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Abstract Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for
electron acceleration and loss from the radiation belts. It is generally understood that these waves are
generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show
that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear
mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC)
waves launched with large (small) wave normal angles can reach a location where the wave normal angle is
zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted
from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic
waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but
not helium band waves.

1. Introduction

Fast magnetosonic waves have been observed near the equator from as low as L = 1.5 to beyond L = 8.0
[Russell et al., 1969; Kasahara et al., 1994; Zhima et al., 2015]. These waves are important as they can accelerate
electrons up to MeV energies and help form the outer radiation [Horne et al., 2007]. More recently, magne-
tosonic waves have been observed on the inner edge of the outer radiation belt and may be associated with
butterfly-type electron distributions [Li et al., 2016], although this is controversial [Albert et al., 2016].

Electromagnetic ion cyclotron (EMIC) waves have also been observed in the magnetosphere, usually outside
the plasmapause in a region extending out to the magnetopause [e.g., Meredith et al., 2003]. EMIC waves are
important for electron loss from the radiation belts [Summers and Thorne, 2003; Albert, 2003; Miyoshi et al.,
2008; Kersten et al., 2014]. At lower L corresponding to the inner belt and slot region both EMIC waves and
magnetosonic waves have been observed in overlapping regions between L = 1.5 and 2.5 by the Akebono
satellite [Kasahara et al., 1992, 1994]. On Akebono magnetosonic waves were referred to as type B emissions
and extended to latitudes between ±18∘. Typically, the frequency range was 40–60 Hz.

It has been generally accepted that magnetosonic waves can be generated by a ring distribution in the pro-
ton and heavier ion distributions [e.g., Horne et al., 2000] at energies of tens to hundreds of keV and that EMIC
waves can be generated by a temperature anisotropy [e.g., Sakaguchi et al., 2013]. However, unless there is
a very large convection electric field, it is not clear how such ion distributions can form in the inner belt to
generate waves observed near L = 1.5. The purpose of this paper is to consider the idea that waves such as
magnetosonic waves generated in one region could propagate a large distance and provide the source of
energy for another set of waves such as EMIC waves via linear mode conversion where different wave disper-
sion surfaces touch each other. Linear mode conversion has been proposed in other context, for example, to
explain the emission of nonthermal continuum radiation emitted from the Earth [Jones, 1987; Horne, 1988,
1989], auroral kilometric radiation [Oya and Morioka, 1983], and wave emissions from Jupiter and Saturn [e.g.,
Jones, 1983, 1987]. As far as we are aware, it has not been applied to magnetosonic waves and EMIC waves
associated with the radiation belts.

2. Dispersion Curves

To understand how energy can be transferred from one wave mode to another via linear mode conversion,
it is instructive to study the dispersion curves. Figure 1a shows an example of the dispersion curves for wave
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Figure 1. Dispersion curves for waves propagating in cold plasma for (a) 𝜓 = 89∘ and (b) 𝜓 = 0∘ with respect to the
magnetic field direction. The wave frequency is normalized to the proton cyclotron frequency ΩH , and the proton
gyroradius 𝜌 is set to 𝜌 = 1 m. The color coding refers to the same dispersion surface, the R (L) refer to right (left)-hand
polarization.

propagation at an angle of 89∘ with respect to the magnetic field direction. Magnetosonic waves can be gen-
erated above the proton cyclotron frequency (ΩH) on this branch[e.g., Horne et al., 2000]. The dispersion curves
here were calculated for a cold plasma using the HOTRAY code [Horne, 1989] using the diffusive equilibrium
plasma density model [Inan and Bell, 1977] and a dipole magnetic field. The dispersion curves are shown
for L = 1.5 at the equator for fpe∕fce = 3.31 and an ion composition of 91.4% H+, 7.1% He+ and 1.5% O+.
(The temperature, density, and ion composition at the base rb = 1100 km of the diffusive equilibrium model
were TDE = 5000 K, Nb = 1.5× 1010 el m−3, 44% H+, 8% He+, and 48% O+ with a plasmapause at Lp = 4.0 with
a half width of W = 0.6. The other parameters are the same as in Inan and Bell [1977]).

The dispersion curves are actually surfaces that vary with frequency and wave normal angle, as does the wave
polarization. For example, the red curves in Figure 1 are for the same dispersion surface. At large wave normal
angles (Figure 1a) the waves correspond to linearly polarized X mode waves which extend up in frequency to
the lower hybrid resonance frequency, whereas for parallel propagation (Figure 1b) the waves are right-hand
polarized above the crossover frequency in a multi-ion plasma and left-hand polarized below. At intermediate
angles the waves are a mixture of right-hand—linear or left-hand—linear polarization. The green, blue, and
black curves show wave dispersion surfaces at lower frequencies.

It is interesting to note that when waves are observed by satellites below ΩH, they are generally referred
to as EMIC waves, or sometimes hydrogen, helium, or oxygen band EMIC waves, whereas when waves are
observed above ΩH, they may be referred to as magnetosonic waves. The red curves in Figure 1 show that it
may be possible for magnetosonic waves to propagate into a region where 𝜔 < ΩH, and vice versa. This is
discussed below.

It is important to note that the dispersion surfaces in Figure 1a remain separate from each other. In contrast,
Figure 1b shows that for parallel propagation (𝜓 = 0∘) the dispersion curves touch each other at two partic-
ular frequencies, known as the crossover frequencies [Budden, 1985; Horne and Thorne, 1993]. The dispersion
curves only touch for parallel propagation, at any finite angle of propagation the curves remain separate and
distinct. Theory shows that during propagation the waves must remain on the same dispersion branch. This
means that the wave polarization can change during propagation, for example, as a result of changes in the
magnetic field strength and hence crossover frequency, but the waves cannot change mode. The exception
to this rule is that wave energy can be transferred from one wave mode to another without attenuation at the
frequency where the two dispersion surfaces touch [Budden, 1985]. Thus, magnetosonic waves, generated
above ΩH, if they can propagate into a region where 𝜔 < ΩH can transfer energy into hydrogen band EMIC
waves if the wave frequency equals the crossover frequency and 𝜓 = 0∘, i.e., where the red and green curves
touch. Similarly, energy could be transferred between EMIC waves at the crossover frequency where the green
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Figure 2. (a) A magnetosonic wave (red) as a source of an EMIC wave (green). Energy can be transferred from the (b) magnetosonic wave into the EMIC wave
when 𝜓 = 0∘ and the (c) wave frequency equals the crossover frequency.

and blue curves touch. The process is analogous to energy conversion between the LO and Z mode when the
wave frequency equals the plasma frequency f = fpe [e.g., Jones, 1987] and between the whistler mode and
Z mode when fpe < fce. Wave energy can still be exchanged if there is a small mismatch in frequency or in the
angle of propagation, but in this case energy is attenuated, and the process is more efficient if there is a large
density gradient present [Budden, 1985].

3. Ray Tracing

In order to test the idea of mode conversion, it is necessary to consider where the waves are generated and
test whether they can propagate into a region where mode conversion can take place. Here we first consider
the case where magnetosonic waves are the source of EMIC waves and whether they can access the highest
crossover frequency. We use the density model described above and ray tracing in a cold plasma using the
HOTRAY code. Details of the growth and propagation in a hot plasma are left for future work.

Magnetosonic waves can be generated by a proton ring distribution in the vicinity of the plasmapause and are
usually observed near the magnetic equator with very large wave normal angles. Figure 2a shows an example
of a magnetosonic wave (red curve) launched from L = 4.77 at a latitude of 𝜆 = 0.28∘ with 𝜓 = 93.0∘ at
a frequency f = 61.89 Hz. The initial frequency corresponds to 𝜔∕ΩH = 14.18 and is consistent with the
generation of magnetosonic waves between the harmonics of the proton cyclotron frequency. Ray tracing
is started with t < 0 so that the ray will reach the mode conversion point at t = 0. The wave propagates
toward the Earth in the meridian plane and is confined in latitude to approximately 𝜆 < 10∘, as illustrated by
the dotted lines. The plasma density and magnetic field gradients refract the wave so that the wave normal
angle passes through 90∘ 5 times (Figure 2b). The normalized wave frequency (Figure 2c) generally decreases
as the ray propagates closer to the Earth and drops below 𝜔∕ΩH = 1. In the region where 𝜔∕ΩH < 1 the wave
normal angle is large but gradually decreasing, and hence, the wave polarization is a mixture of right-hand
linear polarization. As the ray continues propagating, it reaches a location where the wave frequency equals
the crossover frequency with 𝜓 = 0∘. This corresponds to t = 0. Thus, contrary to the expectation that the
wave normal angle is always close to 90∘, magnetosonic waves can be refracted so that the wave normal angle
becomes small for part of the propagation path. At this location, which is approximately L = 1.5 𝜆 = 10∘

wave energy can be transferred from magnetosonic waves into EMIC waves without attenuation via linear
mode conversion [Budden, 1985]. The green curve shows the propagation of a hydrogen band EMIC wave
launched from the mode conversion region with 𝜓 = 0∘. The wave “reflects” in the Northern Hemisphere and
on return the wave frequency approaches the proton cyclotron frequency ΩH with 𝜓 large. In this case ray
tracing is stopped as one would expect the EMIC wave to be absorbed by proton cyclotron damping. Thus,
mode conversion could result in heating the ion distribution.

Ray tracing shows that magnetosonic waves at other frequencies can access the crossover frequency with
𝜓 = 0∘ over a wide range of L shells and latitudes (not shown). Since the crossover frequency depends on
the magnetic field strength and the ion composition, and these tend to decrease with radial distance, energy
conversion at lower frequencies should take place farther from the Earth.

To demonstrate that the process can operate in reverse and that EMIC waves could be a source of mag-
netosonic waves, Figure 3 shows an example of an EMIC wave launched from L = 1.52 with 𝜆 = 0.11∘,
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Figure 3. An EMIC wave (green) as a source of a magnetosonic wave (red).

𝜓 = 54.89∘, 𝜔∕ΩH = 0.46, and t < 0. In this case the wave propagates only a short distance along the field
line, and wave growth should be possible just above the equator where the wave normal angle is small. The
wave reaches the crossover frequency at t = 0 with𝜓 = 0∘ (Figures 3b and 3c) whereupon energy conversion
into magnetosonic waves can take place. The red curve shows a magnetosonic wave launched with 𝜓 = 0∘

propagating away from the mode conversion region toward larger L. The ray is stopped after propagating
for 60 s.

4. Discussion

Magnetosonic waves have been detected over a wide range of L shells from the inner to the outer radiation
belt [Russell et al., 1969; Kasahara et al., 1994]. Strong magnetosonic waves have been observed by the Van
Allen Probes mission at the inner edge of the outer radiation belt [Li et al., 2016] with much higher ampli-
tudes than previously detected. Magnetosonic waves can be generated by a proton ring distribution with
very large wave normal angles, and such a ring distribution can form as a result of the energy dependence in
the transport and loss of protons around the magnetosphere [e.g., Chen et al., 2010]. Under these conditions
we suggest that magnetosonic waves could be the source of EMIC waves.

The proton energy usually associated with the growth of EMIC waves via Doppler-shifted cyclotron resonance
is typically in the region of tens to hundreds of keV. Protons in this energy range do not usually penetrate
into the slot region unless there is a very large convection electric field, which can be the case during storms.
The EMIC waves observed by Akebono were observed for a range of Kp, but most often for Kp = 2 [Kasahara
et al., 1992, 1994]. The generation of EMIC waves by energetic protons could therefore take place after a storm
during the time it takes for the ring current to decay, which can be several days. Thus, we suggest that under
these conditions EMIC waves could be a source of magnetosonic waves in the inner radiation belt and slot
region as a result of energy conversion at the crossover frequency.

While energy conversion between magnetosonic waves and EMIC waves can take place in either direction,
there is an important difference. In principle EMIC waves at low L could be a source of magnetosonic waves at
larger L, but magnetosonic waves could only provide a source of hydrogen band waves. It seems very unlikely
that magnetosonic waves could provide a source of helium band waves since this would require additional
mode conversion between hydrogen band waves and helium band waves at the lower crossover frequency
which would require special propagation conditions.

In this paper we have not considered hot plasma effects such as the generation of magnetosonic waves by
proton ring distributions or EMIC waves by a temperature anisotropy or wave damping. These effects are left
for future work. However, our ray tracing is consistent with the growth and propagation magnetosonic waves
at large wave normal angles and with the confinement of the waves to within a few degrees of the magnetic
equator. It is also consistent with the growth of EMIC waves with small wave normal angles near the magnetic
equator. Other magnetic field and density gradients could reduce the latitudinal spread of magnetosonic
waves and help confine them more closely to the equator.

Magnetosonic waves can cause electron acceleration up to MeV energies via Landau resonance [Horne et al.,
2007]. This would tend to reduce the amplitude of the waves, but the electron flux is usually very low at such
high energies so the reduction in wave power may be small. EMIC waves, on the other hand, cause electron
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loss from the radiation belts. The conversion of wave energy from magnetosonic waves into EMIC waves may
thus pose an interesting question as to how much energy goes into the acceleration of radiation belt electrons
and how much goes into electron loss.

5. Conclusions

We have shown by ray tracing that fast magnetosonic waves could provide the source of energy for EMIC
waves observed in the inner belt and slot region as a result of inward propagation and linear mode conversion
at the crossover frequency. We have also shown that the converse is true and that EMIC waves could provide
a source of magnetosonic waves which propagate outward from the inner belt and slot region. Theory shows
that energy conversion is unattenuated when the wave frequency equals the crossover frequency, but if there
is any mismatch in frequency or angle of propagation, then energy is attenuated, and the process is more
efficient when there is a large density gradient present [Budden, 1985].

Energy conversion via linear mode conversion can take place in either direction, but while EMIC waves could
provide a source for magnetosonic waves, magnetosonic waves can only provide a source for hydrogen band
EMIC waves and are very unlikely to be a source of helium band waves as this would require additional mode
conversion and special propagation conditions.

The range of frequencies where linear mode conversion can take place is determined by the maximum and
minimum of the crossover frequency. Hot plasma effects may restrict the frequency range even further. How-
ever, since the crossover frequency depends on the magnetic field strength and the ion composition which
both tend to drop with increasing distance, mode conversion is likely to take place at larger L for lower
frequencies.

We suggest that one way to test the origin of the waves is to examine experimentally the wave polarization.
In the hydrogen band, just below the proton cyclotron frequency and above the crossover frequency, if the
wave polarization is mainly linear with a right-hand polarized component, then the waves are more likely to
originate from magnetosonic waves via propagation effects; on the other hand, if they have a left-hand polar-
ized component, they are more likely to be generated by Doppler-shifted cyclotron resonance. A survey of the
wave power in both magnetosonic and EMIC waves could also be used to test the linear mode conversion idea.
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