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Abstract

It has long been known that groundwaters beneath urban areas carry a fingerprint from
urban activities but finding a consistent tracer for anthropogenic influence has proved
elusive. The varied sources of urban contaminants means that a single consistent and
inexpensive means of tracing the fate of urban contaminants is not generally possible and
multiple tracers are often required to understand the contaminant sources and pathways in
these complex systems. This study has utilized a combination of micro-organic (MO)
contaminants and inorganic hydrochemistry to trace recharge pathways and quantify the
variability of groundwater quality in multi-level piezometers in the city of Doncaster, UK. A
total of 23 MO’s were detected during this study, with more compounds consistently
detected during higher groundwater table conditions highlighting the importance of
sampling under different hydrological conditions. Four of the compounds detected are EU
Water Framework Directive priority substances; atrazine, simazine, naphthalene and DEHP,
with a maximum concentration of 0.18, 0.03, 0.2, 16 pg/| respectively. Our study shows that
the burden of the banned pesticide atrazine persisting in the Sherwood sandstone is
detected at two of the three study sites. Emerging contaminants’ are seen throughout the
borehole profiles and provide insights into transient pathways for contaminant migration in
the sub-surface. Long term changes in inorganic hydrochemistry show possible changes in
contaminant input or the dissolution of minerals. Nitrate was detected above 50 mg/L but
on the whole nitrate concentrations have declined in the intervening years either due to a
reduction of nitrate application at the surface or a migration of peak nitrate concentrations
laterally or to greater depth. This study shows that multiple tracers together with multi-level
piezometers can give a better resolution of contaminant pathways and variable flow
regimes within the relatively uncomplicated aquifer of the Sherwood Sandstone compared
with single long screened wells.

Keywords: Micro-organic contaminants; Multi level piezometer; Pesticides; Tracers;
Inorganic hydrochemistry

1 Introduction

Recharge to groundwater is usually dominated by local meteoric sources in temperate
climates, but in an urban context urban leakage from mains and waste water can be a
significant component (Lerner, 1990). In urban settings groundwater recharge processes are
complex, spatially and temporally variable and significantly affected in terms of quantity and
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quality by an overlying urban environment, especially if the aquifer is unconfined and
covered by permeable or thin strata. Appleyard et al. (1999) highlighted the increased
occurrence of contamination of the unconfined sandy aquifer below Perth, Australia, and
discussed the problems of increased water levels due to imported water recharge. Lerner
(2002) reviewed the issues involved with quantifying the urban water budget including the
issues of increased recharge from imported water and leaking pipe networks and the
changed runoff/recharge from land cover. The problems of finding a universally applicable
tracer for identifying recharge sources are well established as many environmental tracers
have several potential sources producing results that are difficult to untangle (Lerner, 2002).
Barrett et al. (1999) were unable to find marker tracers for the three main sources of urban
recharge (precipitation, mains leakage and sewer leakage) that could be applied to
groundwaters in any urban area regardless of geology. They looked at isotopic, microbial
and potential markers derived from human waste and detergents but concluded that no
one marker could be used on its own.

Conventional age tracers that are used in hydrogeological studies (e.g. CFCs and tritium) are
by definition better suited for characterising the bulk age of groundwater rather than more
transient and rapid pathways. Stuart et al. (2014), Sorensen et al. (2015) and Lapworth et al.
(2015) have all recently demonstrated the use of emerging organic contaminants to assess
rapid recharge pathways in vulnerable hydrogeological settings. Compounds such as
artificial sweeteners and pharmaceuticals are starting to be used a tracers (Van Stempvoort
et al., 2011; Wolf et al., 2012)

It has been suggested that the anthropogenic influence on an aquifer can be seen by the
guantity, concentration and type of synthetic organic compounds found in groundwater
samples (Glassmeyer et al., 2005). Society uses a vast array of compounds for a range of
uses including personal care, food preparation and preservation, medication (human and
animal), industrial manufacturing processes and agriculture. A growing number of micro-
organic contaminants have been found in groundwater resources over the last few decades
as analytical techniques have become more affordable and advanced and as awareness of
different sources of contaminants has grown (Farré et al., 2012; Lapworth et al., 2012).
Many of these are now being detected in urban groundwater across the world (Duong et al.,
2015; Jurado et al., 2014; Jurado et al., 2012; Lin et al., 2015; Lépez-Serna et al., 2013;
Osenbriick et al., 2007)

The sources and pathways for organic micro-pollutants to reach the groundwater include
point and diffuse sources and are summarised for an urban settings in Stuart et al. (2012). A
large number of different sources and pathways have the potential to pollute the partially
unconfined Sherwood Sandstone aquifer. These include pesticides from amenity use as well
as compounds from industrial and domestic waste. Sewerage pipe leakage rates from the
foul sewerage system are high in Doncaster, for example up to 10% of flow per annum and
30-40% of urban recharge have been estimated for Doncaster (Rueedi et al., 2009).

The Permo-Triassic Sherwood Sandstone is the second most important aquifer in the UK
used for public supply, agricultural and industrial use. Shallow groundwater levels and thin
or absent overlying deposits make it vulnerable to contamination from a range of
anthropogenic sources (Lapworth et al., 2006; Tait et al., 2004). Low permeability marl
bands can focus recharge making the groundwater vulnerable to rapid migration of



contaminants to depth via rapid pathways with limited attenuation potential, in some cases
this is greatly enhanced by the dip of the lithology allowing rapid migration of faecal
contamination to depth (Cronin et al., 2003; Taylor et al., 2006).

Multilevel piezometers allow a unique three dimensional conceptual model of water and
contaminant movement to be developed, which unlike fully or partly penetrating wells
provide adequate vertical resolution (Stuart et al., 2004). Combined these two approaches
provide a powerful technique for addressing contaminant sources and pathways in the
urban subsurface.

This paper investigates the use of micro-organic pollutants (MOs), and inorganic chemistry
from two sampling campaigns in contrasting hydrological conditions within a well-
characterised, vulnerable urban Sandstone aquifer system. The specific purpose of this
study was to: i) profile vertical changes in a range of tracers, MOs, and hydrochemistry, ii) to
understand temporal change in groundwater chemistry in response to contrasting
hydrological regimes, as well as long-term (10 years) changes in inorganic chemistry profiles
and iii) to investigate use of MOs for assessing rapid groundwater recharge pathways in the
subsurface.

2 Methodology
2.1 Study area

Doncaster is a town in South Yorkshire, UK, with a population of about 200,000 and is
dependent on groundwater for public and industrial supply taking its water from the
Sherwood Sandstone aquifer (Figure 1). Doncaster has a history of mining and industry as it
was an important coal mining area in the UK in the 19t and 20t centuries and industries
such as steel foundries, rolling mills, wire mills and glass works followed due to coal supplies
and transport links.

2.2 Geology & Hydrogeology

The Bessacarr-Cantley area of Doncaster (Figure 1) is underlain either directly by the Permo-
Triassic Sherwood Sandstone Group, or by up to 8 m of intervening permeable Quaternary
superficial sands and gravels. The Sherwood Sandstone is a dual porosity aquifer which is
highly anisotropic. In this area, it consists of friable to moderately cemented, well to poorly
sorted and fine to medium grained sandstones with some thin lenses of mudstones, which
can lead to some stratification. Fractures, which occur widely in the Sherwood Sandstone,
make a significant contribution to groundwater flow but are thought to be only important
on scales of 10’s to 100’s of metres due to the dominant matrix permeability of the aquifer
(Shand et al 2002). The local groundwater flow in the area is W — E down geological dip. The
fractures and marl bands within the Sherwood Sandstone give varying transmissivities of
between 76 and 92 m?/d (Morris et al., 2006). The geology, hydrogeology and setting is
further described in Morris et al. (2006).

2.3 Multi-level borehole design and sampling



The multi-level boreholes used during this study were installed for the Assessing and
Improving Sustainability of Urban Water Resources and Systems (AISUWRS) project in 2003
to characterise the vertical changes in water quality below Doncaster (Morris et al., 2006).
Study sites were selected within green spaces (parks and playing fields) to act as a buffer
zone from direct contaminant sources such as small works or garages, and hopefully
normalize the samples. Multi-level sampling arrays were constructed as a bundle of 7
different length small-diameter piezometers inserted into a drilled borehole the shallowest
and deepest being constructed of polyvinyl chloride (PVC) and the other 5 of high-density
polyethylene (HDPE) tubing. Each piezometer has a 30 cm screened section and a cap at the
bottom. All piezometer completions are hydraulically separated (Morris et al 2006). The
drillers’ logs for each of the boreholes (Figure 2) give an indication of weathered zones
within the sandstone. It is noted that the boreholes had alternating thin bands of ‘soft’/
‘hard’ lithology until the lithology becomes ‘hard” with no ‘soft’ layers. This junction
occurred at about 22 m below ground level (bgl) for both Bolton Hill (BH) and Haslam Park
(HP) and 7 m bgl at McAuley School (MS). During February and July 2014 all piezometers
(Figure 2) at HP and MS were sampled, however, at BH only depths 28, 34, 39 and 51 m bgl
were sampled in February and July with the additionally of 22 m bgl in July.

During sampling for MOs, plasticiser compounds are often detected (Lapworth et al., 2015).
In four of the piezometers inertial pumps had been left in-situ since the end of the AISUWRS
study 10 years previously. These were in ports 34, 39 and 51 m bgl at BH and 19 m bgl at HP.
We wanted to assess the difference in detected plasticisers between ports with and without
in-situ pumps. Samples were collected from the inertial pumps by withdrawing them
sufficiently to allow the connection of a Waterra PowerPack PP1; a petrol driven actuator.
Samples taken from the other multilevels were taken using a peristaltic pump (Solinst Model
410) and PE tubing. The polyethylene (PE) tubing and peristaltic pump tubing (platinum
cured silicon) was thoroughly washed with Virkon® and rinsed with ultra-pure water at the
beginning of each sampling campaign. The same tubing was used in each of the three multi-
levels but between the piezometers it was kept as clean as possible and laid on clean plastic
sheet at the surface. To reduce cross-contamination, after sampling a port as much of the
sample water as possible was removed from the tubing using the peristaltic pump and then
the next port was fully purged before sampling.

2.4 Sample analysis

Field parameters (specific electrical conductivity (SEC, standardized to 25 °C), dissolved
oxygen, pH and Eh) were determined by running the sample water from the peristaltic
pump outlet though a flow-through cell to reduce the samples contact with air. SEC and
temperature were determined externally from the flow-through cell. The samples were
taken and a HACH alkalinity titration performed at site (using 1.6 N or 0.16 N sulphuric acid
cartridges and a bromocresol green indicator) after the field parameters had stabilised. Due
to the nature of flow from the inertial pump a flow-through cell could not be used and in
this case the field parameters were measured in a bucket during pumping until 3 well
volumes had been purged. Alkalinity titration and sampling occurred at this point.

Inorganic samples were collected in a rinsed plastic beaker and filtered through 0.45 pum
cellulose nitrate filters into clean Nalgene LDPE bottles. Analysis of inorganic parameters
(anions and cations) were carried out at the BGS laboratories in Keyworth by ICP-MS and IC.



Micro-organic samples were collected into a 1-litre glass bottle provided specifically for this
purpose. No external object came in contact with the inside of the bottle to reduce the risk
of contamination. The use of sun-screen and personal care products was kept to a minimum
and no gloves were worn. Samples were stored in the dark prior to analysis, Sorensen et al.
(2015) found that refrigeration of groundwater samples for this type of analysis made no
difference to sample stability. A blank was collected using laboratory grade ultrapure water
collected into 1 litre glass bottles, and equipment blanks (taken using the same pump
tubing) were collected for each sample round. Analysis was conducted by the UK
Environment Agency National Laboratory Service (NLS) using a double liquid-liquid
extraction method followed by a semi-quantitative multi-residue GC-MS method which
screens for over 1000 organic compounds as fully described in Sorensen et al. (2015). The
detection limits are within 0.01-0.1 pg/I for 90% of compounds, with a reporting limit of
0.01 pg/L for 75% of determinands.

Results were corrected for compounds found in the laboratory blanks by NLS and were
further blank corrected for the equipment blanks run during the sampling campaign and any
compounds found in the trip blanks. The results were also screened and corrected from a
list of compounds provided by NLS frequently found in the laboratory blanks in low
concentrations (See Table S1 in supplementary material). The remaining data was then
censored at 0.01 pg/I.

3 Results and Discussion
3.1 Groundwater levels

Hydraulic heads were determined prior to sampling the multilevels. Unfortunately
groundwater levels were measured to individual piezometer tops and not ground level
during the February sampling round at BH but groundwater levels were consistently higher
in July than in February at all three sites (see Figure S1 in supplementary information).
Water levels were approximately 0.2 m higher in July than February at all depths within the
HP and MS multilevels. There appeared to be a slight downward gradient in the HP
multilevel. During the July sampling at BH a downward gradient was also seen as water
levels in the shallowest level was 4 cm higher than water levels in the deepest level.
However, MS does not show the same consistent trend. During the July sampling at the MS
multilevel there was a 1 cm variation between the separate depths but it is more variable in
February with a total variability of 4 cm over the entire length of the multilevel. Due to the
small variability in the measured water level during each round of sampling these profiles
are likely to be affected by measurement error with no significant changes in piezometric
head detected down the profile at MS and BH.

3.2 Temporal changes in hydrochemical profiles: 2004-2014

Morris et al. (2005)and Morris et al. (2006) only provide flow regime and mean
concentrations for a range of inorganics, however, this provides a useful comparison for this
study. There was very little seasonal variation seen in the 2004 inorganic data (Morris et al.,
2005). Figure 3 shows the vertical profiles for a selection of major ions (Na, Ca, Mg, K, Cl,
SQOa4, HCO3, NO3, and SEC) at HP, MS and BH. Results from this study (February and July 2014)
and the averaged data from Morris et al. (2005) are shown for comparison. Groundwaters



were oxic (dissolved O, were between 3 mg/l and 11 mg/l), pH values were between 6.4 and
8.5 with low Fe and Mn concentrations.

Figure 4 shows current and historical profiles for boron. Boron (B) is a constituent of a
bleaching agent in washing powders (borax, sodium perborate monohydrate, disodium
tetraborate) and was of interest to the historical study during 2003-4 as a possible
wastewater tracer in the aquifer. Boron concentrations in washing powders have decreased
over time hence Neal et al. (2010) was able to show falling boron concentrations in river
waters due to falling concentrations in wastewaters. Comparing the historical average
concentrations (Morris et al., 2006) with concentrations found in February and July 2014
there is an overall decrease in concentration over time.

Both the high dissolved oxygen concentrations, and the low Fe concentration indicate oxic
conditions within the aquifer at each of the multilevels during both sampling campaigns in
2014. The concentrations of specific electrical conductivity (SEC) and HCOs (Figure 3) are, on
the whole, variable with depth at each multilevel but comparable between both sampling
events. However, during the July sampling round the SEC was slightly lower in the top ports
of both BH and MS and higher at 60 m bgl at HP. The average historical (Morris et al. 2005)
HCOs concentrations at HP are also comparable with the more recent concentrations,
however, BH shows a distinct change over time and HCO3 concentration are now higher
than ten years ago.

Concentrations of NO3 and Cl within the 3 multilevels were comparable between the 2014
sampling rounds in the mid to lower ports/ depths but there was variability between the
winter and summer concentrations in the shallower ports (MS 9-21; HP 10- 28). The upper
ports at BH could not be sampled, only 28 m bgl and below were consistently sampled,
hence a comparison cannot be made with the shallower ports at this site. The averaged
historical Cl data shows variation with the 2014 data, BH data shows the greatest variation
with time. BH exhibits higher SEC and higher concentrations of HCOs, Cl, Ca, K, Mg, over
much if not all of its depth compared to the other two boreholes.

Concentrations of NOs are above the EU drinking water standard of 50 mg/l NOs at several
depths within the multilevels. Variation between the data sets can be seen and is marked at
both HP and MS with lesser variation at BH. The 2014 concentrations of NOs at HP show a
marked decrease in comparison to the earlier data. This may be due to greater dilution or a
change in concentration of the source(s). The greater variation in concentration between
the two sampling campaigns is seen at MS; concentrations are seen to roughly halve over
the intervening 10 years at 45 m bgl and more than halve at 28 m bgl but to increase at 60
m bgl. This shows variability of sources within the different level of the aquifer or the
migration of a source/peak.

Variation with depth is seen in the SO4 and Ca concentrations with the greatest variability at
the 28 and 35 m bgl ports below MS. The 2014 data are comparable but the historical
average is considerably greater. There is also a significant variation in the Na concentrations
above 30 m bgl at MS with time, the averaged historical data is a significantly higher and
more variable than the 2014 results. This is just above the marl band found in the Sherwood
Sandstone at this site. Concentrations of Na at MS above 30 m bgl during 2014 and
throughout the HP borehole are below 10 mg/I.



The decrease of Ca, Mg, NOs3 and SO4 within the central area of the MS borehole since the
2004 study is noteworthy (Figure 3).The original high concentrations are not attributable to
just sewage input of SO4 as the concentration of SO4 within sewage was found to be at 60 —
100 mg/I (Morris et al., 2006) whereas the concentration of SO4 at MS28 is in excess of this.
The additional source of Ca, Mg and SO4 may have been anhydrite in the sandstone or some
other source such as landfill or mine spoil heaps as suggested by Morris et al. (2006) for Cl
and NOs, but it appears that by 2014 this source was much depleted. There is also a large
variation and reduction in the concentration of Na between the historical data and the 2014
data at the upper ports. This indicates different sources and/ or conditions at MS between
the two sampling campaigns. However, B used as a foul sewer indicator, is seen to be
elevated above the 30 m bgl port during the two sampling campaigns indicating possible
foul sewer influence. The decrease between the two sampling campaigns could be
explained by the decrease in the use of B as an optical brightener in detergents (Neal et al.
2010). The evidence from changes in concentration of inorganic ions suggests multiple
sources at this site and changes in these sources over time.

The BH borehole is sited in a park, part of which overlies a sand and gravel quarry, shown on
historical maps up to 1948 as a “sand pit”. It has consistently had higher SEC, Ca, Mg, K, Cl
and SOa. Originally the high Cl and SO4 at the mid-level in the borehole was attributed to an
additional source than just sewage and possibly thought to be road salt run-off (Stuart et al.,
2004). The HP Borehole has been the most consistent, with little change in inorganic ion
concentration over time or even much variation with depth compared to the other two
boreholes. It should be noted the greatest variation in inorganic ions have been seen just
above the marl layer in the MS borehole and in the upper ports of all of the boreholes. This
corresponds to a change in the hardness/ competency of the rock and therefore the
transmissivity. The upper, more weathered area of sandstone is likely to see greater
variability and mixing of waters.

3.3 Vertical and temporal changes in micro-organic profiles

A total of 23 different compounds were detected in groundwater samples from the
multilevels during the study. Three of the compounds found in July were identified as
‘other’ compounds using the database library as NLS do not run a reference standard for all
compounds (Table 1).

The frequency of detects and concentrations of the compounds were variable between the
two sampling rounds The compound detected most frequently was n-propylbenzene
(solvent), it was detected in 18 out of the 19 ports in July with a maximum concentration of
0.02 pg/l, but was not detected in February

Four of the compounds detected are WFD priority substances (EU, 2008b); atrazine,
simazine, naphthalene and bis (2-ethylhexyl)phthalate (DEHP). DEHP (a plasticizer) was
detected in 7 of the ports in February and 6 of the ports in July at a maximum concentration
of 16 pg/l and 13 pg/l respectively. DEHP was found at different depths within all the
multilevels during the repeat sampling and was the contaminant found at the highest
concentration during the study (Table 1). Naphthalene (an industrial compound) was
detected only once in February at a concentration of 0.2 pg/l; it was not detected in July.



Other compounds are regulated in drinking water, two of the compounds detected are
herbicide breakdown products (desethyl atrazine and 2,6-dichlorobenzamide (BAM)) (EC,
1998).

Stacked bar charts showing the concentrations of selected MO compounds with depth is
shown for each borehole in Figure 5. Only those compounds which were detected above
0.05 pg/l are plotted for clarity. This highlights the difference between sampling depths and
the differences seen between the February and July sampling events. Of the 23
micropollutants found in this study 2 were pesticides and a further 2 were pesticide
metabolites, these are discussed as a separate group within the MOs but are still included in
Figure 5 for completeness.

Pesticides and their degradation products were found during both sampling rounds in the
HP and MS multilevels (Figure 6) but were absent from the BH multilevel. Atrazine desethyl
and 2,6-dichlorobenzamide are degradation products of atrazine and dichlobenil
respectively. Pesticides or their metabolites were found only in MS21, MS28 and MS36;
HP14, HP19 and HP27 during both sampling rounds and HP60 during July round only.
Atrazine is detected above the EU prescribed concentration value in the MS multilevel at 28
m bgl during both sampling rounds; atrazine desethyl is also detected in this port at higher
concentrations.

Generally, fewer MOs were detected during the Feb 2014 sample round compared to the
greater concentrations and variety of compounds detected during July 2014 (Table 1).
However, most of the mid-depths at BH and MS exhibit higher total concentrations in
February than July.(BH 28 m bgl (Figure 5a), and MS 14, 21, 28 m bgl, figure 5c) There were
few MOs detected in either Feb or July at 19 m bgl at HP (Figure 5b) and higher total
concentrations in February than July at HP10, 14, 27 and 35 m bgl.

Results for the pesticides and metabolites from HP (Figure 6) show the exact opposite for
the central zone; concentrations are higher in July than February and no pesticides or
metabolites are seen in the other ports. This leads to the conclusion that the pesticides
probably have a separate source from the other micro-organics or behave differently in the
aquifer. It may be that a significant rainfall event after a period of dry weather before the
July sampling has flushed micropollutants into the aquifer and increased the concentration
in selected ports and that as the flow rates are slower in the central zone the signature of
the pesticides have not been diluted yet by the recharge event and the pulse of other
micropollutants has not yet appeared. This also confirms that the groundwater flow, and
hence the residence time, in the central zone is greater and that dilution is less as has been
found previously at this site (Morris et al 2006).

At MS (Figure 6) a similar number of total compounds are detected in February and July but
at low concentrations, and the greatest number (and concentration) of pesticides and
metabolites are found just above the marl band at the 28 m bgl port. Half of the MOs (50%
Feb, 43% July) are accounted for by pesticides and their metabolites. Below the marl band
seasonal variation is again seen in the MOs with concentrations and amount of compounds
detected higher in July than in February. A marl band within the Sherwood Sandstone will
impede the downward movement of water and compounds and influence the direction of
flow — more horizontal than vertical. Again, this is consistent with previous finding of areas
of different flow velocity throughout the borehole (Morris et al 2006).



Morris et al. (2006) reported above modern concentrations of CFC in these multilevels
above 30 m bgl signifying enrichment from local sources. Below 30 m bgl they found much
lower CFC concentrations and a rise in concentration at the deepest level in each borehole.
They concluded that this again supported preferential flow at the upper and deepest level
with slower flow in the central zone.

There are no pesticides or metabolites detected at BH during either sampling round. During
February 2014 the concentration and the number of compounds found at BH, as at MS, was
very low. During July a greater number and total concentration of MOs were found with
higher concentrations at BH34, 39 and 51 m bgl. The highest total concentration of
contaminants of all the boreholes was found at 34 m bgl which coincides with the highest
SEC, Cl, Mg, SO4, (Fe, Al) and B concentrations. Bromide concentrations are also an order of
magnitude higher at BH than MS and HP. This could be evidence of wastewater ingress
(Katz et al., 2011).

Using fluorescence spectroscopy Lapworth et al. (2008) concluded that at 35-45 m bgl at
both HP and BH there is a different source of dissolved organic matter (DOM) than waste
water sources, possibly groundwater with a smaller component of rapid fracture flow and
larger component of slower intergranular flow. Morris et al., (2006) and Lapworth et al.,
(2008) both conclude that although there is an urban waste water signature seen the
aquifer is not grossly polluted from this source. Lapworth et al., (2008) suggest that DOM is
probably a mixture of both natural terrestrial and a minor component from urban sewage
system leakage.

Overall more compounds were detected in the 3 boreholes in July than in February 2014.
Groundwater levels are consistently higher within the 3 boreholes in July and therefore the
higher concentrations could have been due to localised recharge processes. Cumulative
rainfall was noticeably high during May-July in the Doncaster area and nationally in 2014
compared to recent years, resulting in higher groundwater levels in the Sherwood
Sandstone during this period. Groundwater levels were also above normal during February
2014. Published data shows a wet summer in Doncaster compared to a dryer winter
(Hydrological Outlook 2014). Prior to the July 2014 sampling there was increased
precipitation, including high volume events with rainfall 120% of average in the preceding 3
months (Parry et al., 2014) compared to the more constant but drier weather prior to the
February sampling.

Bis(2-ethylhexyl)phthalate (DEHP) (plasticiser) is the compound with the highest
concentration detected at all three of the sites (see Figures 5a-c. N-propylbenzene (solvent)
was detected at every port except one (BH 34) during July 2014 but none of the ports during
February 2014 (Figure 5).

While careful sampling protocols were used to minimise the introduction of contamination
during sampling, contamination from the plastic piezometers cannot be ruled out. As HDPE
plastic tubing was used to sample the ports and the multilevels themselves are made from
plastics it is impossible to know if the plasticisers detected during the study were those
found in the groundwater or due to the sampling equipment or multilevel. It is at least
possible to say that n-propylbenzene was not an artefact of the sampling event due to the
high frequency of detection for only one of the events. However, as two sampling methods
were used for both campaigns it is unlikely that these compounds were an artefact of the



new HDPE tubing used with the peristaltic pump or the HDPE tubing of the in-situ inertial
pumps. The plasticizer DEHP is intermittently detected in the multilevels making it unlikely
to be an artefact of the sampling. No single compound was detected in every sample. It is
interesting to note that no patterns in contaminants detected were seen between samples
collected using the installed inertial pumps and the peristaltic pump.

Octocrylene, a UV blocker, is only detected at a low concentration in one of the samples (34
m bgl at Bolton Hill) and although unlikely cannot be ruled out as an introduced
contaminant. Similarly, if DEET (see Figure 5) were to have been an introduced contaminant
it would have been expected to have been detected in the summer and not the winter
sampling as is reported in the data. DEET was not used by the sampling team but it was
detected in several ports in the winter sampling event confirming other recent studies
which suggest that this is a commonly detected urban waste water tracer (e.g. Sorensen et
al., 2015). Overall, there were few pharmaceuticals found in the groundwater samples, and
only a few personal care compounds were detected. This was perhaps surprising as there
was evidence of sewage influence to the groundwaters at these multilevels during previous
studies using faecal contamination indicators, however the detects were low (Morris et al.,
2006). Morris et al. (2006) report faecal indicator counts (faecal streptococci and sulphite-
reducing clostridia) for the same HP multilevel as used in this study. It is interesting to note
that, increased counts were on average seen at the shallowest and deepest ports (10 m bgl
and 60 m bgl) where groundwater flow is thought to be greater and little was detected in
the intervening levels which correspond to slower groundwater flows.

3.4 Micro-organic tracers: evidence of multiple pathways in the subsurface

Overall the MO pollutants demonstrate contamination down to the deepest ports within
each borehole and temporal variability with higher net concentrations in the July sampling
event than February. As discussed above, MO individual compound and concentration
change significantly between the February and July sampling rounds and between
boreholes. For instance DEHP, the compound detected at highest concentrations, is not
consistently detected at high concentration in certain ports, or during one sampling event.
In a single port (e.g. BH34) it is often detected at high concentrations in one of the rounds
and not detected at all in the other. This points to variable sources of MQ’s and mixing of
these sources within the groundwater system.

Atrazine and simazine were finally banned from use and storage in the EU in 2004 with
dichlobenil similarly banned in 2008 (EU, 2004; EU, 2008a). Concentrations of atrazine in
this study were found above 0.1 pg/L, the UK drinking water limit for individual pesticides,
as set out in the Drinking Water Regulations (HMSO, 2000), which were transposed from the
Drinking Water Directive (EC, 1998).

Lapworth et al. (2006) detail the concentrations of pesticides (no metabolites in the
analytical suites used) in 14 wells < 30 m bgl over the period January 2002 to November
2003 (prior to the ban) in the Sherwood Sandstone aquifer underlying Doncaster and the
area to the east. The study found atrazine and simazine in 4 of the study sites, maximum
and average concentrations found for atrazine were 4.2 ug/L and 0.585 ug/L; and simazine
0.062 pg/L and 0.030 pg/L respectively. The current study detected banned pesticides or
their metabolites at 3 of the same depths in both the HP and MS multilevels during both of
the sampling periods (Figure 6). The repeatability of the depths and concentrations implies a
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consistent source/ pathway at each site. As discussed above, evidence from previous studies
and other analytes within this study point at an area of slower groundwater flow and
greater residence time at these central depths within the sandstone beneath HP and MS.
Atrazine was used extensively for amenity use in the UK prior to its registration being
withdrawn for non-crop uses use in 1992 due to its persistence in groundwater, and this is a
likely source of atrazine contamination within this urban Sandstone aquifer(Knapp, 2005;
Lapworth et al., 2006). The atrazine peaks at these two sites suggests multi-point
contamination within the Sandstone matrix, and if the ban on non-crop use is taken as the
last usage date this corresponds to contamination from at least 22 years ago.

Work on the Brusselian aquifer (Leterme et al., 2006) an unconsolidated sedimentary
aquifer in Belgium, concluded that even after the ban on use of atrazine the concentrations
in the aquifer would stay above the detection limit for many years based on the mean
transfer time of nitrate between the surface and the water table of between 4 and 12 years
(Vanclooster et al., 2004). The transport, leaching and degradation of pesticides in the soil
zone has been studied by many authors, and a review of these can be found in Beulke et al.
(2000). Arias-Estévez et al. (2008)and Kdhne et al. (2009) have tried to bring the studies of
specific aspects of the problem together. Overall, the level of groundwater contamination
by pesticides depends on many variables not least soil depth, moisture content, chemical
constituents, physical make-up, preferential pathways; pesticide half-life, chemical
properties, sorption potential, usage; aquifer water levels, groundwater flow type to name
but a few. Another possibility is that quantities of the pesticides may have been still used on
a small scale in agricultural environments using up old stocks, but this is less likely for urban
amenity use.

The previous study using these multilevels with anthropogenic tracers found a more rapid
flow in the higher and lower ports of these multilevels and a lower flow in the central
section due to the geology of the aquifer (Morris et al., 2006) as well as large scale mixing.
They surmised that the stratification seen is not the result of contaminants moving
downwards but a product of mixing between various water ‘cells’ and water moving
generally downdip and occasionally cross-dip along discontinuities deeper into the aquifer.
Intergranular flow dominates the top 30 m of the saturated aquifer with fracture horizons
allowing penetration of contaminants to deeper horizons. The top 30 m is dominated by
poorly cemented sandy strata interspersed with harder fractured horizons. Below 30 m
more competent strata with fracture systems brings water down for mixing. This is
consistent with the behaviour of atrazine in this study.

The depths of detection of pesticides and their metabolites in the HP borehole (14, 19 and
27 mbgl) corresponds to above modern concentrations of CFC-11 and CFC-12 found by
Morris et al (2006) although atrazine was also detected in Jul 2014 at 60 m bgl. They
concluded that the correlation between the two CFCs in the HP borehole indicated mixing
(depths 14, 19, 27 m bgl) or dilution (depths 10, 35, 45, 60 m bgl) occurring. However, the
MS and BH multilevels did not show the same correlation between CFCs so Morris et al.
(2006) proposed that ‘additional sources have appeared over time or the catchments are
much more heterogeneous in terms of additional sources’.

The pattern of pesticide contamination at HP and MS suggest rapid flow through the upper
and lower levels and slower flow through the middle portion of the saturated zone (14-27 m
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bgl HP and 21-36 m bgl at MS). The field conductivity shows a slight decrease in the upper
ports at HP and MS during the July sampling period possibly indicating dilution in these
areas of the sandstone.

3.5 Application of MO tracers in urban settings

The previous studies using the Doncaster multilevels suggest the aquifer was influenced by
waste waters and as such it was assumed that artificial sweeteners and prescription drugs
may be detected as these are often found in urban waters impacted by sewers (Jurado et
al., 2012; Wolf et al., 2012; Van Stempvoort et al., 2011). In this study these compounds
were not detected by the GCMS scans. It could be that the screening GCMS method used
was not able to detect the very low concentration of these urban contaminants and a more-
sensitive technique or an LCMS method targeted towards more-polar compounds would be
needed. This is a common issue for research into MOs in the environment and a particular
issue when we are trying to detect them in groundwaters as they are commonly at
concentrations close to detection limits. Alternatively these non detections could perhaps
be attributed to dilution from the increased precipitation, including high volume events,
which occurred in the 3 months prior to the July sampling, or the dilute nature of
wastewater sources in Doncaster. This is evident by the higher groundwater levels in the
piezometers during the July sampling event than the February sampling round. Doncaster,
similar to other UK cities, has combined sewers which means that increased rainfall leads to
increased dilution within the sewerage network. If it had been possible to sample the
multilevels more frequently, a more detailed picture may have emerged regarding the
dynamic nature of MO contamination and changes due to a component of rapid recharge
(Manamsa et al., 2016). The use of a multi-tracer techniques to characterise the
anthropogenic influence on an aquifer and multiple contaminant pathways has been shown
to be relevant to other urban areas around the world (e.g. Hillebrand et al., 2015; Sorensen
et al., 2015). MOs, detected using multi residue scans are able to trace urban anthropogenic
contamination from a broad spectrum of sources, making it suitable for multiple settings,
and are able to provide new insights into the hydrological processes including recharge
pathways and recharge sources.

4 Conclusions

The use of multi-levels piezometers has highlighted the heterogeneous nature of the
Sherwood Sandstone in terms of hydraulic conductivity and sources of recharge (and hence
contaminants). Mixing is seen within the aquifer system which comprises longer residence
time matrix flow and more rapid flow paths that are often focussed along marl bands. This
study corroborates previous findings at these sites and highlights the use of multi-levels to
capture the flow of contaminants through an aquifer system. This study also emphasises the
benefits of using multilevel piezometers to understand processes within the subsurface, and
the caution needed when interpreting results from boreholes screened over large intervals.
This study used a range of micro-organic compounds to indicate anthropogenic influence
and highlights the need for multiple tracers to understand differing flow regimes,
contaminant sources and pathways within an aquifer.
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The study showed widespread anthropogenic influence at these sites with the persistence
of banned triazine herbicides in groundwater, nitrate concentrations still above the drinking
water standard at some of the depths and organic micro-pollutants found at every port
sampled.

The pattern of occurrence of pesticides and their metabolites with depth differs to that seen
with other organic micro-pollutants especially in areas of differing flow regimes. This leads
to the conclusion that the pesticides are likely to have a different source from the other
micro-organics.
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Figure 1. Study location map and multi-level piezometer sites. Contains OS data © Crown
copyright (2016).
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Figure 3. Vertical profiles for hydrochemistry showing historical and recent trends. Average
values used for historical data from Morris et al (2005): a) Ca (mg/l), b) Mg (mg/l), c) Na
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historical data is available from Morris et al. (2005) for field conductivity.
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Table 1. Detection frequency and maximum concentration for compounds detected in the
Doncaster multilevels during the study. Compounds in bold are WFD priority substances
and/ or covered by the Drinking water directive (EC 1998). Table S2 in supplementary
materials details the compounds’ usage.

Compound CAS number | Number of total Max

detects detects | concentration

(pg/1)

Feb-14 | Jul-14 Feb-14 | Jul-14
1,4-dioxane 123911 2 2 0.1 0.1
2,4-dimethylphenol 105679 2 2 <DL 0.04
2,4-Di-tert-butylphenol 96764 1 2 3 0.15 0.52
2,6-dichlorobenzamide (BAM) | 2008584 1 1 0.1 <DL
2,6-di-tert-butylphenol 128392 1 1 <DL 0.01
3,5-dimethylphenol 108689 1 1 <DL 0.02
Atrazine 1912249 5 7 12 0.18 0.14
Atrazine desethyl 6190654 3 6 9 0.08 0.1
bis(2-ethylhexyl)phthalate 117817 7 6 13 16 13
(DEHP)
Bisphenol A 80057 2 2 4 0.7 1.2
Dibromomethane 74953 1 1 <DL 0.01
Indane 496117 15 15 <DL 0.02
Indene 95136 2 2 <DL 0.01
Isopropylbenzene 98828 3 3 <DL 0.01
N,N-diethyl-m-toluamide 134623 10 10 0.97 <DL
(DEET)
Naphthalene 91203 1 1 0.2 <DL
Non-regulated compounds
n-propylbenzene 103651 18 18 <DL 0.02
Octocrylene 6197304 1 1 <DL 0.01
o-phenylphenol 90437 9 9 <DL 0.03
other Octabenzone 1843056 1 1 <DL 1.3
other 3,5-di-tert-butyl-4- no number 1 1 <DL 0.06
hydroxyacetophenone
other 7,9-di-tert-butyl-1- 82304663 2 2 <DL 0.1
oxaspiro(4,5)deca-6,9-diene-




2,8-dione

Simazine

122349

0.02

0.03

total ports sampled

18

19




Supplementary Information

Table S1. Blank correction data. a) Compounds removed from results after
consultation with NLS, b) Compounds and concentration found in equipment

blanks and trip blanks.

a)

Compound

Rule

1,3-dichlorobenzene
2,4-Di-tert-butylphenol
naphthalene

Detection limit of 0.05 pg/|
Detection limit of 0.05 pg/|
Detection limit of 0.05 pg/|

b)

Compound equipment or trip blank  concentration (pg/l) date
Triacetin Trip blank 0.05 Feb 2014
DEET Trip blank 0.13 Feb 2014
Benzophenone Trip blank 0.05 Feb 2014
N-butyl-benzene Trip blank 3.9 Feb 2014
sulfonamide

Octocrylene Trip blank 0.03 Feb 2014
Dimethylphthalate Trip blank 2.2 Feb 2014
Dibromomethane Trip blank 0.03 Feb 2014
Diethylphthalate Trip blank 2.0 Feb 2014
Furfural equipment blank 0.01 Jul 2014
Isopropylbenzene equipment blank 0.01 Jul 2014
n-propylbenzene equipment blank 0.02 Jul 2014
N-butyl equipment blank 0.7 Jul 2014
Benzenesulfonamide

Indane equipment blank 0.02 Jul 2014
o-Phenylphenol equipment blank 0.02 Jul 2014
1(3H)-Isobenzofuranone  equipment blank 0.01 Jul 2014
Octocrylene equipment blank 0.01 Jul 2014
Bis(2-ethylhexyl) adipate  equipment blank 0.02 Jul 2014
other Cas# 95169 equipment blank 0.01 Jul 2014
Benzothiazole

other Cas# 4228108 equipment blank 0.02 Jul 2014
Ethanone, 1-(2,3-

dihydro-1H-inden-5-yl)

no compounds found trip blank Jul 2014




Table S2. Detected compounds and their common usage.

Compound Usage Cas
number
Solvents
n-propylbenzene Volatile Solvent 103651
Isopropylbenzene Volatile Solvent 98828
Dibromomethane Volatile Solvent 74953
Indene Used as a solvent and raw material for making other 95136
organic compounds.
plastic additives
bis(2-ethylhexyl)phthalate Additives for phthalates (plastics) 117817
(DEHP)
N-butyl benzenesulfonamide Neurotoxic plasticiser 3622842
Bisphenol A In the manufacture of epoxy resins and polycarbonates for 80057
food packaging
Pesticides and their metabolites
Atrazine Herbicide 1912249
Simazine Herbicide 122349
naphthalene PAH/Insecticide 91203
N,N-diethyl-m-toluamide insect repellent 134623
(DEET)
Atrazine desethyl Metabolite of Atrazine 6190654
2,6-dichlorobenzamide Metabolite of Dichlobenil & Fluopicolide 2008584
2,4-dimethylphenol Used as pesticides and in the manufacture of antioxidants 105679
3,5-dimethylphenol Used as pesticides and in the manufacture of disinfectants 108689
everything else
Indane Petrochemical compound 496117
o-phenylphenol Household disinfectants 90437
2,4-Di-tert-butylphenol Used in phosphile anti-oxidants, UV stabilizers, 96764
pharmaceuticals & fragrances.
1,4-dioxane Personal Care Products, Stabilizer in chlorinated solvents 123911
2,6-di-tert-butylphenol Used industrially as a UV stabilizer, antioxidant for 128392
hydrocarbon based products, prevents gumming in aviation
fuels.
Octocrylene UV-filter 6197304
other 7,9-di-tert-butyl-1- 82304663
oxaspiro(4,5)deca-6,9-diene-
2,8-dione
other 3,5-di-tert-butyl-4- no
hydroxyacetophenone number

other Octabenzone

1843056
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