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Full circumpolar migration ensures evolutionary
unity in the Emperor penguin
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Defining reliable demographic models is essential to understand the threats of ongoing

environmental change. Yet, in the most remote and threatened areas, models are often based

on the survey of a single population, assuming stationarity and independence in population

responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic

species that may be at high risk continent-wide before 2100. Here, using genome-wide data

from the whole Antarctic continent, we reveal that this top-predator is organized as one

single global population with a shared demography since the late Quaternary. We refute the

view of the local population as a relevant demographic unit, and highlight that (i) robust

extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled

population size is rather indicative of local stochastic events, whereas the species’ response

to global environmental change is likely to follow a shared evolutionary trajectory.
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Antoine 1er, Monaco 98000, Principality of Monaco. 5 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of
Oslo, Postboks, Blindern, Oslo 1066, Norway. 6 Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy.
7 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. 8 British Antarctic Survey, Natutal Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK. 9 Ocean
Acoustics Laboratory, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven 27568, Germany.
10 Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. 11 Biophysics
Laboratory, Department of Physics, University of Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91054, Germany. 12 Department of Botany, and
Biodiversity Research, University of Vienna, Rennweg 14, Vienna A-1030, Austria. * These authors contributed equally to this work. Correspondence and
requests for materials should be addressed to R.C. (email: robin.cristofari@iphc.cnrs.fr) or to C.L.B. (email: celine.lebohec@iphc.cnrs.fr) or to E.T.
(email: emiliano.trucchi@ibv.uio.no).

NATURE COMMUNICATIONS | 7:11842 | DOI: 10.1038/ncomms11842 | www.nature.com/naturecommunications 1

mailto:robin.cristofari@iphc.cnrs.fr
mailto:celine.lebohec@iphc.cnrs.fr
mailto:emiliano.trucchi@ibv.uio.no
http://www.nature.com/naturecommunications


T
he rate of ongoing environmental change is now thought to
exceed the rate at which most species1, including humans2,
are able to adapt, with significant consequences for their

resilience and for ecosystem sustainability. Consequently, an
increasing number of studies seek to understand its impact on the
world’s ecosystems and to predict likely scenarios in response to
climate projections3, either in order to set up more efficient
conservation strategies, or as means to prompt urgent political
action4. One of the main difficulties of this task lies in the fact
that only a handful of species have been monitored for more than
a few decades, and, in most cases, our knowledge of their
demography is limited to local (that is, population-scale) and
short-term (that is, generation-scale) responses5. Yet, in order to
establish reliable projections, larger-scale population parameters
must be integrated into demographic models. Recent
developments in high-throughput sequencing allow the analysis
of genome-wide and population-scale data and provide a genomic
insight into the important demographic parameters that can be
used to accurately predict species responses to global change6.

Extracting species-wide projections from time-series collected
on a single population requires a precise understanding of how
local events relate to species-scale demographic processes. Indeed,
in several instances, it appeared that observations made on a
single breeding population could not be extended to larger areas.
The clear phenological shift in response to climate change
observed in a Great tit Parus major population in Southern
Britain7, for example, could not be observed under similar
conditions in the Netherlands8. In the Chinook salmon
Oncorrhynchus tshawytscha, survival rate in different
populations was shown to be correlated with different sets of
climate variables, thus preventing the definition of a single
response model for the species9. In such cases, the confounding
effect of local heterogeneity is often involved: for example, abiotic
habitat characteristics9, biotic interactor communities10 or the
dynamics of particular interspecific interactions11 can be locally
heterogeneous, and lead to population-specific responses to
climate change. Such observations present a challenge for the
establishment of large-scale climate envelope models12, but also
for the inference of species-wide demographic parameters from
single-population surveys. Indeed, two independent assumptions
need to be met: (i) that population dynamics are homogeneous in
space (that is, that the focal population does not behave
differently from the species as a whole), and (ii) most
importantly, that populations are demographically independent,
so that the observed local trends can be assumed parallel (and not
complementary) to trends in other populations.

Indeed, robust extrapolation requires populations to be closed
systems, in which coupling with other populations is minimal. In
other words, we need to establish whether the observed local
extinctions or fluctuations occur as a consequence of mortality
peaks, or massive dispersal events—or a combination of both.
Adult mortality has traditionally been proposed as the primary
factor (through changes in resource availability and subsequent
starvation13, or increased predation14), and several models have
been built on that basis15,16. Yet, these models mostly rely on the
explicit assumption that movement among populations is
negligible15, leaving adult and juvenile survival and breeding
output as the sole factors driving population dynamics. This
assumption, however, is not based on direct evidence, but is
rather motivated by technical difficulties in discriminating
emigration from mortality of tagged individuals16.

In a recent review, Chown et al.4 reported that despite the
pristine appearance of Antarctica, its species and ecosystems are
also under considerable threat. The Emperor penguin, the only
winter-breeding top-predator species of the continent, stands at
the forefront of the impacts of climate warming17, and recent

projections, based on the demographic trend observed at one
colony in Adélie Land in Eastern Antarctica, suggest that it may
be facing high extinction risk within the next 100 years15.
Emperor penguins breed nearly exclusively on sea ice: this
unstable habitat makes the species immediately sensitive to local
environmental changes. One of the northernmost colonies,
located on the Antarctic Peninsula, vanished during the last few
decades, as sea ice retreated in that area18. Other colonies
underwent a dramatic drop in breeding success and population
size shortly after a modification in local sea ice topology19. The
colony breeding on the tongue of the Mertz glacier, for instance,
disappeared after the 2010 calving of that glacier20, and the
following changes in local ice movements also had catastrophic
consequences on the nearby Pointe Géologie colony, where the
number of fledged chicks dropped from B2,500 in 2010 to B100
in 2014 (field observation). All of these events have in common
an identified proximal cause, usually linked to modifications in
the local sea ice landscape. Either increased sea ice forced adults
to make longer trips to reach open waters for foraging (with
subsequent breeding failure resulting from heightened energy
expenditures)19, or on the contrary glacier calving destroyed the
usual colony location20. On the other hand, recent empirical
evidence increasingly points to an important effect of dispersal in
the Emperor’s response to habitat disruption21. The rapid
recovery of the Emperor penguin population in Coulman
Island confirms this assumption and excludes a peak in adult
mortality followed by re-growth19. Recent satellite and ground
surveys have also shown that whole Emperor penguin colonies
are able to relocate with or without an identified cause20,22.
Finally, biologging experiments have emphasized the outstanding
distances regularly travelled by adult and juvenile Emperor
penguins23. Here, we demonstrate that dispersal is a fundamental
component of demography in this long-lived species, and that all
the world’s colonies behave as a single evolutionary unit sharing a
common demographic history. We also propose that dispersal
plays a central role in the species’ adaptive response to
environmental change at the continental scale. As such,
migration among colonies needs to be incorporated into
demographic models in order to achieve accurate projections.

Results
Genome-wide single-nucleotide polymorphism (SNP) typing.
We produced genome-wide restriction-site associated DNA
sequencing (RAD-sequencing) data24, yielding a total of 59,037
highly confident polymorphic sites using a consensus-calling
approach (Supplementary Fig. 1) for 110 individuals from 6
Emperor penguin colonies representing the whole species’ range
(Fig. 1a). To assess both fine- and large-scale processes, we
sampled three colonies in a tight cluster around Adélie Land, in
Eastern Antarctica: Eastern and Western Mertz colonies20 (‘MZE’
and ‘MZW’), as well as the Pointe Géologie colony, near Dumont
d’Urville research station (‘DDU’), all three within B300 km.
Two colonies were sampled in the Weddell Sea area, across the
continent: Atka Bay colony, near Neumayer research station
(‘NEU’), B6,500 km away from Adélie Land, and Halley Bay
colony (‘HAL’), B700 km further. Finally, one colony was
sampled from the Ross Sea area (Cape Washington, ‘WSH’),
B1,700 km from Adélie Land and B8,000 km from HAL.

A fully panmictic species. In striking contrast both with its
fragmented geographical distribution and with our current
knowledge about other marine predators25–27, the Emperor
penguin exhibits a remarkable degree of genetic homogeneity at
the continent scale. Pairwise fixation index (Fst) values, calculated
either as a function of allele frequency covariance between
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populations over variable sites, or from called genotypes using
Reich’s estimator28, are very low (Supplementary Table 1), and
only B0.5% of total variance is explained by colony structure
(as per analysis of molecular variance, or AMOVA). High genetic
mixing is supported by all classical descriptors of genetic variation
as estimated on our consensus SNP set. Hardy–Weinberg
equilibrium holds across 466 out of 590 scaffolds with all
colonies assessed together (out-of-equilibrium scaffolds
all have less than 5 SNPs). The mean homozygosity across all
individuals is low (F¼ 0.051±0.094) and does not exhibit any
inter-colony difference. The nucleotide diversity is low and highly
similar across all colonies (pDDU¼ 0.0026; pMZE¼ 0.0023;
pMZW¼ 0.0023; pNEU¼ 0.0023, pHAL¼ 0.0023; pWSH¼ 0.0026),
going along with the expectation for long-lived high-investment
species29, and despite very different colony census sizes. Finally,
Tajima’s D, as estimated for non-coding regions of the genome
from down-sampled haplotypes, does not deviate from neutral
expectations (DDDU¼ � 0.87; DMZE¼ � 0.66; DMZW¼ � 0.578;
DNEU¼ � 0.64; DHAL¼ � 0.68; DWSH¼ � 0.28). A neighbour-
net based on pairwise Hamming distances shows considerable
admixture between areas: individuals are trending towards
geographical sorting according to geographical location, but
inter-individual variability is largely dominant (Fig. 1b). Overall,
the variance explained by geographical structure is extremely low.
The first principal component analysis (PCA) component of
variance (Supplementary Fig. 2) shows a weak general pattern of
isolation-by-distance along the coast. Mertz colonies stand on the
one end, Pointe Géologie in the centre, and Atka Bay and HAL at
the other end, yet Ross sea samples do not stand out, as would be
expected in case of strong isolation-by-distance. However, this
pattern remains extremely marginal: the variance explained by
the first component barely amounts to 1.4% of the total variance,
and colonies cannot be distinguished on the basis of PCA.
Inference of population split topology based on allele frequency

variation among populations also supports this view: neutral
genetic differentiation from the ancestral population increases
eastward from WSH to MZE, but with numerous migration
events inferred between most colonies (Supplementary Fig. 3).
Finally, in clustering analyses performed either on called
genotypes or on genotype likelihoods, the preferred model
consistently had k¼ 1, that is, no inferred clusters in the
data. The very limited genetic drift observed between
colonies separated by several thousands of kilometres suggests
intense gene flow in this flightless seabird along the coast
of Antarctica.

Long-term demographic reconstruction. The existence of a
common, homogeneous gene pool for the entire species also
implies that all present-day colonies share a common demo-
graphic history. To test this, we reconstructed past Emperor
penguin population size changes in BEAST2 (ref. 30) under an
extended Bayesian skyline plot model. In accordance with our
expectation, reconstructions based either on a single colony or on
haplotypes sampled randomly from the whole continent converge
to the same estimate of effective population size and to the same
demographic history (Fig. 2a). All reconstructions show a mod-
erate increase in population size over the past 100,000 years (with
some uncertainty as to the precise dating of the beginning of the
expansion, because of the difficulty of precisely calibrating
mutation rates in a multilocus approach), regardless of the very
different present-day colony sizes (Fig. 2b). This trend is in
accordance with the findings of Li et al.31 based on a single-
genome pairwise sequentially Markovian coalescent approach.
Emperor penguin population size does not appear to have been
affected by the last glacial period. This is in stark contrast with the
sudden post-glacial population expansion of the Emperor’s sister
species, the King penguin A. patagonicus from the sub-Antarctic
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region32, a difference probably explained by the contrasting
breeding habitats and strategies of the two species, the King
penguin being dependent on year-round ice-free breeding sites.
The inferred long-term demographic stability also excludes past

genetic fragmentation, which is known to reduce effective
population size33. Thus, overall, the agreement of coalescent
histories at both local and global sampling scales supports the
idea that all extant colonies share the same genetic pool, and that
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the effects of neutral genetic drift between distant areas are
durably counterbalanced by the intensity of gene flow.

Importance of continent-wide dispersal. To quantitatively assess
the importance of continental dispersal, we modelled the inter-
colony migration rates required to generate such a level of genetic
admixture. We first co-estimated effective population size and
bidirectional migration rates between a subset of four colonies
representing our whole sampling area by simulating genetic data
under a continuous-time Markovian coalescent model against the
observed two-dimensional allele frequency spectra, using a com-
posite-likelihood approach34. Analysis was calibrated using a
RADome mutation rate as estimated for the King penguin32 and
a generation time of 16 years15,16. Effective population sizes all
converge to an average of B4,000 (from 1,120 to 7,640) breeding
individuals (detailed estimates in Supplementary Table 2 and
Fig. 1a), in keeping with the observed median size of extant
colonies35. Each colony is estimated to receive, on average, between
0.7% and B4.2% of its effective population size in migrants every
generation. Thus, if we were to scale these results to present-day
observed census size, a colony such as Pointe Géologie (DDU),
with a count of B7,000 breeding adults, would exchange, on
average, between B260 and B300 migrants (3.8–4.2%) per
generation with the rest of the continent. Remarkably, strongly
asymmetric gene flow pattern is inferred between DDU and MZE
(Fig. 1a), with nearly all dispersal occurring towards MZE. It is
relevant that the DDU colony has indeed gone through a strong
population reduction in the recent past, and environment-induced
adult mortality was suggested to be the main cause13,15,36.
However, our results point towards a very central role of
dispersal, as direct human disturbance (for example, effect of
flipper-banding37) on the DDU colony may have led to vastly
increased emigration flow from DDU to MZE. We further vali-
dated these results using a haplotype-based multilocus Bayesian
approach as implemented in Migrate-n38. Model ranking using
Bayes factor model choice gives clear support for a full-migration
model with very high gene flow. Estimated migration rates (M) and
population sizes (Y) are highly homogeneous: mean mutation-
scaled (m) migration rate M¼m/m¼ 2,358±130, mutation-scaled
effective sizes YWSH¼ 0.0017, YMZE¼ 0.0018, YMZW¼ 0.0019,
YDDU¼ 0.0019, YNEU¼ 0.0018, YHAL¼ 0.0019. Considering a
conservative range of m for our subset of loci32, we can estimate
that each colony receives, on average, from 5.40% (±0.22) to
10.00% (±0.42) of its total effective size as migrants from other
colonies at each generation. Although slightly higher, this estimate
is of the same order of magnitude as the one derived from the joint
allele frequency spectra.

Discussion
It is important to note that the estimates we present here reflect
the migration parameters averaged over many generations, and
not the instantaneous dispersal rate (see Supplementary Note 1
for details). Therefore, neither population sizes nor migration
rates should be interpreted as referring literally to the immediate
state of extant colonies but rather to the average coalescence-
based population size and migration rate over time. Dispersal
itself is not necessarily a stationary process: it may be very
heterogeneous in space and time (as was shown, for example, in
the Little penguin Eudyptula minor39), while individual colonies
may show positive or negative dispersal balance according to the
current local habitat conditions and modifications.

It appears from our results that Emperor penguin colonies are
largely open systems, in which demographic coupling with other
colonies through dispersal is a fundamental mechanism. Recent
observations suggest that this view may be extended to other

seabird species26. For example, we have repeatedly resighted
micro-tagged King penguins born on one colony in the Crozet
Archipelago, at different colonies in the same archipelago, and at
colonies in the Kerguelen Archipelago, 1,500 km away (Le Bohec,
personel communication, 2016). As pointed out by Mayr40,
‘a high dispersal ability is a necessity for occupants of temporary
habitats’. This necessity appears to be twofold. First, from a
mechanistic point of view, habitat instability can force dispersal.
Indeed, dispersal has been the immediate response for colonies
facing habitat disturbance in the recent past18,19,21, and it can
play an important role by adding flexibility to an otherwise rigid
philopatric system, and allowing species to dynamically exploit
the best breeding locations in rapidly changing polar
environments. Second, high dispersal rates are expected to
impose a high migration load on natural selection, and to
counteract the effects of local adaptations41, thus allowing the
species to preserve a gene pool that is adapted to a wider range of
possible environmental conditions: it may thus itself be adaptive
in highly unstable habitats. Yet, a direct consequence is that
colony-level demographic events are of local rather than global
significance. Population trends extracted from a single colony
reflect the immediate quality of the focal location on a generation
scale, rather than species-wide parameters (Fig. 2c). In this
context, the colony is not a truly relevant demographic unit, but
rather a transient aggregation of individuals at a particular point
of time. To distinguish this structure from panmictic and
metapopulation systems, we propose the term synnome for this
combination of an exceptionally fragmented space and a very
fluid gene pool (see full definition in Supplementary Note 1).

Although exceptional if compared with current knowledge
about other marine predators, such as turtles25, marine
mammals27 and most seabird species26, intense dispersal is
expected to be a common evolutionary strategy in unstable high-
latitude environments26, especially under ongoing climate
warming. Importantly, most of the evidence accumulated up to
now in seabirds has relied heavily on mitochondrial DNA26 (see
also Supplementary Note 2 and Supplementary Fig. 5 for details),
which is known to provide biased evidence due to its faster
coalescence rate and non-recombining character42. SNP data can
also provide evidence of more intense gene flow than
mitochondrial DNA (as has been shown, for example, in the
Black-footed albatross Phœbastria nigripes43). Therefore, several
species that are currently treated as fragmented metapopulation
systems, may in fact appear to be closer to the Emperor penguin’s
synnome structure once genome-wide data will be available.

Our findings highlight the importance of adopting a cross-
disciplinary approach, integrating population genomics and
behavioural ecology, to the study of population dynamics. Such
an approach accounts for the temporally and spatially complex
ecological processes that shape the structure of worldwide
populations, and should help in the development of more robust
and accurate demographic projections at the whole species level.
These refined projections will then be more likely to allow
estimation of the extent of threats to vulnerable species and
identifying the proximal causes of their decline. As a single
genetic population, Emperor penguins will respond to climate
change through a unified evolutionary trajectory. This insight
thus presents new challenges to our understanding of how
current climate scenarios will impact upon the future of the most
cold-adapted species in the world, an iconic bio-indicator of the
delicate Antarctic ecosystem.

Methods
Sample collection and DNA extraction. Material was collected from six locations
of East Antarctica, between 2004 and 2012: Cape Washington in the Ross Sea area
(‘WSH’), Pointe Géologie (‘DDU’) in Adélie Land, ‘MZE’ and ‘MZW’ in George V
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Land, Atka Bay (‘NEU’) in Dronning Maud Land area and ‘HAL’ in the Weddell
Sea area. All procedures employed during field work were approved by national
Ethical Committees, and authorizations to enter the breeding site and to collect
samples from living or dead birds were delivered by the US Antarctic Conservation
Act (permit no 2004-010), the French ‘Ministère de l’Enseignement Supérieur et de
la Recherche’ and the ‘Terres Australes et Antarctiques Françaises’ (permit nos
2012-126, 2012-111 and 2012-117), the German Environmental Agency
(Umweltbundesamt, permit no I 3.5–94003-3/295) and the British Antarctic
Survey/University of Cambridge Animal Ethics Review Committee. On the DDU
colony, blood samples were collected from 23 chicks before fledging. In WSH,
MZE, MZW, NEU and HAL, muscle samples were collected from frozen chick
carcasses collected around the colony (WSH: N¼ 4, MZE: N¼ 25, MZW: N¼ 14,
NEU: N¼ 24, HAL: N¼ 20). DNA was extracted using a spin-column protocol
(Qiagen DNEasy Blood and Tissue kit, Qiagen) with minor modifications.

Genome-wide SNP typing. SNP discovery and sequencing followed a single-
digest RAD-sequencing protocol24. Genomic DNA was checked for degradation on
a 1.5% agarose gel, and only samples with consistently high molecular weight were
retained and quantified by fluorometry (Life technologies Qubit). A total of 110
samples were retained and sequenced in 5 distinct libraries. (i) B150 ng of genomic
DNA per sample were digested with the restriction enzyme Sbf-I-HF (NEB);
(ii) each sample was then ligated to a unique barcoded P1 adapter before pooling
in a single library. The library was then sheared by sonication (7 cycles of 30 s
ON—30 s OFF); (iii) sonicated libraries were concentrated to 25 ml by DNA capture
on magnetic beads (beads solution/DNA¼ 0.8:1), thus further reducing the carry-
over of non-ligated P1 adapters, and the target size range fraction (350–650 bp) was
then selected by automated gel electrophoresis (BluePippin); (iv) capture on
magnetic beads using the same beads/DNA ratio (0.8:1) was then employed in all
following purification steps (after blunt-end repairing, poly-A tailing, P2 adapter
ligation and library enrichment by PCR). Magnetic beads were kept together with
the library throughout the pre-PCR steps, and DNA was re-bound to the beads for
purification using a PEG-8000-binding solution; (v) PCR amplification was
performed in 8� 12.5 ml aliquots pooled after the amplification in order to reduce
amplification bias on few loci because of random drift. PCR was performed using
NEB Phusion polymerase with the following cycles: 30 s denaturation at 98 �C, 18
cycles of amplification (10 min at 98 �C, 30 s at 65 �C and 30 s at 72 �C), and a final
elongation of 5 min at 72 �C; (vi) the library was then quantified by a fluorimetry-
based method (Life technologies Qubit), and molarity was checked on an Agilent
Bioanalyzer chip (Invitrogen). A final volume of 20 ml for each library was
submitted for paired-end sequencing on an Illumina HiSeq2000 sequencer
(V3 chemistry, libraries 1–3) or HiSeq2500 (V4 chemistry, libraries 4–5), at the
Norwegian Sequencing Centre, University of Oslo, spiked with 20% PhiX control
library in order to reduce low-diversity bias.

Sequence alignment and genotyping. Data processing was performed using the
following workflow: (i) Sequence demultiplexing. Read quality assessment was made
in FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Samples
were de-multiplexed according to in-line barcodes using Stacks v1.20 (ref. 44),
low-quality reads were discarded and sequences trimmed to 95 bp. (ii) Read
mapping and filtering. Demultiplexed fastq files were mapped to the published
contigs of the Emperor penguin genome45 using Bowtie2 2.2.3 (ref. 46),
with standard settings, allowing only end-to-end mapping. Resulting SAM
files were filtered using Samtools 0.1.19 (ref. 47), PicardTools 1.113
(http://picard.sorceforge.net), and custom R and shell scripts in order to discard
unpaired reads and full read pairs where at least one mate has a mapping quality
score below 30. The resulting BAM files were then filtered for PCR and optical
duplicates by comparing mapping position and CIGAR string, using Picard
MarkDuplicates. This process also allowed to filter out most sequencing errors, as
MarkDuplicates only retains the read with the highest average Phred score in each
duplicate cluster. (iii) SNP calling and genotyping. Three independent algorithms
were used for SNP and genotype calling, all of them built on a maximum-likelihood
framework. (i) First-in-pair reads were exported as BAM files for the maximum-
likelihood-based genotype caller built in the Stacks pipeline (ref_map.pl), with a
maximum of five mismatches allowed between alleles at a single locus (both within
and between individuals), correcting genotype calls using the information from the
whole data set in the rxstacks programme. (ii) We used the same cleaned BAM files
to simultaneously call both mismatch and indel polymorphisms in all samples
using the GATK HaplotypeCaller pipeline48, with standard parameters, except for
population heterozygosity which was set to 0.01. (iii) ANGSD 0.900 (ref. 49) was
used to call SNPs and genotypes using a maximum-likelihood process with the
Samtools mpileup/bcftools algorithm, using the complete sample allele frequency
information as a prior. Genotype calls were only retained for comparison purposes
with Stacks and GATK, however, downstream analysis was performed directly on
raw genotype likelihoods, as this approach has been shown to be much more
sensitive to weak structure than classical SNP-calling analysis50. Genotype calls
from all three processes were formatted into VCF format using software-specific
(Stacks and GATK) or custom scripts (ANGSD); further filtering and manipulation
were done using VCFtools 0.1.12 (ref. 51). For analyses relying on SNP calls, an
additional filtering step was performed by (i) extracting the list of consensus loci
called as SNPs by all three independent algorithms, (ii) discarding genotypes with a

coverage under 3� for analyses sensitive to sequencing depth, (iii) removing loci
genotyped in less than 75% of all individuals, and finally (iv) thinning down loci to
keep only polymorphism distant of at least 1 kb, in order to minimize linkage
between markers. (iv) Sex-linked marker analysis. To check for sex-specific
dispersal or structure patterns, we repeated analyses for each sex separately, using
either autosomal loci only or Z-linked loci only. We used the published genome
annotations for bird gametologs52 to identify potentially Z-linked scaffolds. As
females are heterogametic in birds, we expect non pseudo-autosomal Z-linked
regions to be fully homozygous in females, but to be neutrally heterozygous in
males. We therefore retained only scaffolds that had a clearly bimodal distribution
of heterozygosity, with one mode at or close to 0 (a slight tolerance was allowed to
account for misalignment, sequencing errors mistyped as SNPs due to low
coverage, or the presence of a transposable elements with autosomal homologues).
Fifteen scaffolds were ultimately retained. Scaffolds containing candidate Z-linked
coding DNA sequences, but with no visible bimodal heterozygosity distribution,
were excluded altogether from the analysis. Sex assignment was performed
independently from each of the non-recombining Z scaffolds, and consistency of
sex calls between scaffolds was checked manually.

RAD data description. Each HiSeq sequencing lane yielded an B201,000,000
paired-end reads (±16,000) with a mean Phred score of 37, only part of which was
dedicated to that project. After barcode demultiplexing and quality filtering, we
retained an average 147,000,000 read pairs per library (±13,000,000). Concordant
alignment rate was high (70.7±9.1%). However, after filtering, a large proportion
of the reads was identified as duplicates and removed from further analysis. On
average, 479,000 read pairs were retained per individual. We built an average
78,000 loci per individual (±17,000). Overlap between SNP calling methods was
high: 111,686 SNPs were called by GATK (173,704 SNPs total), ANGSD (203,801
SNPs total) and Stacks (148,721 SNPs total; Supplementary Fig. 1). After filtering
by coverage (minimum 3� ) and missing data (minimum 75% representation),
59,037 highly confident SNPs (hereafter our ‘consensus SNP set’, as opposed to the
‘full data set’, which includes all sequencing data that passed our quality checks and
aligned successfully to autosomal or pseudo-autosomal scaffolds) were retained for
analysis, with a mean depth of 6.8� . Of these, 582, spread across 15 scaffolds, were
identified as unambiguously belonging to the non-recombining region of the
Z chromosome.

Pairwise FST, AMOVA and summary statistics. Pairwise fixation index was
estimated by two independent methods. We calculated Reich’s estimator28 on
called genotypes of our consensus SNP set, using custom R scripts. Without calling
genotypes, we calculated Reynolds’ estimator53 on the full data set, taking into
account uncertainty in site-allele-frequency, according to the method implemented
in ngsTools50,54. Both methods were performed on a per-site basis and averaged
over 1-kb non-overlapping sliding windows, as the ratio of the windowed sum of
inter-population variance over the windowed sum of total variance. For the
genotype-call-free method, only sites with a probability of being variant at least
equal to 0.95 were included in the estimation. Mean homozygosity, nucleotide
diversity and Tajima’s D were calculated on a per-locus basis, using the consensus
SNP set. To avoid possible biases due to low coverage in estimating nucleotide
diversity and Tajima’s D, we randomly sampled one haplotype for each individual,
and performed calculations on this haploid subset. Calculations were made using
adegenet55 and pegas56 packages, as well as custom R scripts. To quantify the
proportion of variation at each organization level, AMOVA was performed on a
22,875 unlinked SNP data using Arlequin57, on a per-locus basis, with 1,000
permutations.

Identity-by-state (IBS) and identity-by-descent (IBD). Pairwise indicators of
IBS and IBD were calculated in PLINK v1.9 (ref. 58) based on the consensus SNP
set. Allelic distance for pairs of individuals is rather sensitive to uneven coverage
(Supplementary Fig. 4, lower triangle), with lower-depth individuals appearing
more similar to all other individuals than higher-depth ones. However, IBD
inference, which takes into account the total genetic variance in the whole sample,
appears more robust to coverage variation (Supplementary Fig. 4, upper triangle).
Three individuals in the HAL colony (HAL13, HAL14 and HAL16, visible on
Supplementary Fig. 4), as well as two in the MZE colony (MZE01 and MZE04,
visible on Supplementary Fig. 4), appear markedly more related to each other than
to the rest of the sample. Of these two clusters, only one individual was retained for
inbreeding-sensitive analyses, such as PCA. Pairwise IBS (Hamming) distances
were used to generate a neighbour-net using SplitsTree59.

Principal component analysis. PCA was performed on called genotypes in the
consensus SNP set using R library adegenet55, and on genotype likelihoods for the
full data set using ngsCovar54. Analysis was performed either on all samples or
keeping only one individual for each highly related cluster. When performed on all
samples, analysis was mostly driven by the HAL relatedness cluster, with the first
principal component of variance (PC) accounting for 2.84% of total variance.
Interestingly, these outliers are also identified as a separate group in admixture
analyses (see below), with high repeatability, although with only a slight gain in
model fit compared with a single-population model (Evanno’s DK over 10
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replicates). However, discriminant analysis of principal components60 performed
in adegenet on the consensus SNP set, and contrasting these outliers and the main
sample group, showed that single-locus contributions were very low and evenly
spread across the genome, thus excluding any strong directional selective
phenomenon. After removal of all samples but one in each high-relatedness cluster,
variation did not appear to be driven by outliers anymore.

Population splits and migration topology. We used TreeMix61 to infer the
topology of population splits and migrations from allele frequency variation among
colonies. We produced RAD-sequencing data for the Emperor’s sister species, the
King penguin and processed it with the same protocol as for our Emperor penguin
samples. We genotyped 15 King penguins from the Baie du Marin colony, on
Crozet Archipelago, that were used as an outgroup for the analysis. We restricted
our data set to ca 15,000 highly confident, unlinked SNPs shared between the two
species. Three-population and four-population tests did not allow us to reject a
tree-like topology in our data. Analysis was performed first using the King penguin
outgroup, and bootstrapping over blocks of 500 SNPs, in order to assess the
topology of relationships between our six Emperor penguin colonies. We used this
topology to re-run TreeMix without the King penguin samples, but fixing the root
according to our first results, in order to increase the resolution of the analysis
(Supplementary Fig. 3).

Clustering analysis. Clustering analyses were performed both on called
genotypes, using fastStructure62, and on genotype likelihoods, using ngsAdmix63

and a stricter filtering was applied: as input in fastStructure we selected unlinked
6,825 SNPs with a maximum amount of missing data of 10%. In ngsAdmix, we
filtered the data set to 3,020 high-confidence sites on the basis of probability of
being variable, coverage and phred score. We tested a number of components
ranging from 1 to 10, with three independent replicates. For fastStructure, we used
a simple prior for K values ranging from 1 to 10, and a logistic prior for values from
1 to 3. Most likely number of components was chosen using fastStructure’s
chooseK.py script for fastStructure models and Evanno’s DK method for ngsAdmix
models.

Coalescent-based analysis using BEAST2. An independent estimate of
population size changes through time was performed in BEAST2 (ref. 30). We
proceeded as above for locus selection and haplotype down-sampling. To remain
agnostic as to population structure, we performed analysis on each colony
separately, as well as on the whole data set, as the lack of strong population
structure, evidenced by all other analyses, allowed us to sample haplotypes from the
whole species without violating the model’s assumptions. We used an extended
bayesian skyline plot model64 in order to co-estimate present-day Y and possible
past fluctuations. We followed the protocol of Trucchi and colleagues32, but
reduced the parameter space by defining only one site-model per locus class (five or
six SNPs), using HKY models with empirical base frequencies, and allowing for
rate variation in four discrete gamma categories. Kappa was linked across site
models, according to our expectation for neutral variation, in order to alleviate
computational load. All chains were run in duplicate to check for convergence and
for a sufficient length to gather effective sample sizes (ESS)4200 for all parameters,
which necessitated ca 1,000,000,000 steps on all models. We used the same
estimates for mutation rate and generation time as in Migrate-n analyses.
Reconstruction for WSH colony is much less precise because of the very small
number of haplotypes (N¼ 4) sampled per locus. However, present-day population
size estimate converges with reconstructions based on the other colonies.

Fastsimcoal2 analysis. Joint derived-allele frequency spectra were generated from
the full data set in ANGSD 0.900 (ref. 49) for a subset of four colonies that
encompass the whole continent (MZE, DDU, NEU and HAL). To polarize these
spectra, we reconstructed the most likely ancestral base for all positions in the
RADome. We selected 12 high-quality Emperor penguin samples covering the
whole species’ range, as well as 12 high-quality King penguin samples processed
according to the same protocol. States at all positions were determined using
GATK’s Haplotype Caller pipeline48. We used BEDtools65 and VCFtools’ vcf-
consensus script51 to update the published Emperor penguin genome and establish
a reference RADome for both the King penguin and the Emperor penguin, using
only high-quality polymorphisms (phred-scale genotype quality Z80), and
including variable sites as ambiguity codes according to the International Union of
Pure and Applied Chemistry (IUPAC) standard notation. We aligned this
RADome to the Adélie penguin genome Pygoscelis adeliae66 using Bowtie2 (ref.
46), and extracted the corresponding regions. For each RAD locus, a maximum-
likelihood unrooted tree was built in PhyML67, and maximum-likelihood ancestral
sequence for crown-Aptenodytes was reconstructed using PAML68 and Lazarus
(https://project-lazarus.googlecode.com/), using PhyML tree topology as a prior.
Ancestral states were then used to determine the ancestral and derived alleles in the
Emperor penguin.

Reconstruction of population sizes and migration events was performed
through composite-likelihood maximization34, by simulating joint-spectra under a
continuous-time Markovian coalescent model in fastsimcoal2.5.11 (ref. 69). For
each run, we performed a maximum of 80 expectation-conditional maximisation

(ECM) optimization cycles over the 12 retained parameters (population sizes and
asymmetric migration rates between the four analysed colonies), each parameter
optimization step requiring the generation of 100,000 simulated joint-spectra. We
generated 50 non-parametric bootstrap replicates for each spectrum. For each
bootstrap data set, and for the original data set, we ran 50 independent replicates,
and retained the one with the highest
log-likelihood. We assumed a mutation rate of 2.6e� 7 subsitutions per site per
generation as calculated for the King penguin32, and a generation time of 16
years15. Computation was performed on the high-performance Abel cluster
at the University of Oslo, and required a total of B30,000 CPU hours.

We chose to restrict our analysis to a stepwise migration model for two main
reasons. First, computational load increases rapidly with the number of estimated
parameters, and higher complexity models could not be run with the necessary
amount of replication. Second, as our model is not supposed to represent precisely
the present-day state of the colonies, but rather parameters averaged over a long
period of time, we do not expect the intensity of the migration flow to be much
affected by the structure of the connectivity.

Coalescent-based analysis using Migrate-n. All methods used above provide a
robust framework for identifying groups even in weakly structured populations.
However, all are, to some extent, functions of the covariance of allele frequencies
between populations. In the hypothesis that our estimate of the frequency spectrum
may be biased is some way, for example, by moderate sample size, we also
performed a coalescent-based structure analysis using Migrate-n38. As opposed to
frequency-spectrum-based approaches (see above), coalescent-based analysis relies
on phased polymorphisms to infer population parameters. After verifying that the
number of polymorphisms in each RAD locus followed a Poisson distribution of l
equal to the mean number of polymorphisms per locus, we selected 50 random loci
comprising between five and six polymorphisms as an unbiased representation
of the neutrally evolving part of the genome32. To correct for potential over-
representation of sequences in case a heterozygous individual was mis-called as
homozygous, we randomly sampled one allele only for each individual. For all
colonies except WSH, we randomly picked a set of haplotypes in the population
(16 in MZE, DDU, HAL and NEU, 14 in MZW, and 4 in WSH). We ran a cold
chain and three heated chain of 50,000,000 generations, recording every 500
generations, with a 5,000,000-generation burn-in. We used a static heating scheme,
raising the cold chain to a power of 1.5, 3 and 1e6, and proposing chain swapping
every 100 steps. We used a uniform prior for population sizes (Y), bounded
between 0 and 0.1 (with a d of 0.01), and for the migration rates (M), bounded at
4,000 with a d of 400. Proper mixing under these conditions was ensured using the
highest parametrization model (model 2, see below). We compared five models of
increasing complexity: (i) a panmictic model, in which all colonies were gathered in
one population, estimating only a general Y, (ii) a full-matrix model, in which
asymmetric migrations were allowed between all pairs of colonies, (iii) a stepwise
model, in which asymmetric migrations were allowed, but only between
neighbouring colonies, in a closed circle, (iv) a first meta-population model, in
which the Ross Sea (WSH), George V and Adélie Lands (MZE, MZW and DDU)
and the South Atlantic (NEU and HAL) were treated as three populations, with an
asymmetric migrations between them, (v) a second meta-population model, in
which the northernmost colonies (MZE, MZW, DDU and NEU) were separated
from the Weddell Sea (HAL) and the Ross Sea (WSH). Models were ordered
by log Bayes factor defined by Kass and Raftery as lnBF¼ 2[ln(mL(model1))-
ln(mL(model2))], with mL(model1) and mL(model2) being the marginal
likelihoods for the two compared models, as calculated by thermodynamic
integration. Under this model, each migration rate can also be expressed as a
proportion of the receiving population’s effective size as m¼ 4 �M �m. Hence, the
relative demographic importance of immigration for any given colony can also be
expressed as Si¼ n(4 �Mi � m), with n being the total number of populations
identified as gene sources for the focal population. To convert mutation-scaled
estimates of M and Y, we therefore need an estimate of m (the mean number of
substitutions � per site per �Myr) for the set of loci used in the analysis. As the
number of sites in each locus is mainly due to the stochastic nature of the
mutational process, and follows a Poisson distribution of parameter l equal to the
mean SNP density per locus (see above), we can consider that a single true
mutation rate (m) applies to the whole RADome. However, as our analysis is
restricted to loci containing five to six SNPs, our estimates of Y and M are not
directly scaled by m, but rather by posterior probabilities of m conditional on the
number of SNPs in each locus class. We used the class-specific mutation rate
posterior probabilities as calculated for the King penguin32. As a conservative
estimate, we used a range of rates fitting the 3-SNPs to 6-SNPs class loci. Using a
generation time of 16 years15, these are m3snps¼ 1.14e� 6 and m6snps¼ 2.16e� 6.
As these were estimated from a subset of 16 haplotypes, and we included 82
haplotypes in our analysis, we considered that variability was likely to be
underestimated by Trucchi and colleagues32 compared with our sample. Thus, we
did not consider higher estimates than those made for 6-SNPs loci.

Data availability. Demultiplexed sequencing data are available from the Short
Read Archive with the accession number SRP070516. Input files used in the main
analyses are available from figshare.com (https://dx.doi.org/10.6084/
m9.figshare.2949508.v1).
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