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Abstract

We extend the one-dimensional polymer solution theory of bacterial biofilm
growth described by Winstanley et al. (2011) to deal with the problem of the
growth of a patch of biofilm in more than one lateral dimension. The extension
is non-trivial, as it requires consideration of the rheology of the polymer phase.
We use a novel asymptotic technique to reduce the model to a free-boundary
problem governed by the equations of Stokes flow with non-standard boundary
conditions. We then consider the stability of laterally uniform biofilm growth,
and show that the model predicts spatial instability, and this is confirmed by
a direct numerical solution of the governing equations. The instability results
in cusp formation at the biofilm surface, and provides an explanation for the
common observation of patterned biofilm architectures.
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1 Introduction
Bacterial biofilms are virtually ubiquitous. In a biofilm, bacterial cells attach to one
another – and usually to a surface or interface – with a slime matrix which largely
immobilises the cells and creates a distinct micro-environment. Combined with asso-
ciated phenotypic changes, this provides a measure of protection from physical and
chemical attack which allows biofilm to persist in even the most extreme environments
(Whitman et al. 1998). This resistance also makes biofilm a major consideration in
many applications of human interest, with both positive effects (biogeochemical cy-
cles, gut flora, wastewater treatment, bioreactors) and negative (medical devices,
pathology, industrial fouling and corrosion).

While early mathematical models of biofilm implicitly assumed that it forms a
uniform, smooth layer (e. g., Wanner and Gujer 1986, Wanner and Reichert 1996, Ti-
wari and Bowers 2001, Lee and Park 2007), improved microscopic techniques in recent

1



decades have revealed a rich diversity of biofilm structure varying from smooth flat
biofilm to forms described as towers, mushrooms, streamers, pores, and channels (e. g.,
Costerton 2007). Repeatability is notoriously challenging in biofilm experiments, but
results (reviewed by Stoodley et al. 2002) broadly suggest that such architectural
forms are favoured under scarce nutrient conditions and relatively low fluid flow. By
contrast, high fluid flow and/or high nutrient nutrient conditions favour relatively flat
biofilm.

The need to understand biofilm architecture stems from the interdependence of the
surface architecture, transport of dissolved species (including nutrients, metabolites,
disinfectants) across the biofilm/fluid interface, growth rate, and fluid flow. For
a given surface density of biofilm biomass, the overall chemical exchange, biofilm
permeability, flow resistance in confined flow paths, cell attachment/detachment and
sloughing may all be presumed to depend on the surface architecture and may affect
a range of practical applications. Detachment and sloughing further affect the spread
of biofilm and clogging of downstream flow paths.

Many modelling studies of biofilm growth have used discrete approaches to de-
scribe the biomass, including cellular automata and individual-based models (re-
viewed by Laspidou et al. (2010), for example). These provide a useful means to
perform simulations that readily allow consideration of complex scenarios such as
multi-species biofilm, multi-component biochemistry and interactions with fluid flow.
However, the physical properties of biofilm are dominated by the slime matrix rather
than the cellular component, and in the interests of computational tractability these
discrete biomass models take a simplified approach to mechanical deformation. The
formation of surface architecture, in particular, depends on the manner in which
growth-induced stresses are accommodated. A growing number of experimental stud-
ies aim to characterise the mechanical properties of biofilm (reviewed by Böl et al.
(2013)), which behaves as a viscoelastic solid relaxing to a viscous fluid on times of
the order of a minute. For a timescale relevant to biofilm growth (hours to days), a
viscous fluid description is appropriate. There is therefore a distinct breed of con-
tinuum biofilm models which focus, somewhat more theoretically, on the mechanical
description of the biofilm, and in particular the slime matrix. In contrast, Ben Amar
and Wu (2014) present a model for the formation of biofilm pattern which relies on
a characterisation of the biofilm as an elastic medium.

Dockery and Klapper (2002) used a simple Darcy flow model to describe growth
of biofilm with a single substrate supplied across a fixed-width diffusive boundary
layer. Their analysis of a 1D travelling wave solution, corresponding to uniform thick
biofilm, revealed a fingering instability mechanism selecting surface structure at a
wavelength equal to the length scale of substrate penetration into the biofilm.

More recently, several continuum models have been proposed based on polymer
solution theory, to reflect the composition of the slime matrix as a solution largely
of extracellular polymeric substances (EPS) in water. Polymer solutions differ from
simple solutions in that the conformational entropy of polymer chains even in dilute
solution can have significant impact on the rheology. For a solution with volume
fraction φ of polymer, Flory–Huggins theory (Flory 1953) provides the simplest the-
oretical description of a free energy of mixing governing the composition-dependent
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tendency of a polymer solution to imbibe further solvent. In particular, the fact
that biofilm tends not to swell indefinitely suggests the existence of a non-trivial
equilibrium composition and is consistent with the ‘poor solvent’ régime of polymer
solutions. An additional gradient free energy term (cf. Cahn and Hilliard (1958)) can
become relevant in spatially inhomogeneous solutions and in describing the dynamics
of phase separation, which has recently been suggested to have relevance to biofilm
(Ghosh et al. 2015).

Cogan and Keener (2004) used a two-fluid model for the biofilm matrix, with
an EPS polymer phase occupying only a small volume fraction φ relative to the
solvent water phase. They ignored the cellular component of biofilm, taking growth
of the polymer phase as a proxy for bacterial growth. Both phases were modelled as
Newtonian viscous fluids, and the difference between the phase-averaged pressures was
constituted via an osmotic pressure term based on a Flory–Huggins-like free energy
of mixing. The model was simplified by neglecting inertial terms and interphase
drag (thereby decoupling the phases), and assuming a dominant balance between
the EPS phase viscous stress and the osmotic pressure term. Analysing the stability
of a 1-D travelling wave solution with specified nutrient concentration at the biofim
surface (rather than across a boundary layer as in Dockery and Klapper (2002)),
they identified an instability mechanism with mode selection at a finite wavelength
dependent on the strength of surface tension.

Zhang et al. (2008a,b) similarly ignored the cellular volume fraction and modelled
biofilm as an EPS-water polymer solution. But rather than neglect the water phase
velocity, they used a drift flux approach to the two phase flow, identifying a mixture
velocity and an additional polymer network drift flux relative to the mixture. The
drift flux was taken as proportional to the gradient of the osmotic pressure, in which
they also included a Cahn–Hilliard-like gradient energy term. The model provided a
framework for comparing various material models to constitute the EPS-water mix-
ture stress state, including Newtonian viscous and Johnson–Segelman viscoelastic
rheology. Results of steady state analysis for the various models suggest linear in-
stability with a finite selected wavelength, consistent with results of earlier models
(Picioreanu et al. 1998, Dockery and Klapper 2002, Cogan and Keener 2004). Numer-
ical simulations and extensions of this model have provided the basis for subsequent
studies such as those of Lindley et al. (2012) and Zhang (2012).

Seminara et al. (2012) performed experiments on wild-type and EPS- and flagella-
deficient strains of Bacillus subtilis. Disc-shaped colonies on agar plates were modelled
with a two-fluid polymer solution model assuming dominant momentum balance be-
tween osmotic pressure and EPS viscous stress. Further assumptions included swelling
quasi-equilibrium (small variation in biofilm composition from swelling equilibrium)
and a lubrication theory approximation to reduce the spatial dimension of the model
based on the thin disc morphology of the observed biofilm colonies. The model re-
duced to a degenerate porous medium type equation for the radial biofilm depth
variation, assuming a leading pre-wetted film rather than dealing explicitly with the
contact line. The model supported the proposition that biofilm spread is controlled by
swelling due to growth-generated osmotic pressure, rather than direct inter-neighbour
cell jostling.
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Winstanley et al. (2011) started from a two-fluid model with Newtonian viscous
stresses, and used estimates of model parameters to argue that the viscous stress terms
are in fact negligible: at time scales larger than minutes the dominant momentum
balance is between interphase drag and osmotic pressure (contrary to the assumptions
of Cogan and Keener (2004)). An estimate of the gradient energy parameter suggested
that a sharp interface approximation is appropriate for model domains with spatial
scale larger than a few microns. The study investigated 1-D solutions and outlined a
potential simplification for the model in higher dimensions.

In this paper we elaborate on the reduction of the Winstanley et al. (2011) model
in one lateral dimension in the simplifying régime where EPS concentration variation
through the biofilm is small. We analyse the stability of one-dimensional solutions
and show that numerical solutions are consistent with the stability results.

2 Biofilm model
We begin by recalling the polymer/solvent model presented by Winstanley et al.
(2011). The EPS has volume fraction φ, which is taken to include also the bacteria
cells, which themselves produce the EPS. The phase-averaged velocity of the EPS is
denoted v, so that the EPS flux is φv, and the conservation of EPS is described by
the equation

φt +∇. (φv) = φg(c). (2.1)

Here g is a specific growth term, having units of one over time, and represents the
net fractional volumetric rate of extrusion of EPS from the bacterial cells (as well as
the growth of the cells themselves). While it may plausibly also depend on the EPS
volume fraction, we assume it depends only on the concentration of a rate-limiting
nutrient, which for example could be a terminal electron acceptor such as oxygen.
Winstanley et al. proposed the commonly adopted Monod form:

g = Gc

K + c
, (2.2)

where c is the nutrient concentration, and G and K are constants.
In a similar manner, conservation of the water phase is described by

−φt +∇. [(1− φ)w] = 0, (2.3)

where w is the phase-averaged water velocity. Uptake and transport of nutrient is
given by

[(1− φ)c]t +∇. [(1− φ)cw] =∇. [(1− φ)D∇c]− φr(c); (2.4)

the equation represents a conservation law for the concentration c of nutrient, allowing
also for molecular diffusion, as well as the uptake of nutrient by the bacteria; D is
the diffusion coefficient, and we take the uptake function to be

r = Rc

K + c
, (2.5)
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so that G/R is a yield coefficient for the EPS growth.
The differential equations of the model are completed by a momentum equation

for each phase:

0 = µEPS∇. [φT]− µw
k

(1− φ)2(v−w)−∇Ψ− φ∇p,

0 = µw
k

(1− φ)2(v−w)− (1− φ)∇p, (2.6)

where the tensor T is
T =∇v +∇vT − θ(∇.v)δ (2.7)

(Batchelor 1967)1, where δ is the unit tensor, µEPS and µw are the viscosities of EPS
and water, respectively, k is the medium permeability, and p is the fluid pressure.
These equations are properly derived from models of slow, two-phase viscous flow
(Drew and Passman 1999), in which the inertial terms are neglected, and there is an
interactive drag between the phases, here chosen as a term proportional to the velocity
difference, and such that the water momentum equation is equivalent to Darcy’s law.
Winstanley et al. additionally included a viscous term for the water, but showed that
it was negligible and inconsequential, and so we omit it here.

In two-phase flow theory, the pressures of each phase are generally different and
a relation between them must be prescribed, based on the microscale description of
the media. In the present case, consideration of the Flory-Huggins theory of polymer
interaction (Flory 1953) leads to a description of this relation in terms of an osmotic
pressure Ψ which can be approximately given for small values of φ by

Ψ ≈ EL
[
−
(
χ− 1

2

)
φ2 + 1

3φ
3
]
, (2.8)

where EL is the monomer site energy density, and χ is the Flory interaction param-
eter.2 Evidently, (2.6)2 allows us to define an EPS pressure of the form

ps = p+
∫ φ

φeq

Ψ′(φ) dφ
φ

. (2.9)

A stable equilibrium between the two-phase mixture and the pure solvent occurs when
the osmotic pressure is zero and Ψ′ > 0, and thus

φ = φeq = 3(χ− 1
2). (2.10)

The boundary conditions for the equations, suitable to describe a growing biofilm
in 0 < z < s(x, y, t), where z is the distance from the wall at z = 0 to which the

1The usual value of θ = 2
3 . The divergence term in (2.7) was omitted by Winstanley et al.

(2011), i. e., θ = 0. Inclusion of a bulk viscosity µB (Batchelor 1967, p. 154) would give a value
θ = 2

3 −µB/µEPS. We will proceed with the general term θ, though as we shall see, the precise value
has little effect.

2The factor 1
3 was incorrectly given as 1

6 in equation (2.7) of Winstanley et al. (2011), with largely
cosmetic consequences.
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biofilm is attached, are those of no slip of EPS, no flow of water through the wall,
and no flux of nutrient at the wall:

v = 0, w.n = 0, ∂p

∂n
= 0, ∂c

∂n
= 0 at z = 0; (2.11)

at the top of the biofilm, suitable conditions are those of a prescribed concentration
influx, prescribed φ (specifically representing the stable equilibrium Ψ = 0 where
Ψ′ > 0, if χ > 1

2 , as we assume), continuous water pressure, and no traction on the
EPS:

dc
∂c

∂n
= c0 − c, φ = 3(χ− 1

2), p = 0, σ.n = 0 at z = s, (2.12)

where dc is a suitable mass transfer coefficient, representing the thickness of a bound-
ary layer over which the external concentration varies; the stress tensor is

σ = −psδ + µEPST; (2.13)

in addition there is a kinematic condition

st + v.∇(s− z) = 0, (2.14)

which arises from the usual fluid mechanical assumption that particles on the interface
remain there, or in other words, the velocity of the interface is equal to the velocity
of particles on it. Winstanley et al. (2011) showed that these conditions are sufficient
to fully determine the solution for the growth of a laterally uniform biofilm.

Note that this model shares a problem with one of an ordinary viscous fluid,
which stems from the combination of the kinematic condition (2.14) and the no slip
boundary condition in (2.11), which together imply that the margin of the biofilm
patch is unable to move because the cells adhere to the wall. Rather than address
this issue here, in this paper we consider the behaviour of a biolfim patch far from
its margin. Fowler and Winstanley (2012) have developed a new theory, which they
call flux intensity theory, to describe the motion near the margin, and a future piece
of work will combine that with the current study.

2.1 Non-dimensionalisation
The model is non-dimensionalised in exactly the same way as in Winstanley et al.
(2011). The dimensionless form of the model can be written as

φt +∇. (φv) = φg, g = c

κ+ c
,

−εφt +∇. [(1− εφ)w] = 0,

α(1− εφ)[ct + w.∇c] = ∇. [(1− εφ)∇c]− φg,

0 = β∇. [φT]− φ(1− εφ)(v−w)−∇Ψ− εφ∇p,

0 = β∇. [φT]−∇Ψ−∇p,

T = ∇v +∇vT − θ(∇.v)δ,

Ψ = −λφ2 + 1
3φ

3 +O(ε), (2.15)

6



Symbol Typical value
α 1.37× 10−4

β 1.1× 10−4

η O(1)
ε 0.37× 10−2

κ 0.35
λ O(1)

Table 1: Typical values of the dimensionless parameters. The values of η and λ are
not well constrained.

and the dimensionless parameters are identical to those in the earlier paper. The
parameter λ can be defined (taking into account the footnote following (2.8)) as
λ = φeq/3φ0, where φ0 is the scale used for the volume fraction of EPS, and is
determined by a balance between the osmotic pressure and the interfacial drag, while
φeq is the equilibrium fraction of EPS, typically 1–5%; Winstanley (2011, p. 66)
estimated typical values λ = 0.9–4.5 (the values 0.5–2.3 of Winstanley et al. (2011)
are associated with the incorrect factor 1

6 which they used in (2.8) above).

Boundary conditions

The scaled boundary conditions take the form

v = 0, w.n = 0, ∂p

∂z
= ∂c

∂z
= 0 on z = 0, (2.16)

and
η
∂c

∂n
= 1− c, p = 0, σ.n = 0, φ = 3λ on z = s, (2.17)

where the scaled stress tensor is

σ = −psδ + βT
ε
, (2.18)

and
ps = p+ 1

ε

∫ φ

3λ

Ψ′(φ) dφ
φ

. (2.19)

The parameter η is defined by
η = dc

d
, (2.20)

where the length scale d is of the order of a typical biofilm thickness, d ∼ 100 µm.
Lastly the kinematic boundary condition on z = s takes the form

st + v.∇(s− z) = 0. (2.21)

Estimates of the parameters as described by Winstanley et al. (2011) are given
in table 1. The parameter η was not used by them, as they assumed prescribed
concentration c at the free surface, equivalently η = 0. Taking η > 0 allows for finite
nutrient transfer rate from the medium above.
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2.2 Reduction of the model
The parameters α, β and ε are all small, and we will eventually consign them all
towards zero. Putting α = 0 is an assumption of quasi-static reaction kinetics which
is commonly made (Klapper 2012), the basis of which is lucidly discussed by Kissel
et al. (1984). The asymptotic procedure which we use is novel and non-standard.
The neglect of β is a singular perturbation, for which the normal procedure would be
to additionally neglect an associated boundary condition associated with boundary
layer behaviour. While we do this, the reduced model obtained is degenerate, and
some subtlety is required in elucidating the correct behaviour.

Before beginning our asymptotic simplification, we rescale the equations based on
Winstanley et al.’s observation that even for moderate λ, the assumption of large λ
is highly accurate. This suggests that we first rescale the model using

φ = 3λ(1 + νΦ), s,x,v,w ∼ 1√
3λ
, (2.22)

where
ν = 1

9λ3 . (2.23)

This leads to the model equations in the form

νΦt +∇. [(1 + νΦ)v] = (1 + νΦ)g,
−3λενΦt +∇. [{1− 3λε(1 + νΦ)}w] = 0,

α

3λ{1− 3λε(1 + νΦ)}[ct + w.∇c] = ∇. [{1− 3λε(1 + νΦ)}∇c]− (1 + νΦ)g,

0 = 3λβ∇. [(1 + νΦ)T]− (1 + νΦ)[1− 3λε(1 + νΦ)](v−w)

−∇Ψ− 3λε(1 + νΦ)∇p,

0 = 3λβ∇. [(1 + νΦ)T]−∇Ψ−∇p,

T = ∇v +∇vT − θ(∇.v)δ,

Ψ = Φ +O(ν). (2.24)

The boundary conditions take the same form as before, except that now

∂Φ
∂z

= 0 on z = 0, Φ = 0 on z = s, (2.25)

the scaled EPS pressure is

ps = p+ 1
3ελ [Φ +O(ν)]. (2.26)

A notional estimate is 3λ ≈ 10, and thus we suppose that the terms in α and ε
are negligible in (2.24), but we temporarily retain the terms in β. Additionally we
suppose that ν � 1, which requires only that λ >∼ 1. For convenience we define

β̄ = 3λβ ∼ 10−3. (2.27)
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Ignoring the terms in α, ε and ν, the equations can now be written in the form

∇.v = g, g = c

κ+ c
,

∇.w = 0,

∇2c = g,

v−w = ∇p,

β̄∇.T = β̄[∇2v + (1− θ)∇(∇.v)] =∇Φ +∇p,

T = ∇v +∇vT − θ(∇.v)δ; (2.28)

the upper stress boundary condition is, from (2.17), (2.18), (2.26) and (2.27), allowing
for the fact that p = Φ = 0 at z = s,

T.n = (∇v +∇vT ).n− θ(∇.v)n = 0, (2.29)

and the kinematic condition is

st + v.∇(s− z) = 0. (2.30)

Our earlier comments on the subtlety of the procedure are now evident in (2.28). If we
simply put β̄ = 0, then we can solve for v−w, but not for the velocities individually.
The problem is that (2.28)5 implies that

∇× [∇2v + (1− θ)∇(∇.v)] = 0, (2.31)

but this extra constraint is lost if one immediately puts β̄ = 0. A little sleight of hand
is therefore necessary to allow the limit β̄ → 0. First, we define a function H via

Φ + p = β̄[H −∇2Φ + (1− θ)∇.v]; (2.32)

substituting this into (2.28)5 then yields, using also (2.28)4, and without approxima-
tion,

∇H = ∇2w + β̄∇2[∇2v + (1− θ)∇(∇.v)]. (2.33)
If we now ignore the term in β̄, we have the equations of Stokes flow for w:

∇.w = 0,

∇H = ∇2w, (2.34)

where the first equation is simply (2.28)2.
Equations (2.28)4 and (2.28)5 combine to yield

v ≈ w−∇Φ, (2.35)

and then (2.28)1, (2.28)2, again neglecting the O(β̄) term, imply

−∇2Φ ≈∇.v = g. (2.36)
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Because of the loss of the viscous terms in (2.28)5, it is possible that some of the
boundary conditions on v, and consequently w, may not be satisfied. Boundary
conditions for w at z = 0 follow from those of no slip for v, and are

w.n = 0, w.t =∇Φ.t on z = 0, (2.37)

where t is the tangent vector to the plane. Boundary conditions at the surface follow
from the the normal stress condition (2.29) on v, and this leads to

n.(∇w +∇wT ) = 2n.∇∇Φ + θgn. (2.38)

This seems fine, in the sense that (2.37) and (2.38) provide two conditions each
for the fourth order Stokes flow model (2.34), but they are non-standard in the sense
that there is no condition on the pseudo-pressure H, which is suspicious. In fact, the
constraint that Φ = p = 0 at z = s, together with (2.36), implies that

H = −(2− θ)g(c) on z = s, (2.39)

which together with (2.38) provides a further condition (thus one too many) for (2.34).
The resolution appears to lie in the fact that the neglect of β̄ in (2.28) is indeed

singular, and there is a singular layer in which the viscous term is important. We
combine (2.28)4 and (2.28)5 in the form

β̄[∇2v + (1− θ)∇(∇.v)] = v− (w−∇Φ). (2.40)

Taking the normal component and denoting v.n = vn, the relevant boundary layer
approximation of this is

β̄
∂2vn
∂n2 = vn −

(
wn −

∂Φ
∂n

)
, (2.41)

where ∂

∂n
= n.∇, and the second term on the left remains small since ∇.v = g, and

thus its normal component is β̄g′(c) ∂c
∂n

, which is small as c has no singular behaviour;
the approximate solution of (2.41) satisfying the normal component of (2.29), which
is

∂vn
∂n

= 1
2θg, (2.42)

and decaying far from the boundary is

vn =
(
wn −

∂Φ
∂n

)
+ 1

2θ
√
β̄g exp

 n√
β̄

 , (2.43)

where n = |n|, and we take n pointing out of the biofilm patch. Thus the normal
component of (2.29) is satisfied by means of a boundary layer, and it is not necessary
that the outer solution satisfy this condition. The boundary conditions for (2.34)
at the surface therefore consist of (2.39), together with the tangential component of
(2.38), which takes the form, written in terms of components,

tinj

(
∂wi
∂xj

+ ∂wj
∂xi

)
= 2tinj

∂2Φ
∂xi∂xj

. (2.44)
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Summary

c and Φ are determined by the equations

∇2c = −∇2Φ = g(c), g(c) = c

κ+ c
,

η
∂c

∂n
= 1− c, Φ = 0 at z = s,

∂c

∂z
= ∂Φ
∂z

= 0 at z = 0. (2.45)

The cell velocity is then determined from

v = w−∇Φ, (2.46)

and the solvent velocity is determined by solution of the Stokes flow problem

∇.w = 0,

∇H = ∇2w, (2.47)

with the boundary conditions

wn = 0, t.w = t.∇Φ at z = 0,

H = −(2− θ)g(c), tinj

(
∂wi
∂xj

+ ∂wj
∂xi

)
= 2tinj

∂2Φ
∂xi∂xj

at z = s, (2.48)

Finally, the kinematic condition at the biofilm surface is simply

st + (w−∇Φ).∇(s− z) = 0. (2.49)

3 Stability

3.1 One-dimensional solution
Winstanley et al. (2011) gave a one-dimensional solution of the above system in the
case that η = 0, though with only tangential discussion of the limit ν → 0. If solutions
depend only on z and t, then we find H is constant, w = 0, and the model reduces
to

Φ = cs − c, ṡ = c′s,

c′′ = c

κ+ c
, c′(0) = 0, ηc′s = 1− cs, (3.1)

where cs = c(s, t), c′s = cz(s, t), the overdot denotes a time derivative and the prime
denotes a spatial derivative with respect to z. The solution for c is a quadrature,∫ c

cw

dc

[A(c)− A(c0)]1/2 = z, (3.2)
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where we can take

A(c) = 2
∫ c

0
g(c′) dc′ = 2

[
c− κ ln

(
1 + c

κ

)]
(3.3)

(thus A(0) = 0), and the basal concentration at the wall, cw, is determined by∫ cs

cw

dc

[A(c)− A(c0)]1/2 = s, (3.4)

while the surface boundary condition for c gives

η{A(cs)− A(cw)}1/2 = 1− cs, (3.5)

and s then satisfies the ordinary differential equation

ṡ = {A(cs)− A(cw)}1/2. (3.6)

This solution settles, as t → ∞ for finite κ, to a travelling wave solution in which

cw → 0, ṡ→ V =
√
A(cs) =

√
2− 2κ ln

(
1 + 1

κ

)
, and c is given implicitly by

z − s = z − V t = −
∫ cs

c

dc√
A(c)

, (3.7)

and cs is given by
η
√
A(cs) = 1− cs. (3.8)

3.2 Linear stability analysis
We study the stability of the travelling wave solution given above. We assume a two-
dimensional flow in which the coordinates are x, z, and we can then define a stream
function ψ such that

w = (ψz,−ψx). (3.9)

The normal and tangent vectors are

n = (−sx, 1)
(1 + s2

x)1/2 , t = (1, sx)
(1 + s2

x)1/2 , (3.10)

and then the boundary conditions at the surface take the form

(1− s2
x)(ψzz − ψxx − 2Φxz) = 2sx(Φzz − Φxx + 2ψxz),

H = −(2− θ)g(c), Φ = 0,

η(cz − sxcx)
(1 + s2

x)1/2 = 1− c,

st + ψx + Φz + (ψz − Φx)sx = 0, (3.11)
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while the boundary conditions at the base become

c, ψ → 0, Φ→ cs as z → −∞, (3.12)

where cs is the constant solution of (3.8).
We change to a moving frame in which

s = V t+ Σ, z = V t+ ζ; (3.13)

other than changing z to ζ and s to Σ in the equations and boundary conditions, the
only change occurs in the kinematic condition, which becomes

V + Φζ + Σt + ψx + (ψζ − Φx)Σx = 0 on ζ = Σ. (3.14)

The basic state for the system is

ψ = 0, Σ = 0, Φ0 = cs − c,

H = −(2− θ)g(cs),
√
A(cs) = 1− cs

η
= V,

c = c0(ζ), ζ = −
∫ cs

c

dc′√
A(c′)

. (3.15)

Denoting perturbations to ψ, c,Φ, H by Ψ, C, φ, h respectively, we find the linearised
equations are

hx = ∇2Ψζ ,

hζ = −∇2Ψx,

∇2C = −∇2φ = g′(c0)C, (3.16)

with linearised boundary conditions

C,Ψ, φ→ 0 as ζ → −∞ (3.17)

and

φζ + Φ′′0Σ + Σt + Ψx = 0,

Ψζζ −Ψxx − 2φxζ = 2Φ′′0Σx,

h = −(2− θ)g′(cs)(C + c′0Σ),

φ+ Φ′0Σ = 0,

−(C + c′0Σ) = η(Cζ + c′′0Σ) on ζ = 0. (3.18)

We take
Σ = eikx+σt, k > 0, (3.19)

13



without loss of generality, and then

Ψ = f(ζ)Σ, C = b(ζ)Σ, φ = a(ζ)Σ, h = d(ζ)Σ, (3.20)

where we find
f = (A+Bζ)ekζ , d = −2iBkekζ ,

a = Dekζ − b(ζ),

b′′ = [k2 + g′{c0(ζ)}]b, (3.21)

and the boundary conditions (3.18) then imply

σ = −a′0 − Φ′′0 − ikA,

2Bk + 2Ak2 − 2ik(kD − b′0) = 2ikΦ′′0,

ikB = (1− 1
2θ)g

′
0(b0 + c′0),

D − b0 + Φ′0 = 0,

b0 + c′0 = −η(b′0 + g0), (3.22)

where a′0 = a′(0), b0 = b(0), b′0 = b′(0), and the other quantities with suffix zero are
steady state solutions evaluated at ζ = 0.

Simplification of this yields

σ =
(1− 1

2θ)(b0 + c′0)g′0
k

, (3.23)

and the value of b0 is determined from the boundary value problem

b′′ = [k2 + g′{c0(ζ)}]b,

ηb′ + b = −ηg0 − c′0 at ζ = 0,

b → 0 as ζ → −∞. (3.24)

To assess the stability criterion (3.23), we take as a non-restrictive example the
function

g(c) = µc, (3.25)

then the equation for b (and c0) can be solved, giving

c0 = e
√
µζ

1 + η
√
µ
, b = −

√
µe(k2+µ)1/2ζ

1 + η(k2 + µ)1/2 , (3.26)

from which we find

σ =
(1− 1

2θ)µ
3/2η[(k2 + µ)1/2 −√µ]

[1 + η(k2 + µ)1/2][1 + η
√
µ]k , (3.27)
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Figure 1: The growth rate σ as a function of wavenumber k, using (3.30) with pa-
rameters µ = 1, η = 0.1, θ = 0. The full line gives the rate for β̄ = 0, the dashed one
for β̄ = 0.005.

which is positive, since we may take θ ≤ 2
3 . Note that when η = 0, σ = 0, and the

steady state is neutrally stable. For η 6= 0, the growth rate tends to zero as k → 0
and k →∞, and apparently the model is missing some dissipative term which would
enable stabilisation at high wave number.

In more detail, we may illustrate the situation with the toy system
uxx = u− v,

vt = u+Dvxx, (3.28)
for which perturbations to the steady state u = v = 0 have solutions ∝ exp(σt+ ikx),
where

σ = 1
1 + k2 −Dk

2. (3.29)

The solution is linearly unstable at long wavelengths (small k), but the diffusion term
causes σ to become negative at large k, and the solution is well posed. However, if
D = 0, the second equation becomes hyperbolic, and σ → 0 as k →∞.

We suggest that the same sort of behaviour may be occurring here. In fact,
it seems the remaining dissipative term ∝ β̄ in (2.28) may provide the required
stabilising term. A partial argument for this can be given by re-doing the stability
analysis above by replacing (2.47)2 with (2.33). Following the same analysis through,
we find that (3.27) is replaced by

σ = µ3/2

{1 + η(k2 + µ)1/2}

[
(1− 1

2θ)η{(k
2 + µ)1/2 −√µ}

(1 + η
√
µ)k − 1

2 β̄{1 + (1− θ)µ}k
]
,

(3.30)
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so that the weak viscous term provides a stabilising effect at large wavenumber.
Illustration of the growth rate as a function of k is given in figure 1, both with and
without the stabilising term. Note how small the growth rate is.

4 Numerical solutions
Despite the comments in the preceding section, we have not attempted to solve the
model where the weak viscous terms are included. Instead we solve (2.45)–(2.47) using
a front-fixing transformation (e. g., Crank, 1984), but to compare with the stability
analysis we have used both the function g(c) = c

c+ κ
and the simpler g(c) = µc; the

results are similar, but we use the latter in our figures below. For our computations,
we ignore the divergence term by putting θ = 0. It can be shown that non-zero values
of θ lead to the same results, adjusted by a rescaling of the variables. This might

0 1 2 3 4 5 6
0

2

4

6

s
(x

)

0 1 2 3 4 5 6
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1
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2

x

d
s
/d

t

Figure 2: Evolution of the interface s at increasing times t = 0, 0.5, . . . , 3 on a periodic
domain of length 2π, where the initial condition for s is s = 2 + 0.05 sin 5x, and we
have used g = µc, with the parameter values being µ = 1, η = 0.1. The top figure
shows the growth of an instability, but it is more graphically realised by the lower
figure showing st. This figure shows that the initial instability grows at double the
spatial period, before evolving non-linearly towards a blow-up.
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Figure 3: Evolution of the interface s at increasing times t = 0, 0.2, . . . , 1.2 on a
periodic domain of length 2π, where the initial condition for s is s = 2+0.01{cos 2x+
sin 3x + 0.7 cos 4x + 0.4 sin 5x + 0.5 sin 6x + 0.2 cos 12x}, and we have used g = µc,
with the parameter values being µ = 1, η = 0.1. As explained in the text, this shows
the development of localised instability from an irregular initial state.

also be inferred from (3.27). The problem is mapped from a domain with a time-
dependent boundary to one with a fixed, time-independent boundary. This is done by
a transformation of the vertical coordinate system from z to ξ, via ξ = z/s(x, t). There
are additional terms in the differential equations as a result, however we are able to
implement a standard finite-difference scheme on a fixed grid after the transformation
has been made.

After the coordinate transformation has been performed we discretise the gov-
erning equations and boundary conditions using a finite-difference scheme with semi-
implicit time-stepping. We use a staggered, Cartesian, two-dimensional (2-D) grid
with ni×nj discrete points. There are periodic boundary conditions in x and bound-
ary conditions (2.48)–(2.49) at the base and free surface. The nonlinear system of
equations is solved using a Newton-Krylov solver, provided by the Portable Extensible
Toolkit for Scientific Computation (Balay et al. 1997, 2013, 2014). At each time-step
we solve for c and φ via (2.45), before using these solutions in the boundary conditions
for the coupled u,w and H solve. The solver finally uses explicit time stepping to
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Figure 4: Evolution of the amplitude A of the spatial oscillation of s with time,
for varying initial oscillation periods (and with periodic boundary conditions on the
corresponding periodic domain). The function g is taken to be g = µc, with µ = 1,
and also η = 0.1. The wavenumbers of the initial perturbations are given by k =
2π/50 ≈ 0.13, 2π/20 ≈ 0.31, 2π/12 ≈ 0.52, 1, 2, 3, 4, 5, in order of increasing
eventual slope of the amplitude curves. For the first three curves, the domain lengths
are 50, 20, 12 respectively, while for the last five they are all 2π. Commentary on the
choice of ‘the’ growth rate is given in the text.

solve for the new surface elevation. The solution at each step is accepted when the
absolute size of the nonlinear system residual is less than 10−8.

We solve the system in domains of varying widths, all of sufficient depth that
the travelling wave limit is an accurate description with c → 1 at the bed. To test
stability of the system we introduce a perturbation to the initially flat surface. We do
this with a regular perturbation in the form of a sine wave. The results are discussed
in the following section.

As we shall see, while our numerical method is successful, the front-fixing method
will break down when the the interface develops corners, which it does, due possibly
to the neglect of the small viscous term in (2.33). One could of course simply in-
clude the viscous term, but realistic values of β̄ would then yield an impossibly stiff
problem. The question then arises whether other methods might avoid this difficulty.
Different numerical methods for this problem have been discussed by Du et al. (2013).
Specifically, they develop an interface capturing method where the interface separates
a viscous two-phase gel network and a viscous pure solvent. Their method uses an
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Figure 5: Growth rate determined from the numerical solution as portrayed in figure
4, compared with the theoretical result in (3.27). The parameters used were µ = 1 and
η = 0.1. The same wave numbers are indicated as in figure 4, and the corresponding
growth rates are determined as σ = Ȧ/A, where A is the amplitude portrayed in
figure 4, and the slopes are estimated from the curves between the time values 12 and
22 (k = 0.13), 4 and 12 (k = 0.31), 3 and 8 (k = 0.52, 1), 3 and 7 (k = 2), 2 and 7
(k = 3, 4), and 2 and 6 (k = 5). The reason for this is explained at the end of section
5, and is due to the fact that the curves in figure 4 do not indicate uniform exponential
growth, but rather an initial relaxation phase, a subsequent exponential phase, and
a final blow-up phase; the time intervals are chosen to select the exponential growth
phase as well as possible.

artificial small additional network volume fraction ε in the equations, so that they
solve the two-fluid viscous model everywhere, and the interface is ‘captured’ by the
condition that the volume fraction reaches zero. With this addition, their numerical
method then uses finite differences.

It seems that all such methods using finite differences will come to grief when the
interface develops corners, and that a much more subtle approach would be necessary
in order to track a non-smooth interface.
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5 Discussion
Examples of the solutions are shown in figures 2, 3, 4 and 5. There is nothing too
interesting in the concentration or velocity distributions, and we focus on the interface
shape. Figure 2 shows a typical such solution, which shows the slow growth of spatial
instability from an initial sinusoidally oscillating interface. For comparison, figure 3
shows growth from a more random initial state, which yields a more spotty growth
field. As discussed below, one cannot take a completely random initial state, since
this model lacks a high wavenumber smoothing property, and the numerical solution
would be unable to proceed in that case.

In seeking to compare our numerical results with the stability analysis, we en-
counter a problem which in retrospect is not surprising. It is caused by the form
of the kinematic equation (2.30) for the interface s. So long as the normal interface
velocity vn = v.n is given, then (2.30) can be solved by the method of characteris-
tics (cf. Fowler and Winstanley 2012), and if vn > 0 (which it is certainly is in the
one-dimensional solution, see (3.1), and therefore initially), any initially oscillatory
interface will have convergent characteristics and thus form cusps; and indeed, this is
what happens, and when it does, the solution is singular and our numerical method
breaks down.

In more detail, the singularity is manifested as the formation of corners in the
biofilm interface. There is nothing intrinsically wrong with the model in this respect:
it is quite feasible that the surface z = s(x, t) should form such kinks. However,
our numerical front-fixing method automatically introduces second derivatives of the
free surface into the differential equations, and the method consequently breaks down
when the first derivatives of s approach the singularity. A quite different method
would be necessary to prolong the numerical solution past this point.

Such an aspiration is beyond the scope of the present study, since we were not
even sure that the model would be sufficiently well-posed to have a solution in two
dimensions. A simpler alternative is to include an artificial diffusion term δsxx in the
kinematic condition, and we have implemented this; the problem then is that this
provides a stabilising effect which can remove the instability altogether, unless we
choose η to be fairly large. However, such results are difficult to follow, because the
method then requires such small time steps that it becomes prohibitive to run long
enough.

One simple apparent remedy would be to restrict the initial amplitude A of the
spatial variation of s to be very small, since we are only really seeking to validate
the linear stability result. The problem with this is evident in figure 4. Since the
ordinate measures log10 A, the value of Ȧ/A is the slope of the amplitude curves,
and is evidently not constant, particularly for the small wave number perturbations.
The reason for this is evident in figure 2. Even though the initial mean value of s is
sufficiently large for the one-dimensional solution to be accurate (if s were constant),
the spatial variation already causes a nonlinear adjustment to the growth rate: what
we see in figure 4, most obviously at the lowest wave number, is a rapid transient
where the growth rate of the mean interface position adapts to its initial distortion,
before proceeding to grow pseudo-exponentially. This is why we estimate the slope of
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the curves some way beyond the initial transient. On the other hand, we can not go
too far, because cusp formation indicates the breakdown of the linear theory. With
all these provisos in mind, we consider that the estimated growth rates determined
from figure 4 are reasonably in agreement with the theoretical estimate, as shown in
figure 5.

6 Conclusions
In this paper we have developed the one-dimensional theory for biofilm growth pre-
sented by Winstanley et al. (2011) to consider solutions which are not laterally uni-
form. The development and simplification of the model is non-trivial, and it leads to
a highly non-standard type of Stokes flow model, whose boundary conditions preclude
confidence. Nevertheless, we also develop a direct numerical solution, which shows
that a planar interface is unstable, and the results are in satisfactory agreement with
a linear stability analysis.

Our analysis also shows, both numerically and analytically, that the interface
will develop cusps in finite time. As explained near the beginning of section 5, the
formation of cusps is a result of the hyperbolic nature of the kinematic condition
(2.49), and we consider this to be a real feature of our model, which unfortunately
means that our numerical method which assumes a smooth interface is doomed to
fail when the cusps form. Such singularities can be alleviated by incorporating extra
physical effects, most notably a surface tension, as was done by Cogan and Keener
(2004), but we do not consider that there is any physical justification for such a
term, as it would essentially be a surface tension for the polymer matrix. Rather,
we tentatively suggest that the formation of cusps in the interface may represent the
first steps in our theory of the formation of more exotic, non-smooth architectures,
such as are seen experimentally.

We mentioned in the introduction that, broadly, biofilm architectures appear to
be favoured in conditions of poor nutrient supply (see for example Heydorn et al.
(2000)). In order to compare such a statement to our theoretical results, we need
to tease apart the dependence of the parameters µ and η in (3.27) on the nutrient
level c0 and the transport layer thickness dc in (2.12). Low nutrient supply means
low c0 and/or high dc. The latter implies high η (see (2.20)), while since in (3.25)
g = µc replaces g = c

c+ κ
in (2.28), we essentially have µ ∼ 1/κ, and since κ ∝ c−1

0

(Winstanley et al. 2011, equation (2.11)), low c0 means low µ.
In figure 6, we plot σ given by (3.27) for three sets of combinations of µ and η.

Ideally, we would see larger σ for low µ and high η, but the opposite conclusion seems
to be the case, at least for fixed wave number. However, more important should be
the maximum growth rate, and this does not vary very much. Possibly a more robust
conclusion from this figure would be that poor nutrient supply favours growth at
longer wavelengths, but it may be rash to try and infer too much from such a simple
stability theory.
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