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• C, N and P concentrations and long-
term burial rates in UK peat are of sim-
ilar magnitude to published values else-
where.

• The long-term burial flux in UK peat of
P is broadly consistent with atmospher-
ic deposition rates; N burial exceeds at-
mospheric deposition, consistent with
substantial N fixation by peat bogs.

• N and P concentrations in peat are
strongly associated in both UK and sites
elsewhere in the world, consistent with
a key role for P in biological fixation of
N and C.
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In this paper we report new data on peat carbon (C), nitrogen (N) and phosphorus (P) concentrations and accu-
mulation rates for 15 sites in the UK. Concentrations of C, N and Pmeasured in peat from five ombrotrophic blan-
ket mires, spanning 4000–10,000 years to present were combined with existing nutrient data from ten Scottish
ombrotrophic peat bogs to provide the first UK perspective on millennial scale macronutrient concentrations in
ombrotrophic peats. Long-term average C, N and P concentrations (0–1.25 m) for the UK are 54.8, 1.56 and
0.039 wt%, of similar magnitude to the few published comparable sites worldwide. The uppermost peat (0–
0.2 m) is enriched in P and N (51.0, 1.86, and 0.070 wt%) relative to the deeper peat (0.5–1.25 m, 56.3, 1.39,
and 0.027 wt%). Long-term average (whole core) accumulation rates of C, N and P are 25.3± 2.2 gCm−2 year−1

(mean ± SE), 0.70 ± 0.09 gN m−2 year−1 and 0.018 ± 0.004 gP m−2 year−1, again similar to values reported
elsewhere in the world. The two most significant findings are: 1) that a regression model of N concentration
on P concentration and mean annual precipitation, based on global meta data for surface peat samples, can ex-
plain 54% of variance in N concentration in these UK peat profiles; and 2) budget calculations for the UK peat
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cores yield an estimate for long-term average N-fixation of 0.8 g m−2 year−1. Our UK results, and comparison
with others sites, corroborate published estimates of N storage in northern boreal peatlands through the
Holocene as ranging between 8 and 15 Pg N. However, the observed correlation of N% with both mean annual
precipitation and P concentration allows a potential bias in global estimates that do not take this into account.
The peat sampling data set has been deposited at the NERC Data Centre (Toberman et al., 2016).

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Stoichiometry
Holocene
1. Introduction

Peatlands represent a globally-important store for carbon (C) (530–
694 Pg C: Yu et al., 2010) and nitrogen (N) (8–15 Pg N: Limpens et al.,
2006) through theHolocene, and ombrotrophic peats across northern lat-
itudes make an especially significant contribution (436 Pg C: Loisel et al.,
2014; 9.7–18.5 PgN: Loisel et al., 2014;Wanget al., 2015; 0.34 Pg P:Wang
et al., 2015). A key characteristic of ombrotrophic bogs is that N, P and
other elements (e.g., Ca, K, Mg) vital to their biogeochemical functioning
(Bridgham et al., 1998; Bubier et al., 2007; Damman, 1986) and plant as-
semblage structure (Baker and Boatman, 1990; Fritz et al., 2012; Gotelli
et al., 2008) are almost exclusively supplied via the atmosphere
(Damman, 1990; Kellogg and Bridgham, 2003; Malmer, 1988). Such in-
puts of N and P are estimated to be low (Tipping et al., 2014; Turunen
et al., 2004), suggesting that their availability should limit peat bog prima-
ry production (Schlesinger and Bernhardt, 2013), an effect that has been
demonstrated experimentally (Aerts et al., 1992; Aerts et al., 2001; Olid
et al., 2014). Although they are both supplied from the atmosphere, N
and P differ in themechanisms bywhich this supply takes place. P is sup-
plied solely by deposition processes, while for N biological fixation is an
important additional pathway (Knorr et al., 2015). Despite the apparent
role of these nutrients in controlling both bog functioning and C burial,
limited attention has been paid to investigating the patterns of, and con-
trols over, their long-term accumulation, cycling and stoichiometry in
ombrotrophic peatlands. Although consideration has been given to the
C:N ratio as an indicator of peat decay (Malmer and Holm, 1984),
interpreted in terms of changing hydrological conditions (Malmer and
Wallén, 2004; Silamiķele et al., 2010), few studies have considered C, N
andP in combination. Published case studies that do consider all three nu-
trients have examinedpeatlands inNorthAmerica (Gorhamand Janssens,
2005;Wang et al., 2015, 2014), tropical settings (Rwanda: Pajunen, 1997;
Indonesia: Weiss et al., 2002) and Patagonia (Knorr et al., 2015). Other
thanwork in Sweden (Damman, 1978), there is a dearth of stoichiometric
data from Europe and the UK in particular despite decades of peatland re-
search for various purposes, including reconstructing palaeoclimate vari-
ability through theHolocene (e.g., Charman et al., 2006), assessing carbon
storage (e.g., Billett et al., 2010) and investigating ecosystem functioning
(e.g., Holden et al., 2004).

Long-term peat records have revealed changes in nutrient element
concentration with depth. In the case of P a consistent pattern is ob-
served, with enrichment in the aerobic surface layer (acrotelm) contain-
ing living vegetation: typically the upper 20–40 cm in temperate
peatlands, extending to 2 m depth in tropical settings, and has been
interpreted as evidence of biological P recycling (Damman, 1978; Craft
and Richardson, 1993; Weiss et al., 2002; Wang et al., 2015). In the
case of N, changes in concentration through the peat profile are also ob-
served (Malmer and Holm, 1984; Craft and Richardson, 1993; Kuhry and
Vitt, 1996; Malmer and Wallén, 2004; Gorham and Janssens, 2005;
Wang et al., 2015), but the direction of change varies between sites,
such that generalisation is uncertain. Furthermore, there is conflicting
evidence about the possible role of recent (20th Century)
anthropogenically-driven atmospheric nutrient enrichment (Galloway
et al., 2004; Vitousek et al., 1997). Malmer (1988) observed a latitudinal
gradient of bog surface N concentrations that reflected the deposition
rates across Sweden and Norway (Malmer, 1988), while Gorham and
Janssens (2005) found no recent increase at sites across North America
despite high N deposition (Turunen et al., 2004). Where observed,
increases in N concentration with depth have been attributed primarily
to preferential decay and loss of C during progressive decomposition of
the plant-derived organic matter (Malmer and Holm, 1984; Craft and
Richardson, 1993; Kuhry and Vitt, 1996; Malmer and Wallén, 2004;
Wang et al., 2015). That the extent of decay, varying as it does with
bog wetness (Aaby and Tauber, 1975), is a factor in governing the rela-
tive concentrations of N and C, does not preclude alternative processes.
Thus, Charman et al. (2013) considering both stratigraphic variation
through cooler episodes of the Medieval Climate Anomaly, and inter-
site variation across the globe, find that C accumulation is better predict-
ed by indicators of Net Primary Productivity (NPP) than by indicators of
decay, pointing away from preferential decay as the dominating factor.
This conclusion is consistent with the interpretation of Toberman et al.
(2015) that an observed association between N and P in surface peat is
explained by P supply regulation of biological N-fixation. Equally, an as-
sociation of N with P is an expected consequence of recycling and reten-
tion of nutrients. Uncertainty about which factors are most important in
driving bog nutrient content and productivity means that any prediction
of environmental change impacts on the peat C stores is also uncertain.

Ombrotrophic peats that have accumulated during the Holocene are
an important wetland ecosystem in Britain, covering approximately
6.5% of the terrestrial surface area (15,728 km2; BGS 1:650,000 Superfi-
cial Deposits, Geological Map Data, British Geological Survey)(Taylor,
1983). Therefore, investigating the factors that control nutrient concen-
trations and fluxes in these peats is essential if we are to fully under-
stand nutrient dynamics in the British landscape. This paper, reporting
research undertaken as part of the LTLS Project (NERC Macronutrient
Cycles Programme, project Analysis and Simulation of the Long-Term,
Large-Scale Interactions of C, N and P in UK land, freshwater and atmo-
sphere) aims to contribute the first millennial-scale reconstruction of
C, N and P content in British ombrotrophic peat sequences to redress
the paucity of data and compare long-term nutrient dynamics across
the boreal peatlands. To provide a comprehensive picture, we combine
existing data from ten sites across Scotland with five new dated peat
sequences that lie along an extended latitudinal gradient spanning
England and Scotland. We also compare our data with existing studies
elsewhere in the world, and address the extent of systematic variation.

2. Data and methods

2.1. Five new peat cores

New cores were collected from five upland ombrotrophic blanket
bogs selected to represent a latitudinal gradients through Britain
(Fig. 1). Triplicate adjacent cores were extracted in 2014 using
both a box corer (to recover the surface vegetation and uppermost
1 m of peat) and a Russian-type corer (for peat deeper than 1 m).
The sites were: Great Gnat's Head on Dartmoor (DM), Migneint
(Mg) in northwest Wales, Moor House (MH) in northern England,
Glensaugh (G) near the north eastern Scottish coast and Forsinard
Flows (F) in the far north of mainland Scotland. Physiographical in-
formation for each site is summarised in Table 1. All cores extended
down to the underlying mineral substrate, ranging in length from
95 cm (Glensaugh) to 417 cm (Forsinard).

The new coreswere carefully extruded, sliced at 10 cm intervals, air-
dried for one week, manually sieved to 2 mm to remove large particles
and roots, oven-dried at 60 °C to remove residual moisture and ball-
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Fig. 1. Sample locations in relation to the distribution of peat, including fen peat (BGS 1:650,000 Superficial Deposits, Geological Map Data, British Geological Survey).
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milled to a fine, homogenous powder. Bulk densities of all sampleswere
calculated prior to milling by dividing the dry matter mass by the orig-
inal volume of wet material. Phosphorus content was measured colori-
metrically using a Seal Analytical AQ2 discrete analyser after digestion
in H2SO4/H2O2. After drying at 105 °C, carbon and nitrogen were deter-
mined on an Elementar Vario-EL analyser using an ISO17025 accredited
method.

2.2. Existing data from Scotland

The National Soil Inventory of Scotland (NSIS2) (Lilly et al., 2011)
contains 721 soil profiles sampled between 2007 and 2009 for which
C, N, and P concentrations have been measured. Here we consider ten
of these sites, those classified as deep blanket peat. Details for all
methods are given in Chapman et al. (2013). In brief, the selected peat
profiles were 90–120 cm in thickness and samples taken at between
three and five depths, often based on observed changes in humification
in the peat profile. Bulk density was measured in triplicate on subsam-
ples collected in 7.3 cm internal diameter stainless steel cylinders, ad-
justed to correct for removal of the N2 mm fraction. Around 2 kg of
sample were taken at each site for elemental analysis, returned to the
laboratory where they were air-dried at 30 °C and sieved (b2 mm),
further dried at 50 °C prior to milling. Carbon and nitrogen were deter-
mined using a Flash EA 1112 Series Elemental Analyser connected via a
Conflo III to a DeltaPlus XPisotope ratio mass spectrometer (all Thermo
Finnigan, Bremen, Germany). The C contents were calculated from the
area output of the mass spectrometer calibrated against a standard ref-
erence material which was analysed with every batch of ten samples).
Total P was measured colorimetrically following fusion with NaOH
(Smith and Bain, 1982).

Image of Fig. 1


Table 1
Physiographical information for the five LTLS sites.

Site name (code) Lat., long. Alt.
(m)

MAT
(°C)

MAP
(mm)

Geology Dominant surface vegetation

Great Gnat's Head, Dartmoor, England
(DM)

50.495,
−3.950

469 8.8 1800 Carboniferous-Permian granite Grasses, Eriophorum, Sphagnum, Calluna

Migneint, Wales (Mg) 52.994,
−3.803

432 7.3 2236 Ordovician sandstone Eriophorum, Calluna, Vaccinium, Sphagnum

Moor House, England (MH) 54.694,
−2.389

575 6.4 1478 Carboniferous limestone Calluna, Erica, Vaccinium, Eriophorum, moss (various), Cladonia

Glensaugh, Scotland (G) 56.917,
−2.512

439 7.0 916 Cambrian metamorphic pelite Calluna, Vaccinium, Nardus, Eriophorum (Other grasses, various), Sphagnum (Other mosses, various)
Cladonia

Forsinard, Scotland (F) 56.917,
−2.562

215 6.9 1104 Neoproterozoic metamorphosed (various) Sphagnum, Racomitrium, Calluna, Erica, Myrica gale, Eriophorum, grass (various), Cladonia.

Creag Dubh, Sutherland 58.147,
−4.380

330 5.7 1182 Neoproterozoic metamorphosed psammite Data unavailable

Rubha Mor, Lewis 58.080,
−6.752

35 8.1 2241 Archaen-Proterozoic gneiss Sphagnum papullosum, Racomitrium lanuginosum, Calluna, Erica tetralix

Meall Chrombaig, Cairngorms 56.900,
−3.643

567 4.6 1287 Neoproterozoic pelite Sphagnum papullosum, Racomitrium lanuginosum, Calluna, Erica tetralix

Queensberry, Lowther Hills 55.284,
−3.576

472 5.6 2000 Silurian metasandstone & metasiltstone Sphagnum papullosum, Racomitrium lanuginosum, Calluna, Erica tetralix

Sheilhope Hill, Lowther Hills 55.467,
−3.267

480 6.0 1787 Silurian metasandstone & metasiltstone Sphagnum papullosum, Racomitrium lanuginosum, Calluna, Erica tetralix

Tom Roiseneabhat, Lewis 58.271,
−6.437

105 7.5 1626 Archaen-Proterozoic gneiss Sphagnum (various species), Erica tetralix

Garbh Leachtir, Loch Lomond Hills 56.526,
−4.604

372 5.9 2976 Neoproterozoic quartzite & psammite Sphagnum papullosum, Erica tetralix, Calluna, Eriophorum angustifolium, Potentilla erecta

Cock Hill, Cairngorms 56.910,
−2.658

417 6.4 1093 Neoproterozoic semipelite and mica
psammite

Sphagnum papullosum, Erica tetralix, Calluna, Eriophorum angustifolium, Potentilla erecta

Carn nan Aighean, Easter Ross 57.781,
−4.692

496 5.3 1787 Neoproterozoic amphibolite Calluna vulgaris, Eriophorum vaginatum, Sphagnum (various), Rhytidiadelphus loreus

Dun Mount, Cairngorms 57.267,
−2.996

520 5.7 1051 Neoproterozoic metamorphosed psammite Calluna vulgaris, Eriophorum vaginatum, Sphagnum (various), Rhytidiadelphus loreus
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Table 2
Radiocarbon data for horizons at Dartmoor (DM), Migneint (Mg), Moor House (MH), Glensaugh (G) and Forsinard (F). The IntCal13 curve was used for calibration (Reimer et al., 2013)
using the calibration programme CLAM. The 14C % modern absolute are reported for use in soil modelling.

Laboratory number Site identifier and
sample depth (cm)

14C % modern absolute
(±1σ)

Conventional 14C age
(year BP ± 1σ)

2σ calibrated age range (mean)
cal year BP

δ13CVPDB‰ ± 0.1

SUERC-58230 DM 20–30 84.54 ± 0.40 1286 ± 37 1092–1295 (1225) −27.6
SUERC-58231 DM 90–100 69.57 ± 0.33 2852 ± 38 2859–3075 (2969) −27.6
SUERC-58232 DM 180–190 64.26 ± 0.30 3489 ± 38 3644–3859 (3762) −27.9
SUERC-58233 Mg 20–30 98.03 ± 0.46 96 ± 37 12–270 (131) −27.2
SUERC-58234 Mg 50–60 90.18 ± 0.42 767 ± 37 661–759 (701) −27.1
SUERC-58235 Mg 110–120 54.82 ± 0.26 4766 ± 38 5330–5590 (5503) −27.5
SUERC-58219 MH 20–30 97.33 ± 0.46 154 ± 37 42–285 (150) −26.3
SUERC-58220 MH 100–110 75.42 ± 0.35 2203 ± 37 2130–2325 (2226) −27.2
SUERC-58221 MH 190–200 52.54 ± 0.25 5107 ± 39 5746–5926 (5834) −27.6
SUERC-58225 G 20–30 90.28 ± 0.40 759 ± 35 661–737 (696) −27.8
SUERC-58226 G 50–60 80.18 ± 0.36 1711 ± 36 1550–1705 (1624) −27.9
SUERC-58229 G 110–120 63.28 ± 0.28 3613 ± 36 3835–4071 (3927) −27.8
SUERC-58252 F 20–30 97.17 ± 0.43 167 ± 35 37–290 (156) −27.2
SUERC-58223 F 200–210 55.46 ± 0.27 4672 ± 38 5313–5575 (5409) −27.5
SUERC-58224 F 400–410 31.76 ± 0.17 9151 ± 42 10,229–10,477 (10,318) −27.3
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2.3. Environmental data

For the new cores, details of vegetation type were recorded in situ
and equivalent information was obtained from the JHI database follow-
ing the key of Robertson (1984). Altitude (LandmapUK), underlying ge-
ology (DiGMapGB) and local 1971–2000 mean annual precipitation
(MAP) and temperature (MAT) were determined for all sites from the
5 × 5 km gridded UKCP2009 dataset (Perry and Hollis, 2005).

2.4. Age-depth models

14C data have not beenmeasured for the JHI peat cores. For the five
new cores, ball-milled sub-samples of bulk peat from the upper section
(20–30 cm), mid-profile and base of one core from each of the five LTLS
sites (n=15; Table 2)were submitted to theNERC Radiocarbon Facility
at East Kilbride for determination of its 14C signature by accelerator
mass spectrometry (AMS). CO2 released by combustion (in an
oxygen-filled high-pressure bomb) of the sieved soil was separated
cryogenically, graphitised by iron-zinc reduction (Slota et al., 1987)
and analysed using the Scottish Universities Environmental Research
Fig. 2. Spatial variation in N and P concentrations in the
Centre (SUERC) AMS (5MV NEC, National Electrostatics Corporation,
Wisconsin, US) (Xu et al., 2004). Stable carbon isotope ratios were
measured on sub-samples of CO2 using a dual-inlet mass spectrome-
ter with a multiple ion beam collection facility (Thermo Fisher Delta
V) in order to normalise 14C data to −25‰ δ13CVPDB. Data are re-
ported as conventional radiocarbon ages (relative to 1950 CE) and
absolute % modern (for use in on-going associated nutrient model-
ling), adjusted to reflect on-going radioactive decay of the interna-
tional reference standard (oxalic acid) since 1950 CE (Stuiver and
Polach, 1977). All 14C measurements were given the mid-point
depth and a vertical error of ±5 cm and used to estimate the
down-core pattern in accumulation rate. The calibration of 14C mea-
surements ages was part of this process and used the IntCal13 curve
(Reimer et al., 2013).

2.5. Statistical analysis

Normality tests (Anderson-Darling statistic), one-way ANOVA, 2-
sample t-tests, correlation tests and regression were performed using
MINITAB17.
UK (average values for depth interval 0–125 cm).

Image of Fig. 2
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3. Results

3.1. Chronology

Peat 14C concentrations were measured on sieved (b2 mm) bulk
fractions, and these data have been used to establish age models for
the peat profiles. Though plant macrofossils are commonly preferred
for dating purposes (Nilsson et al., 2001), we consider the average age
of the 10 cm peat subsamples sufficient for our low-resolution analysis.
The 2 sigma calibrated 14C age ranges for samples from the five new
cores are presented in Table 2. The uppermost dates at Migneint,
Moor House and Forsinard fall within the time interval during which
fossil fuel emissions and thermonuclear bomb testing have perturbed
the atmospheric 14C curve (last 200 years). The five sequences exhibit
variable basal ages (quoted in the text as median modelled age). The
peats at Dartmoor and Glensaugh have accumulated since ca.
4000 years before present (year BP), the Moor House peats since ca.
5700 year BP the Migneint sequence since ca. 6200 year BP while
the Forsinard Flow record spans most of the Holocene (since ca.
10,580 year BP).

3.2. UK between-site differences in nutrient composition

The site mean concentrations (JHI data in S1 and 5 new sites,
Table 4) show statistically significant between-site differences in ele-
ment concentrations (one-way ANOVA between-group df = 14, and
F= 27.7, 11.7 and 19.1 for C, N and P respectively). There is a slight ten-
dency for N to increase westwards (Fig. 2), however there are no statis-
tically significant associations of element concentration with either
latitude or longitude. A statistically significant positive association is
found of N (but not P) concentration with mean annual precipitation
(r = 0.65, p = 0.008).

To calculate the UKmean element concentrationswe have averaged
six site means (Table 4), the five latitudinally distributed new coring
sites, and mean of the ten JHI sites from Scotland. The JHI sites were
treated as a single site to 1) avoid over-sampling Scotland, and 2) reflect
the low number of samples in each of the ten cores.

3.3. Depth profiles

The C concentration ismaximal at or near the base of theprofile at all
sites (Fig. 3) that have recovered peat sequences thicker than 1 m, with
maximumvalues in the range 55 to 61wt%, and at aminimumat the top
of the profile, with minimum values in the range 44 to 52 wt% C. Some
shallow sites from the JHI data set exhibit slightly greater C near the
peat surface. Three of the five new cores contain a mineral-enriched
basal section with low C concentrations (e.g., Dartmoor C = 10%), pre-
sumably reflecting the soil/fen peat on which ombrotrophic peat bog
developed (basal peat at Moor House and Forsinard). A similar mid-
depth layer in Migneint has previously been interpreted in terms of
water table drawdown and erosion (Ellis and Tallis, 2001). These sec-
tions are ignored in subsequent analysis of nutrient cycling under
ombrotrophic conditions. In contrast to C, the trend in N concentration
is more variable. N rises in concentration up through the peat profile at
four of the five new cores, increasing by up to a factor of two in the
upper 40 to 100 cm. However, at Migneint a decline in N concentration
occurs above a mid-profile peak (55–65 cm), while six of the ten JHI
data set profiles show either an up-profile decline or no change. Maxi-
mum N was measured at the surface at four of the five new sites
(Migneint being the exception).

In contrast with N, surface enrichment of P is observed at all fifteen
sites, with concentrations at 0–20 cm being greater by a factor of 1.5
to 3.3 (mean 2.4) than in the interval 20–125 cm at the five new peat
cores (Table 4). In most cases, the highest P concentration was mea-
sured in the uppermost sample (Fig. 3). Maximum near-surface P con-
centrations vary between the new sites to some extent: surface peat
at Migneint is most enriched in P (maximum = 0.11 wt%), followed
by Glensaugh (0.093 wt%) and surface P maximum is lowest at
Forsinard (0.068wt%). Alongside near-surfacemaxima, N and P concen-
trations appear related at depth: an earlier phase of elevated P at
Migneint corresponds with maximum N content, while at Forsinard N
rises at a constant rate from 125 cm depth, corresponding to an interval
of higher P concentrations (95–125 cm). However, except at these
specific depths the concentrations of N and P show less variation in
the deeper parts of the profile depth (below 50 cm, N typically ranges
1.0 to 1.5 wt%, and P 0.02 to 0.03 wt%) (Fig. 3). A statistically significant
correlation is found betweenNand P concentration for peat deeper than
50 cm for all sites except Forsinard.

3.4. Long-term accumulation rates of C, N and P

Whole core long-term accumulation rates (Table 3) of C, N and P for
theUK (calculated from thefive dated LTLS sites) are 25.3±2.2 gCm−2-

year−1 (mean ± SE), 0.70 ± 0.09 gN m−2 year−1 and 0.018 ±
0.004 gP m−2 year−1, respectively. Some geographic variability is ob-
served: C and N accumulation was 0.6–0.7 times the average at
Glensaugh (least) and 1.3 times at Dartmoor (greatest), while P accu-
mulation ranged from 0.6 times the average at Forsinard to 1.8 times
at Migneint.

3.5. Comparison with other sites

A comprehensive comparison with other studies is restricted by the
lack of sites for which C, N and P have all beenmeasured. Although lack-
ing chronological information, the most comprehensively studied re-
gion is Ontario (Wang et al., 2015, N = 400), where values differ from
those recorded in the UK (Table 5, Fig. 4, values presented as ratios, C
concentrations not being reported in Wang et al., 2015). In Fig. 4 we
display these ratios in the form N:C and P:C, reversing the conventional
approach in order to place greater emphasis on changes in N and P.
However, for the comparisons in Table 5 we show C:N and C:P, as this
is the only form in which some of the data are available.

In the upper 40–50 cmof the profile theMinnesota and Ontario data
have lower N:C and N:P ratios (and thus lower N concentrations) com-
paredwith the UK data (Fig. 4). The Patagonia peat sample (Knorr et al.,
2015) is themost contrastingwithmuch higher C:N and C:P (lower N:C
and P:C), though with similar N:P (Table 5).

The full-core data (Table 5) also reveal differences when compared
with sites elsewhere in the world. The Ontario (Wang et al., 2015) and
Québec (Wang et al., 2014) data are similar to the UK, but the C:N ratios
are far lower (thus, N:C higher) than the five North America sites of
Gorham and Janssens (2005). More strikingly, the Ontario data set
shows falling N:C ratios up core (Fig. 4), in strong contrast with the
UK and two complete records of Gorham and Janssens (2005) from
North America (despite their different mean values).

The full-core site mean values for C:N, C:P, and N:P are normally dis-
tributed (Anderson-Darling test, all p values N 0.16). A 2-sample t-test
finds no significant difference between the UK and non-UK site mean
values for C:P and N:P, but finds UK C:N to be significantly (p =
0.027) lower than thenon-UK sites, showing that UKpeats are relatively
N enriched (though less so than Ontario peats, Wang et al., 2015).

4. Discussion

4.1. Long-term average C, N and P concentrations in UK peats

We have measured the concentrations of C, N and P in newly sam-
pledpeat profiles at 5 sites spanning the length of theUK, supplemented
by new analysis of the geochemical composition of 10 existing peat
cores from Scotland (Figs. 2 & 3, Table 4). The data reveals some spatial
variability across the UK (Fig. 2, Table 4) that is associated in part with
variations in climate, specifically with mean annual precipitation. This



Fig. 3. Depth profiles (cm) of C, N and P concentrations. For the 5 new coring sites, triplicate cores were measured.
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probably explains the greater range of C and N values reported from the
JHI sites, especially the west to east precipitation gradient across Scot-
land (Perry and Hollis, 2005). However, climatic associations with C, N
and P concentrations are relatively weak, and our results suggest that
ombrotrophic peats in the Britain are fairly uniform in theirmacronutri-
ent concentrations.

Image of Fig. 3


Table 3
Apparent long-term mass accumulation rates for the new cores (g m−2 year−1).

Peat accumulation
rate mm year−1

C N P

Forsinard 0.43 23.6 0.64 0.011
Glensaugh 0.29 18.7 0.42 0.012
Moor House 0.42 26.0 0.68 0.019
Migneint 0.47 26.0 0.94 0.032
Dartmoor 0.79 32.2 0.82 0.015
Mean 0.48 25.3 0.70 0.018
SE 0.08 2.2 0.09 0.004
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4.2. N & P enrichment in surface peat

In most of the UK peat profiles, N and P concentrations are elevated
in the uppermost peat layers (Fig. 3). However, the two elements show
rather different patterns of variation, and the enrichments have been
explained rather differently. Consequently, N and P are here discussed
separately.

The surface P enrichment at the UK sites (Fig. 3), present in all 15
cores, is also seen at sites elsewhere in the world (Fig. 4, expressed as
P:C ratio). The UK average P:C ratio decreases down profile from
0.00125–0.00156 in the interval 0–20 cm to 0.00049–0.00067 in the in-
terval 50–125 cm, similar in form andmagnitude to profiles inMinneso-
ta (Gorham and Janssens, 2005) and Ontario (Wang et al., 2015). At the
Newfoundland site of Gorham and Janssens (2005) a similar surface en-
richment is seen, butwith a far lower P:C ratio, attributed by the authors
to limited deposition of wind-blown dust sourced from the continental
interior. Such surface P enrichments are also reported from the Ever-
glades (Craft and Richardson, 1993, 2008), Sweden (Damman, 1978)
and Indonesia (Weiss et al., 2002).

Surface P enrichment is generally attributed to nutrient cycling.
Damman (1978) and Malmer (1988), observing that P uptake by the
contemporary bog flora greatly exceeds annual atmospheric receipts,
propose a biologically-driven process whereby upward translocation
of nutrients through the roots of surface vegetation sustains new
growth. Such a mechanism, essential to maintaining productivity in
ombrotrophic peatlands, is certainly in operation but may not be the
only factor since human activities have increased the throughput of
Fig. 4. Comparison of N:C, P:C and N:P depth profiles for average UK peat cores (Black squares, w
peats of Gorham and Janssens (2005) (dashed line, Minnesota; solid line, Newfoundland).
both N and P at regional and global scales since industrialisation (Neff
et al., 2008). Gorham and Janssens (2005) observed progressive deple-
tion of P (and N) content with distance from the cultivated Midwest,
and attribute this to transport of nutrients as a component of wind-
blown dust (Neff et al., 2008; Ravi et al., 2011; Van Pelt and Zobeck,
2007). Cheesman et al. (2012) demonstrate that P availability decreases
along a transect from a swamp-rimmed ombrotrophic wetland in
Panama towards its centre, consistent with declining lateral supply
(Tipping et al., 2014) with distance from neighbouring forest ecosys-
tems. In the UK, increased inputs of P via dust and biological debris
may be especially prevalent, due both to the proximity of many of its
bogs to agricultural land, and to the magnitude of agricultural intensifi-
cation over recent centuries. Additional work with other element con-
centrations, including dust proxies for example, is needed before any
generalisations may be confidently deduced.

The situation with N is more complex. Nine of the 15 UK sites show
increased N (andN:C ratios) in the surface peat, N:C on average increas-
ing from 0.015–0.029 in the interval 50–125 cm to 0.035–0.045 in the
interval 0–20 cm. This accords with some previous studies. Thus, long
records from Minnesota and Newfoundland (Gorham and Janssens,
2005), though with higher mean N:C than our peats, show the same
tendency to increase towards the peat surface. Malmer and Wallén
(2004) report an increase in N:C ratio over the last 1000 years of peat
accumulation at Store Mosse (Sweden). However, our results contrast
with those of Wang et al. (2015) who find an average decrease in N:C
from 0.034 to 0.035 in deeper peat to 0.023 to 0.025 at 0–50 cm in a
study of N400 peat profiles from Ontario. At another site in Canada
(Alberta), Kuhry and Vitt (1996) report a still larger reduction, with
N:C falling below 0.01 in the upper 50 cm, but exceeding 0.03 below
50 cm.

The more variable character of the N enrichment reflects a greater
number of driving factors. As with P, plant cycling has been shown to
transport mineralised N to the bog surface (Vile et al., 2014) contribut-
ing to surface enrichment. However, it is generally regarded that differ-
ences in decay rates of C and N in peat have a greater influence over the
N concentration. Thus, Malmer and Wallén (2004) attributed a strong
increase in N:C in recent peat at a Swedish bog to preferential decay of
C (exported as CO2) following a recent change in the peat hydrology
that increased the oxygenation of the acrotelm. However, this site
appears to be unusual. In the absence of recent disturbance, the extent
ith SE bars), average Ontario peat (Wang et al., 2014, diamonds), and two North America
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Table 4
Variation in N, P and C concentration (wt%) with depth in UK ombrotrophic peat sequences. The JHI data has been averaged because of the low number of samples at each site, and the
over-representation of Scottish peats had each of the 10 sites been included. Full data for JHI sites in S1. The italics were to distinguish N (nitrogen) from N (the number of observations).

0–125 cm 0–20 cm 20–50 cm 50–125 cm 125 cm - base

Mean Range Mean ± SE Range Mean ± SE Range Mean ± SE Range Mean ± SE Range

Dartmoor N 1.53 ± 0.06 0.80–2.33 2.13 ± 0.07 1.89–2.33 1.71 ± 0.07 1.27–2.03 1.31 ± 0.06 0.80–1.67
P 0.027 ± 0.002 0.014–0.080 0.051 ± 0.009 0.024–0.080 0.030 ± 0.001 0.021–0.033 0.021 ± 0.001 0.014–0.027
C 56.9 ± 0.3 52.3–58.9 55.0 ± 1.0 52.3–58.6 57.3 ± 0.2 56.4–58.4 57.2 ± 0.3 54.3–58.9
N 39 6 9 24

Migneint N 1.99 ± 0.07 1.29–2.67 1.89 ± 0.08 1.57–2.09 2.25 ± 0.09 1.79–2.67 1.90 ± 0.10 1.29–2.64
P 0.059 ± 0.004 0.026–0.113 0.094 ± 0.006 0.082–0.113 0.060 ± 0.005 0.042–0.083 0.044 ± 0.005 0.026–0.077
C 55.8 ± 0.6 49.0–61.4 50.4 ± 0.4 49.0–51.5 53.9 ± 0.4 52.3–55.2 58.3 ± 0.5 53.2–61.4
N 35 6 9 20

Moor House N 1.37 ± 0.03 0.97–1.91 1.63 ± 0.06 1.48–1.91 1.51 ± 0.04 1.32–1.68 1.26 ± 0.03 0.97–1.55 1.21 ± 0.02 1.00–1.38
P 0.033 ± 0.002 0.016–0.078 0.062 ± 0.004 0.047–0.078 0.033 ± 0.001 0.028–0.038 0.025 ± 0.001 0.016–0.035 0.022 ± 0.002 0.018–0.040
C 54.9 ± 0.4 50.6–58.5 52.0 ± 0.2 51.1–52.4 53.0 ± 0.4 50.6–54.2 56.3 ± 0.2 54.1–58.5 59.1 ± 0.2 57.3–60.3
N 39 6 9 24 18

Glensaugh N 1.25 ± 0.06 0.94–2.06 1.81 ± 0.09 1.50–2.06 1.25 ± 0.07 1.04–1.65 1.06 ± 0.02 0.94–1.25
P 0.035 ± 0.004 0.019–0.093 0.077 ± 0.007 0.053–0.093 0.030 ± 0.003 0.021–0.047 0.020 ± 0.002 0.019–0.025
C 55.5 ± 0.3 51.8–57.7 52.8 ± 0.4 51.8–54.5 55.3 ± 0.2 54.4–56.5 56.6 ± 0.2 55.0–57.7
N 32 6 9 17

Forsinard N 1.58 ± 0.07 0.93–2.40 2.00 ± 0.17 1.25–2.39 1.91 ± 0.10 1.50–2.40 1.35 ± 0.06 0.93–1.98 1.12 ± 0.02 0.95–1.45
P 0.023 ± 0.002 0.010–0.068 0.048 ± 0.006 0.032–0.068 0.025 ± 0.003 0.014–0.045 0.017 ± 0.001 0.010–0.029 0.020 ± 0.001 0.012–0.025
C 57.0 ± 0.3 49.8–59.5 52.9 ± 1.0 49.8–57.0 57.1 ± 0.4 54.6–58.2 58.0 ± 0.1 56.8–59.5 59.0 ± 0.1 57.4–60.6
N 39 6 9 24 43

JHI N 1.66 ± 0.08 0.88–2.87 1.78 ± 0.11 1.11–2.42 1.82 ± 0.21 1.17–2.87 1.45 ± 0.12 0.88–2.23
P 0.058 ± 0.005 0.018–0.130 0.080 ± 0.009 0.032–0.130 0.058 ± 0.009 0.024–0.108 0.036 ± 0.004 0.018–0.058
C 48.8 ± 0.5 44.3–57.1 46.8 ± 0.4 44.7–49.6 47.9 ± 0.8 44.3–52.1 51.5 ± 0.9 47.0–57.1
N 32 12 9 11

UK N 1.56 ± 0.10 1.87 ± 0.07 1.74 ± 0.14 1.39 ± 0.12
P 0.039 ± 0.006 0.069 ± 0.007 0.039 ± 0.006 0.027 ± 0.004
C 54.8 ± 1.2 51.7 ± 1.1 54.1 ± 1.4 56.3 ± 1.0
N 6 6 6 6

Fig. 5. Prediction of N concentration from the peat P concentration and climate (MAP)
using the empirical model of Toberman et al. (2015) shows good agreement with the
new peat profile sites (5 new UK cores, JHI combined as in Table 4, filled diamonds).
Five peat profiles from North America (Gorham and Janssens, 2005, open diamonds),
and the Ontario data of Wang et al. (2014, 2015), also agree well with the model. For
the data of Wang et al. (2014, 2015) N and P concentrations were calculated from the re-
portedN:C and P:Cdata assuming C=55%. Linear regression of observedNonmodelledN
for all 12 sites is statistically significant (F = 12.9, p = 0.004, and R2 = 0.54), with slope
not significantly different from 1.
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of peat decay generally increases with depth such that preferential
decay ismore commonly invoked to explain surface depletion in N rath-
er than surface enrichment. To a first order, the intensity of peat decay
varies with the duration that peat remains within the periodically oxy-
genated acrotelm (Malmer and Wallén (2004), and thus is expected to
show periodic fluctuations in response to changing climate (Barber
et al., 1994) and peat drainage (Blackford and Chambers, 1991). It is
on this basis that Wang et al. (2015) attribute their observed increase
in N concentrationwith depth in the peat to preferential loss of C during
peat decomposition. The relative importance of decay processes and
supply factors in governing the N concentration and N:C ratios in UK
peats cannot be readily estimated. Hydrologically moderated peat
decay (Clymo, 1984; Malmer and Wallén, 2004) will have played a
role that varies from site to site, and certainly our findings are not con-
sistentwith the effect reported byWang et al. (2015) for their large On-
tario data set.

In addition to recycling and preferential decay, recent human-
induced increases in the external inputs of both N and P (Neff et al.,
2008) may also have impacted peat N. Malmer (1988) showed an asso-
ciation between N deposition and N content of Sphagnum mosses, and
by inference in the peat too, and it is reasonable to expect that this signal
may be present in the peat record. However, a straightforward addition
of enhanced N supply to the peat need not occur, as evidence exists
(DeLuca et al., 2008) that N deposition may substitute for rather than
add to existing N fixation. Toberman et al. (2015) found no association
of N concentration with N deposition flux in a meta study of surface
peats across the world. Instead, they found a statistically significant as-
sociation of N concentration with mean annual precipitation and P con-
centration, which they interpret as indicating a role for P in N fixation,
and consequently, C fixation.

An association of N concentration with MAP and P concentration is
also observed in our UK peat cores (log transformed, r = 0.72 and
0.49 for P andMAP, respectively, p b 0.005 in both cases). Amultiple re-
gression analysis confirms independent contributions from both P and
MAP (r2 = 0.55, p b 0.005, and t = 13.7 and 4.6 for log P and log MAP,
respectively). Applying the multiple regression model of Toberman
et al. (2015) (simplified model, log N = 0.35 log P + 0.44 log
MAP + 0.59) to predict N% yields good agreement with the observed
values (Fig. 5). The Ontario data of Wang et al. (2014, 2015) plot close
to the UK data, with slightly low predicted N. The five North American
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Table 5
Nutrient stoichiometric ratios in UK peats compared to other ombrotrophic bogs
worldwide.

Location C:N C:P N:P

Top 50 cm UK mean 31.7 1468 45.4
Forsinard 29.4 2060 67.3
Glensaugh 38.9 1471 35.4
Moorhouse 34.1 1317 38.3
Migneint 25.3 794 31.7
Dartmoor 30.8 1700 54.1
Global surface peat (0–25 cm)a 27.1
Ontario, averageb 42.0 892 24.5
Minnesota (0–25 cm)c 38.1 913 24.0
Patagoniad 61.1 1695 36.0
Mean 37.5 1355 37.6
SE 3.9 162 4.8

Full core UK mean 41.2 2160 50.9
Forsinard 46.3 3091 67.8
Glensaugh 46.8 2067 42.3
Moorhouse 43.5 2103 47.5
Migneint 29.5 1129 37.2
Dartmoor 40.1 2411 59.7
Mer Bleu, Ontarioe 38.8 1942 50.0
Ontario, averageb 33.0 1338 46.4
RLP Minnesotaf 64.9 2000 30.8
LPR Québecf 57.0 2208 38.8
GSH Mainef 58.9 2947 50.0
CMV Newfoundlandf 81.3 4727 58.2
EGR Labradorf 65.4 2944 45.0
Mean 50.5 2409 47.8
SE 4.4 273 3.0

a Toberman et al. (2015) (Average of country means).
b Wang et al. (2015).
c Bridgham et al. (1998).
d Knorr et al. (2015).
e Wang et al. (2014).
f Gorham and Janssens (2005).
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sites of Gorham and Janssens (2005) also show good agreement with
the Toberman et al. (2015)model, but with higher predicted N. This as-
sociation between N and P could arise from the elements have a com-
mon source, such as biological supply in the form of bird faeces or
plant debris, or because P plays a key role for N fixation as concluded
by Toberman et al. (2015) for surface peat.

4.3. Long-term peat nutrient budgets

Wang et al. (2015) reported that the long-term rate of accumulation
of P in peat bogs is similar to atmospheric receipts in their Ontario bogs.
At our 5 new LTLS sites the long-term rate of P accumulation (0.018 gP
m−2 year−1; Table 3) is slightly lower than the median UK value for
atmospheric deposition over the last few decades as estimated from de-
position collectors (0.027 gP m−2 year−1, Tipping et al., 2014) whereas
the apparent surface accumulation rate, which is presumably enhanced
by plant recycling of nutrients, is rather higher (0.047 gP m−2 year−1).
However, this comparison does not take into account leaching of P from
peat. Peats are known to lose DOC in runoff, and though not measured,
must also be losing DON and DOP. Typical export rates of DOC from UK
peatlands lie in the range of 5 to 30 gCm−2 year−1,with ameanvalue of
20 (Buckingham et al., 2008; Gibson et al., 2009), which when com-
bined with a rounded estimate of 1000 for the C:P ratio of dissolved or-
ganic matter (Tipping et al., 2016) yields P loss in the range
0.02 g m−2 year−1. Long-term P export via this pathway would thus
slightly exceed our long-term burial rate estimate. Combined, these yield
a long-term P loading in Britain in the order of 0.038 gP m−2 year−1,
a value similar to the estimated recent P deposition. This result is consis-
tent with the conclusion of Wang et al. (2015) that in the long term peat
bogs are in balancewith their atmospheric receipts. At present such a con-
clusion rests on uncertain information, not just of the peat burial fluxes
and losses, but also with regard to the atmospheric P loading. The atmo-
spheric supply estimate of Tipping et al. (2014) is based on deposition
samplers that purposefully exclude P supplied from some biological
macro-aerosols such as bird faeces, a contribution of unknownmagnitude.
Lateral exchange of P from neighbouring more enriched landscape will
certainly be taking place (Tipping et al., 2014), but at rates that are not
known.Althoughdifficult toquantify, future efforts tomeasure contempo-
rary P deposition that account for these sources and losses should be a pri-
ority for the community, including estimation of short range atmospheric
transfer of P from agricultural to natural ecosystems.

A similar approach may be taken with N burial in the peat profile.
Our UK average long-term N burial is 0.7 g m−2 year−1, and N export
via DON in runoff will be of the same order (0.5 based on N:C being
41:1, range 0.1 to 0.7 g m−2 year−1). If we assume that N:P for pre-
industrial atmospheric deposition is 10:1 (rounded average of dust -
Lawrence and Neff, 2009; vegetation and litter - Wang et al., 2015; for-
est fire smoke – Zhang et al., 2002), then based on the long-termmean
atmospheric P loading calculated above we can expect 0.38 gN m−2-

year−1 from atmosphere. This leaves 0.8 g m−2 year−1 to be supplied
through biological N fixation, rather lower than has been measured in
Alberta peat bogs (Vile et al., 2014; 1.7 to 3.4 g m−2 year−1). If
denitrification was active in peat bogs prior to modern N deposition,
then our estimate for average long-term N fixation would be
proportionately higher. The budget calculations thus concur with the
interpretation of Toberman et al. (2015) that correlation of N and P in
peat is indicative of long-term N-fixation.

4.4. A global perspective

The long-term C, N and P burial rates (Table 3) are similar to compa-
rable studies elsewhere in theworld. Clvmo et al. (1998)reported a global
average for carbon accumulated in the catotelm of 25 g C m−2 year−1.
Wang et al. (2014) reported 29.5 ± 2.1 gC m−2 year−1 (mean ± SE),
0.87 ± 0.01 gN m−2 year−1 and 0.017 ± 0.002 gP m−2 year−1 for the
long-term apparent accumulation rates at Mer Bleue (Ottawa), and
Wang et al. (2015) propose similar rate for N and P from their large On-
tario data set. Applying the Ontario C:N ratio to an assumed C storage of
500 Pg in northern peatlands (based on Yu et al., 2010; Loisel et al.,
2014), Wang et al. (2015) estimate N storage to be 18.5 Pg. Applying
the same reasoning but using our higher C:N ratio (the average of all
site values, Table 5), we find 8 to 12 Pg N, values more in line with the
8 to 15 Pg range estimated by Limpens et al. (2006) and Loisel et al.
(2014). However, our observation that N concentration is associated
with both P concentration andMAP suggests that estimation of global av-
erageNfluxes should take both climate and P supply into account. Apply-
ing the same approach to P, we find 0.21 Pg P in northern peatlands, very
much lower than the 0.34 Pg estimated from Ontario stoichiometry
(Wang et al., 2015).

The broad similarity in these estimates of long-term rates is en-
couraging in the context of global modelling, and suggests that a bio-
geochemical model of long-term (centuries to millennia) nutrient
accumulation based on UK data may be applicable to boreal
peatlands across northern latitudes. However, our results also sug-
gest that spatial and temporal variations in external P supply to
peatlands might lead to systematic variation in N and C fixation. In
particular, recently enhanced atmospheric supply of nutrients may
impact C uptake and burial by peat bogs, though parallel changes in
the species composition of bog in response to nutrient pollution
complicates this picture. Biogeochemical modelling is needed to fur-
ther interpret these data; most importantly to resolve the issue of
nutrient impacts on C accumulation.

5. Conclusions

• Long-term C accumulation in UK ombrotrophic peat estimated to be
25.3 ± 2.2 g C m−2 year−1, similar in magnitude to values reported
from elsewhere in the world.
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• We report the first estimates for UK peat of long-term accumula-
tion rates of N (0.70 ± 0.09 g m−2 year−1) and P (0.018 ±
0.004 g m−2 year−1), the value for N being rather lower than re-
ported in the large Ontario dataset of Wang et al. (2014, 2015).

• N and P concentration profiles show higher values in the surface
peat, consistent with biological recycling of nutrients. More work
is needed to ascertain whether recent increases in atmospheric nu-
trient loading have also contributed.

• N and P concentrations in peat are strongly associated. A published
regression model of N concentration on P concentration and mean
annual precipitation, based on a global data set of surface peat
samples, yields good agreement with peat cores sites in the UK
and North America. This is consistent with a key role for P in N
and C fixation.

• The long-term average N:P ratio of UK peat (51:1) is considerably
higher than in both bog vegetation and unpolluted atmospheric
deposition, also consistent with substantial role for biological N
fixation in peat bogs.
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