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Anticoagulant rodenticides, mainly second generation forms or ‘SGARs’, dominate the global
market for rodent control. Introduced in the 1970s to counter genetic resistance in rodent
populations to first generation compounds such as warfarin, SGARs are extremely toxic and
highly effective killers. However, their tendency to persist and accumulate in the body has led to
widespread contamination of terrestrial predators and scavengers. Commercial chemicals which
are classified by regulators as persistent, bio-accumulative and toxic or ‘PBT’ chemicals and
which are widely used with potential environmental release, e.qg. DDT or PCBs, have been
removed from commerce. Yet, despite consistently failing ecological risk assessments, SGARs
remain in use because of demand for effective rodent control options and lack of safe and
humane alternatives. Although new risk mitigation measures for rodenticides are now in effect
in some countries, contamination and poisoning of non-target wildlife is expected to continue.

Here we suggest options to further attenuate this problem.

Keywords: rodenticide, non-target wildlife, risk mitigation, anticoagulants, polluter pays

principle



Humans have occupied a large proportion of the globe’s biodiversity hotspots, and in the
process many native species have been displaced and replaced with those that can tolerate or
adapt to urban or agricultural landscapes (McKinney 2002). Among the most human adapted
species are rodents, particularly rat (Rattus) and mouse (Mus) species, which have been
cohabiting with humans since Neolithic times (Reperant et al. 2013). There is a long history of
humans attempting to control commensal rodents and contain the associated risks to human
health from rodent borne diseases, destruction of food stores, and damage to infrastructure
and other property. Recent estimates of the global impact of rodent pests are as high as $50
billion annually (Eason et al. 2010). Although many creative techniques have been devised to
suppress rodent populations, for the past 50 years, as with most pest control, chemical
biocides, primarily anticoagulant compounds, have been the dominant option worldwide. Once
typified by the “blood thinning” drug and rat poison, warfarin, this prototypic first generation
anticoagulant (FGAR) compound has increasingly been replaced by more toxic and persistent
analogues, or second generation anticoagulant rodenticides (SGARs). Although highly effective,
these chemicals are not specific to rodent pest species. Each year U.S. poison centers receive
reports of rodenticide exposure by humans, mainly children, and ingestion by companion pets,
numbering in the tens of thousands (US EPA 2011), and human exposures have been
documented in Europe (Berny et al. 2010). SGAR contamination and poisoning of non-target
wildlife, particularly scavenging and predatory species such as raptorial birds, foxes and
weasels, which also provide important ecosystem services including control of rodent
populations, is increasing in degree and scale (Rattner et al. 2014). As the extent of the
environmental impact of anticoagulant usage became increasingly apparent over the past
decade, agencies in North America, Europe and elsewhere have wrestled with the regulatory
challenge of balancing the demand for pest control products with mitigating the impacts on

non-target organisms.

Widespread use, widespread contamination

Food production, storage or transport facilities almost anywhere in the world may be
commonly ringed with bait stations containing primarily SGARs. Less obvious are those placed

into sewers, waste disposal and transport operations, anywhere with human food or wastes.



Many homeowners and apartment building managers regularly deploy rodenticide baits in a
prophylactic manner (US EPA 2011). Sales and use data are difficult to obtain, considered
confidential business information, but estimates are in the hundreds of millions of dollars

annually in the U.S. and European countries, for example (Rattner et al. 2014).

Compared to major plant protection products which are commonly applied by tractor or
aircraft over large areas in attempts to locate and kill pests, the actual quantity of rodenticide
active ingredient used is minor because of the extreme acute toxicity, particularly of the SGARSs,
and the targeted nature of their deployment. Although there are some exceptions, such as
field application of loose baits into “artificial plowed galleries” in France to control water voles
(Arvicola terrestris) (Courdassier et al. 2012) and broadcast usage in New Zealand for invasive
mammals (Blackie et al. 2014), the major use of rodenticides is via bait stations. These are
deployed to attract target species which then disperse after consuming the poison, and can
become food of many avian and mammalian predators and scavengers (Fig. 1). Ironically, those
predators are also the primary natural agents of control. Many predators will switch their diets
and prey on rats and commensal birds which often are the most common prey available in
human dominated landscapes (Shore et al. 2003, Riley et al. 2007, Hindmarch and Elliott 2014,
201543, 2015b).

Since the first reports of anticoagulant residues in British raptors (Newton et al. 1990), SGARs
have become contaminants of avian and mammalian predators and scavengers in jurisdictions
worldwide (Table 1), including national parks remote from intensive human activities (Gabriel
et al. 2012). Many questions still remain, and further research is needed to quantify what
proportion of exposed animals are acutely poisoned, the importance of sub-lethal effects such
as increased clotting times, and whether there are any population level impacts (Thomas et al.
2011, Coeurdassier et al. 2012, Jacquot et al. 2013, Rattner et al. 2014, Hindmarch and Elliott
2015a). The fact remains, however, that there are now relatively few anthropogenic chemicals,
other than SGARs, which are widespread contaminants of top predators, and are lethal
toxicants. It is important to recognize that chemicals which are lethally toxic to breeding adult

birds at ambient environmental exposure have had some of the greatest impacts on



populations of long-lived ‘k-selected’ top predators, more so in many instances than more
subtle reproductive toxicants. Classic examples include the cyclodiene insecticide, dieldrin, in
British raptors (Newton 1990), lead from hunters’ projectiles in California condors (Finkelstein
et al. 2012), and most spectacularly, the veterinary drug, diclofenac, in Asian vultures (Oaks et
al. 2004). By comparison, POPs (persistent organic pollutants) such as brominated flame
retardants and perfluorinated surfactants, have received much more attention from scientists
and regulators, and some are now scheduled for listing under the Stockholm Convention of
Persistent Organic Pollutants, primarily based on their persistence and bioaccumulative traits
and long range transport in the environment
(http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx).
However, in contrast to SGARs, currently there is sparse evidence for significant effects of
environmentally relevant concentrations of those compounds on wildlife populations, including
the top predators which accumulate the greatest concentrations (e.g. Henny et al. 2009, Cesh
et al. 2010, Harris and Elliott 2011, Fair et al. 2013). SGARs are lethal toxicants which are
regularly deployed in a manner to provide a direct pathway and impact on rare and valuable

top predators (Thomas et al. 2011, Gabriel et al. 2012, Rattner et al. 2014).

Although wildlife managers are concerned about the impact of SGARs on non-target wildlife,
somewhat ironically these chemicals, particularly brodifacoum, have been widely used across
the globe in conservation efforts to remove introduced rodents from previously predator-free
islands. Entrenched populations of invasive rodents, principally R. norvegicus, have eliminated
endemic bird and mammal species from some islands and severely impacted breeding seabirds
on many others (Howald et al. 2007). On some islands, populations of other predators are
limited but on islands along the Pacific coast of Canada and the U.S., bald eagles (Haliaeetus
leucocephalus), for example, have been poisoned during rat eradication efforts (Howald et al.
1999). Like pesticide regulators, wildlife managers have opted to accept the risks of local
contamination and impact on non-target wildlife because of the effectiveness of
anticoagulants, and their cost efficiency over other options. Until alternative and safer control
rodenticides are developed, it seems likely that such conservation use of SGARs will continue

(e.g. Blackie et al. 2014).



Pathways forward

New risk mitigation measures for anticoagulant use are now in effect in Canada
(http://www.hc-sc.gc.ca/cps-spc/pubs/pest/_fact-fiche/restriction-rodenticides/index-
eng.php), and more recently in the U.S. after a lengthy litigation process with one manufacturer
(http://www?2.epa.gov/rodenticides/canceling-some-d-con-mouse-and-rat-control-products).
Point-of-sale measures restrict household users to first generation anticoagulants, or other
rodenticides with alternate modes of action, such as the neurotoxin, bromethalin. Packages are
now limited in size, and bait formulated into rigid blocks and sold with or in a tamper-resistant
bait station. SGARs will, however, continue to be registered federally in the U.S. and Canada for
use in and near buildings, waste receptacles and fence lines in agricultural settings, by licensed
applicators. Again data are limited on commercial sales, but one Canadian jurisdiction reported
steady or increasing sales of commercial SGAR products over the period 1995 to 2009 (Elliott et
al. 2014). The more toxic compounds, brodifacoum and difethialone, are now confined to
indoor usage with only the less toxic and persistent SGAR, bromadiolone, permitted for outdoor
application. Those measures should reduce exposure of non-targets to the highly toxic SGARs.
However, the potential continues for movement of what is technically indoor use of
brodifacoum, consumed by rodents to the exterior of unsealed buildings in these exposed
rodents, to put predators at risk (Elliott et al. 2014). There is, therefore, a need to continue to

monitor AR exposure and risk in non-target populations.

The U.S. state of California has gone further than the federal initiative. In California, the SGARs
brodifacoum, bromadiolone, difenacoum and difethialone have been designated as Restricted
Materials, and can only be obtained and applied by a Certified Pesticide Applicator under
permit from a County Commissioner. Above ground bait may be placed no more than 50 feet
from a man-made structure unless there is a feature that harbors or attracts targeted pests
(http://www.cdpr.ca.gov/docs/legbills/rulepkgs/13-002/13-002.htm). In addition, the
California Food and Agriculture Code (Section 12978.7) now prohibits the use of these SGARs in

state parks, wildlife refuges and conservancies.



In the European Union (EU), SGARs are recognized as posing significant risk to birds and non-
target mammals, but continue to be authorized for use as biocides to protect public health and,
in some Member States, as plant protection products. Several Risk Mitigation Measures
(RMMs) have been suggested and applied in some Member States by their authorities that
deliver marketing authorizations (Berny et al. 2014). Because RMMs are set by each individual
Member State, a single commercial product may have more than one set of RMMs attached to

its marketing authorizations across Europe.

The step taken in North America to remove SGARs from the domestic retail market should
primarily reduce risk to humans, particularly children, and companion pets
(http://www?2.epa.gov/rodenticides/canceling-some-d-con-mouse-and-rat-control-products).
Cross border e-commerce may provide a loophole to gain access to restricted pesticides,
including rodenticides in some jurisdictions. However, in the US, for example, online sales of
pesticides have been subject to the same controls as purchases from traditional stores for more
than a decade (US EPA 2004). Exposure of non-target wildlife to SGAR products should also
decrease in suburban and urban areas where domestic use is a major contributor. However,
non-targets, particularly predators and scavengers, may continue to encounter substantial
residues certainly of bromadiolone and potentially the more toxic SGARs in their diet from

continuing use in structural and food production and transport facilities.

Development of safe and effective rodenticides is a complex R&D challenge, although there are
some promising new advances (Blackie et al. 2014). Until such time, we suggest a three-
pronged approach that could further mitigate adverse non-target effects. The first of these,
which is already being implemented by some corporations and jurisdictions, is to rationalize
usage and deployment strategies. For decades, structural rodent management relied on
regular, prophylactic use of rodenticides to prevent infestations and meet health and safety
standards. Bait stations were required to be placed at specified intervals and were subject to
audit. The focus was on placement of bait, rather than testing efficacy in rodent control.
Recently in the U.S, however, under the EPA’s Pesticide Environmental Stewardship Program

(PESP), some major food and “Big Box” retailers, have moved to greatly reduce rodenticide



usage in their food supply chains
(http://www.epa.gov/pestwise/pesp/members/strategies/walmart.pdf). That approach
essentially employs the long established principles of Integrated Pest Management (IPM) to
monitor pest presence and apply pesticides only as needed. It also takes the concept further to
develop, for example, ‘Go Green’ programs which have used data on ecology and behavior of

rodents to develop more effective control programs.

A cautionary note, however; while there are data on cost savings to corporate and other end
users from such IPM-based reductions in usage (Arjo et al. 2009), it is much less clear whether
changing from prophylactic to evidence-driven bait deployment has resulted in significant
reductions in the availability of poisoned rodents to predators and scavengers. There is some
evidence that restrictions on field use of anticoagulants in France resulted in both decreased
amounts of products applied, and in increased population densities of the red fox (Vulpes
vulpes) following periods of reduced rodenticide usage (Jacquot et al. 2013). We are not aware
of other studies that quantified the mitigating efficiency on actual risks. For other types of
pesticide application, such quantification was essential to ensure implementation of mitigating
measures, for example, effectiveness of buffer zones and the use of specific spray nozzles to
minimize spray drift of pesticides into adjacent waterbodies (e.g. de Snoo and de Wit 1998).
That has resulted in sophisticated models to assess spray-drifts and is implemented in guidance
of pesticide use and its further regulation and labeling (Hewitt 2000). Without such quantitative
evidence, justification for specific IPM measures may encounter skepticism and opposition from

some stakeholders.

The second measure would be consideration for the further development and implementation
of outreach and educational stewardship programs by industry and government. Such
programs are already in effect in areas of Europe (http://www.cefic.org/Documents/About-
Us/Industry%20sectors/EBPF/Guideline-on-Best-Practice-in-the-Use-of-Rodenticides-in-the-
EU.pdf), and arguably the most developed is the stewardship scheme commencing in the UK in
2016 (http://www.thinkwildlife.org/stewardship-regime/). That has been developed and led by
an industry consortium (http://www.thinkwildlife.org/about-crru/) working with the relevant

Competent Authority and has the overall aim of reducing exposure in non-target wildlife while



ensuring efficacious rodent control, including areas where there is resistance to some SGARs.
The program, underpinned by the development and dissemination of a code of best practice
(http://www.thinkwildlife.org/crru-downloads/crru-uk-code-of-best-practice/), involves
multiple activities, including approval and certification of training courses and a requirement of
proof of competence at the point of sale of professional products. A further major component
is monitoring of outcomes, with data assessed by the Competent Authority. Such monitoring
includes periodic survey of the knowledge, attitudes and practices of all professional
rodenticide users, independent monitoring of changes in exposure (as measured from tissue
residues) in a sentinel non-target species, the barn owl Tyto alba (Shore et al. 2014), and
evaluation of the breeding success of selected barn owl populations in relation to rodenticide
use. Top predators, such as the barn owl, provide broad ecosystem services, including

regulation of rodent populations.

A third measure might entail compensation for collateral damage of predatory birds and
mammals, and could be considered, although the analogy is not perfect, as a ‘Paying the Piper’
approach. The cost of impacting rodent-regulating allies, including raptors, weasels, canines
and felids, could be borne generally by users of the products, not the commons (viz. imposition
of a form of the polluter pays principle). The concept is widely recognized and is simply that
those who damage or deplete the environment should bear the costs. Applications of the
concept include having resource extractors pay for the costs of not only waste disposal, clean-
up and restoration, but also the costs of enforcing the regulations. That is effectively a form of
paying for ecosystem services (Engel et al. 2008). Other examples include payment of deposit
fees on beverage containers, and ecofees on car batteries, tires and other products (Driedger
2001). Many agree that the principle is inherently sound and logical, both ‘legally and
economically’ (OECD 2008); differences surround defining who or what is impacted by the
pollution and, therefore, who should be compensated (Driesen 1997). Some of the arguments
about the principle are fundamentally rooted in differences in political philosophy, related to
views on private property rights, and the contention that owners of private property and
therefore resources, make better stewards (and therefore conservationists) than the commons
or public (Cordato 2001). In the majority of political jurisdictions, however, the reality is a mix
of public and private ownership of land and resources, and wild plants and animals are

considered to be public resources and the property of the state or commons (Geist et al. 2001).



There are already far-sighted examples of where the polluter pays approach in the form of fees,
levies or responsibility for education and monitoring of impacts have been applied to
management and regulation of rodenticides. California set a precedent by implementing an
eco-fee system at point of sale (http://www.vpcrac.org/about/surcharge-legislation/), whereby
a fee of $ 0.50 per Ib (227.5 g) is added to the cost of vertebrate pest control products (e.g.
anticoagulant rodenticides). Fees are used mainly for research on development of alternative
products, improvements in the safe use of existing products, and to investigate toxicity and
environmental effects. It also should be recognized as discussed above, in the UK, SGAR
manufacturers and suppliers aim to pay what can be considered effectively a fixed eco-fee by

developing, leading and funding a comprehensive SGAR stewardship program.

We suggest that broader application of such a ‘Paying the Piper’ approach, in concert with
rationalized deployment and educational outreach, could help offset the impact of the ongoing
global use of SGAR compounds. Fees might be used more broadly, such as for compensation
and mitigation programs for the affected predators, in the form of active management of both
populations and habitat. There are precedents for use of money in this way obtained in the U.S.
from Natural Resource Damage Assessments of oils spills and contaminated sites
(http://www.epa.gov/superfund/programs/nrd/primer.htm). The most recent and well-
publicized example is the settlement between the U.S. federal government and BP to
compensate for injury and damage to resources resulting from the Deep Water Horizon oil spill

(https://www.doi.gov/deepwaterhorizon).
Conclusions

Given the likelihood that anticoagulant rodenticides will continue to be deployed widely across
the globe to suppress pest rodent populations, then some ongoing impacts on non-target
wildlife seem inevitable. Here we suggest that in addition to recent risk mitigation measures
that have been imposed in some jurisdictions, other activities might be implemented. Namely,
1) we suggest industry consider the implementation of validated Integrated Pest Management

procedures to reduce and optimize use of products, 2) user groups adopt effective education



and outreach programs for applicators and the public, and 3) the consideration of eco-fees on
rodenticide sales, similar to those in effect in California
(http://www.vpcrac.org/about/surcharge-legislation/). Such fees could be used to raise funds
for research into both development of new products, investigating and monitoring select non-
targets species, and to provide compensation for habitat or mitigation measures for impacted
non-target populations. Given that governments elsewhere in the world rely heavily on the U.S.
and Europe for leadership in chemical regulations, the adoption of these proposed measures

could have broader implications.
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Figure 1. Rodenticide Pathways to Wildlife. Tamper-resistant bait stations are required in North
America (but not in the EU) for outdoor application of rodenticides, although other small
organisms can also enter and feed. When used as a crop protection product or for conservation
use in some jurisdictions to eradicate pest mammals, loose pellet or bait blocks may be used
without bait stations. Exposure patterns are complex with many species potentially
encountering a mixture of primary, secondary or even tertiary exposure. Bold arrows indicate

most likely routes of transfer.



Table 1. Select examples of bioaccumulation of anticoagulant rodenticide residues in liver of
diurnal and nocturnal birds of prey from locations worldwide (% samples with liver residues of

at least 1 SGAR).

Species Sample Size Location % incidence Reference

Various raptors 265 New York State 49% Stone et al. 2003

Various raptors 30 France 73% Lambert et al.
2007

Tawny Owl 172 UK 19% Walker et al.
2008a

Red kite 23 UK 74% Walker et al
2008b

Various owl 164 Western Canada 70% Albert et al. 2010

species

Various raptor 161 Massachusetts, 86% Murray et al. 2011

species USA

Various raptors 96 California, USA 92% Lima and Salmon
2010

Great horned owl | 125 Canada 65% Thomas et al.
2011

Various raptors 430 Denmark 84 to 100% Christensen et al.
2012

Various species 129 Spain 28% Sanchez-Barbudo
etal. 2012

Various species 773 Scotland 47% Hughes et al.
2013

Various species 30 Norway 53% Langford et al.
2013

Barn owl 63 UK 87% Walker et al. 2014

Various raptors 104 Canary Islands 61% Ruiz-Suarez et al.

2014
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