B  

ZniB Rmet_5320 M YP_587448.1 x 198 7 2.3 8.6E-03 

CHROM2 RND metal efflux pump, 
part A  

ZniA Rmet_5319 P YP_587447.1 - 73 8 2.9 2.7E-02 

Transport over membrane 

CHROM1 glycine 
betaine/carnitine/cholin
e ABC-type transporter, 
periplasmic component 

- Rmet_0799 E YP_582954.1 x 45 6 2.7 1.2E-02 

CHROM1 ABC-type transporter, 
periplasmic component: 
HAAT family 

- Rmet_0920 E YP_583075.1 - 67 5 2.3 3.1E-02 

CHROM1 ABC-type transporter, 
periplasmic component: 
HAAT family  

- Rmet_2820 E YP_584962.1 x 51 3 2.8 1.1E-02 

CHROM1 ABC-type transporter 
subunit, ATP-binding 

YadG Rmet_3253 V YP_585394.1 - 136 7 2.4 2.9E-03 A
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component 

CHROM1 ABC-type transporter, 
ATP-binding and 
membrane component 

VcaM Rmet_2516 V YP_584662.1 x 87 5 7.1 2.0E-02 

CHROM1 TRAP-type 
mannitol/chloroaromati
c compound 
transporter, periplasmic 
component 

- Rmet_3543 Q YP_585684.1 - 873 16 2.1 1.5E-04 

CHROM1 putative oligoketide 
cyclase/lipid transport 
protein 

YfjG Rmet_1457 I YP_583609.1 - 51 2 30.5 1.3E-02 

CHROM1 import inner membrane 
translocase 

- Rmet_0372 S YP_582527.1 x 491 9 2.2 1.1E-04 

CHROM2 Extra-cytoplasmic solute 
receptor protein 

Bug Rmet_5038 S YP_587169.1 - 23 3 3.3 1.5E-03 

Transcription 

CHROM2 XRE family 
transcriptional regulator 

- Rmet_4373 K YP_586507.1 - 47 2 2.3 2.6E-02 

CHROM2 TetR family 
transcriptional regulator 

- Rmet_4909 K YP_587040.1 x 48 4 4.5 3.6E-02 

CHROM1 LysR family 
transcriptional regulator 

YcaN Rmet_1897 K YP_584045.1 - 11 6 2.5 5.4E-03 

CHROM1 transcription 
termination factor  

Rho Rmet_2135 K YP_584283.1 x 499 13 2.7 7.9E-04 

CHROM2 purine-binding 
chemotaxis regulator 

CheW Rmet_3681 NT YP_585822.1 - 164 8 2.3 2.5E-03 

pMOL28 histone-like bacterial 
DNA-binding protein 

HupB Rmet_6397 L YP_0035182
71.1 

- 263 6 4.2 1.8E-02 

Biotin synthesis 

CHROM1 adenosylmethionine-8-
amino-7-oxononanoate 

BioA Rmet_0114 H YP_582269.1 x 389 8 2.8 1.2E-03 A
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transaminase 

CHROM1 amino-7-oxononanoate 
synthase 

BioF Rmet_0115 H YP_582270.1 - 22 4 >600 1.3E-04 

Oxidoreductases 

CHROM1 NADH dehydrogenase, 
subunit J 

NuoJ Rmet_0936 C YP_583091.1 x 79 5 2.9 4.4E-03 

CHROM1 thiosulphate-binding 
sulfur oxidation protein 

SoxZ Rmet_3422 - YP_585563.1 - 35 2 2.5 1.3E-02 

CHROM2 short-chain 
dehydrogenase/reducta
se SDR 

- Rmet_4614 IQR YP_586745.1 x 79 6 2.4 2.2E-02 

CHROM2 2-dehydropantoate 2-
reductase 

PanE Rmet_5770 H YP_587898.1 x 125 6 2.2 1.3E-03 

CHROM1 NAD-dependent 
formate dehydrogenase 
alpha subunit 

FdsA Rmet_0555 R YP_582710.1 - 47 8 2.0 7.7E-03 

Other 

CHROM2 general stress response 
protein 

CsbD Rmet_5008 S YP_587139.1 - 34 2 2.1 3.3E-02 

CHROM1 putative type-4 fimbrial 
biogenesis protein*2 

PilY1 Rmet_0192 NUW YP_582347.1 x 241 5 3.1 8.1E-04 

CHROM1 isocitrate lyase*2 AceA Rmet_1385 C YP_583537.1 x 113 5 4.6 8.5E-04 

CHROM2 alkaline phosphatase*2 PhoA1 Rmet_4084 P YP_586220.1 x 1062 19 3.1 3.1E-03 

CHROM2 acid phosphatase*2 AcpA Rmet_4809 M YP_586940.1 x 69 3 9.1 1.8E-03 

CHROM1 KAP P-loop containing 
ATPase protein 

- Rmet_2164 R YP_584312.1 x 85 13 2.1 7.7E-03 

CHROM1 ATPase-like protein - Rmet_3356 T YP_585497.1 x 43 7 4.6 1.1E-02 

CHROM1 P-loop-containing 
ATPase protein 

- Rmet_0297 R YP_582452.1 - 79 3 10.1 3.9E-03 

CHROM1 chromosome 
segregation ATPase 

Smc Rmet_1426 D YP_583578.1 - 187 14 2.1 3.9E-02 A
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CHROM1 D-tyrosyl-tRNA(Tyr) 
deacylase 

Dtd Rmet_0418 J YP_582573.1 - 25 2 4.5 3.1E-02 

CHROM2 putative metallo-
dependent 
amidohydrolase*2 

- Rmet_5313 R YP_587441.1 - 91 4 2.1 1.6E-03 

CHROM2 4-hydroxybenzoate 3-
monooxygenase 

PobA Rmet_4018 HC YP_586155.1 - 18 3 2.7 4.5E-02 

CHROM1 Acyl-CoA synthetase 
(AMP-dpendent) 

- Rmet_1061 I YP_583216.1 - 56 6 2.4 4.9E-04 

CHROM2 acyl carrier protein AcpP Rmet_4378 IQ YP_586512.1 - 70 9 2.0 3.8E-02 

CHROM1 fatty acid desaturase - Rmet_0888 I YP_583043.1 - 53 6 9.7 2.2E-02 

pMOL30 insertion element 
protein 

TnpA Rmet_5954 L YP_145615.1 x 73 10 2.9 3.8E-03 

CHROM1 carboxypeptidase G2 
precursor 

- Rmet_0024 E YP_582179.1 - 42 4 926.0 4.8E-03 

CHROM2 conserved hypothetical 
protein 

- Rmet_5391 S YP_587519.1 - 41 2 2.1 1.6E-02 

CHROM1 conserved hypothetical 
protein 

- Rmet_0978 S YP_583133.1 x 26 4 4.4 1.4E-02 

 Differentially expressed proteins were considered biologically significant with an average intensity ratio of at least two-fold and a p-value less 614 

than 0.05 if detected with two or more peptides per protein with a MASCOT identification score greater than 20. Bold locus tags highlight 615 

proteins in which more than one gene from the operon is differentially regulated. *1 Fold changes >500 result from lack of detection in one 616 

condition. *2 Also observed to be of lower abundance in MM284 at pH 8. Differentially expressed proteins were considered biologically 617 

significant with an average intensity ratio of at least two-fold and a p-value less than 0.05 if detected with two or more peptides per protein 618 
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with a MASCOT identification score greater than 20. Column “X = common to all with rock” indicates whether the abundance of this protein 619 

was also lower in the other media types with rock added i.e. minus Fe + rock and minus Mg + rock.620 
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