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Abstract 11 

A dynamical wind-wave climate simulation covering the North Atlantic Ocean and 12 

spanning the whole 21st century under the A1B scenario has been compared with a set 13 

of statistical projections using atmospheric variables or large scale climate indices as 14 

predictors. As a first step, the performance of all statistical models has been evaluated 15 

for the present-day climate; namely they have been compared with a dynamical wind-16 

wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance 17 

as well as with altimetry data. For the projections, it has been found that statistical 18 

models that use wind speed as independent variable predictor are able to capture a larger 19 

fraction of the winter SWH inter-annual variability (68% on average) and of the long 20 

term changes projected by the dynamical simulation. Conversely, regression models 21 

using climate indices, sea level pressure and/or pressure gradient as predictors, account 22 

for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically 23 

projected long term trends over the North Atlantic. Investigating the wind-sea and swell 24 

components separately, we have found that the combination of two regression models, 25 

one for wind-sea waves and another one for the swell component, can improve 26 

significantly the wave field projections obtained from single regression models over the 27 

North Atlantic. 28 
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1. Introduction 32 

Changes in wave climate have received much attention in recent years due to their 33 

impact on coastal and offshore structures and ecosystems. Numerous wave climate 34 

simulations under different future scenarios of greenhouse gases (GHGs) emissions 35 

have been generated at both global and regional scales using numerical wave models.  36 

The North Atlantic is one of the most widely studied regions. Many earlier works have 37 

pointed to changes in wave height climate as a consequence of global warming. For 38 

example, Mori et al. (2010) projected future decreases in the wave heights over the 39 

North Atlantic at mid-latitudes by using wind fields generated by the MRI-JMA 40 

General Circulation Model (GCM) run under the A1B scenario. Likewise, Hemer et al. 41 

(2012) projected future decreases in wave heights during winter and changes in wave 42 

directions over all the North Atlantic by using the ECHAM5 GCM and CSIRO Mk3.5 43 

GCM wind fields, both under the A2  forcing scenario. Semedo et al. (2013) projected 44 

decreases in both wave heights and periods over the North Atlantic during the winter 45 

season by using ECHAM5 GCM wind fields under the A1B scenario. Fan et al. (2013) 46 

projected decreases of wave heights during winter over the North Atlantic and increases 47 

over the north-eastern sector by using a three member ensemble forced by CM2 GCM, 48 

HadCM3 GCM and ECHAM5 GCM wind fields under the A1B scenario. In a 49 

subsequent paper, Fan et al. (2014) used the same model ensemble to obtain winter 50 

trends for the wind-sea and swell components separately. Andrade et al. (2007) 51 

projected decreases of wave heights and clockwise changes in wave directions and 52 

investigated their effects along the Portuguese coast. More local studies also exist in the 53 

region. In particular, Charles et al. (2012) projected very similar winter wave height 54 

decreases over the Bay of Biscay by using the ARPEGE-Climat GCM under three 55 

different future climate scenarios (B1, A1B, A2). All the simulations referred above are 56 

based on dynamical models forced with the surface wind fields from atmospheric 57 

models. The simulated wave parameters defining the wave climate are significant wave 58 

height (SWH), mean wave period (MWP) and mean wave direction (MWD), as well as 59 

their separation into local (wind sea) and remotely-forced (swell) waves. Both 60 

components can be properly modelled when using global wind-wave models. Regional 61 

models can also be suitable to model the swell component, although they require to be 62 

nested into larger domains to account for remotely generated swell; in turn, they usually 63 

provide higher spatial resolution. 64 



Alternative approaches to explore wave changes in future climates cover a wide variety 65 

of statistical methods that can be classified into three main types (Wilby et al., 2004): i) 66 

regression methods, ii) weather generators and iii) weather typing schemes. 67 

Each method has its own advantages and shortcomings. Briefly, weather generators are 68 

stochastic models that replicate the statistical properties of the observed sequences of 69 

events, such as mean value and variance (Ailliot et al., 2014; Wilks, 1998). Weather 70 

typing schemes establish the relationship between atmospheric and wave parameters 71 

based on a division in weather classes, as shown for instance in Camus et al., (2014). 72 

Among these, the analogue method (Lorenz, 1969; Zorita et al., 1995) and the Monte 73 

Carlo method are also weather typing methods.  74 

Among the regression methods, the redundancy analysis used by Wang et al., (2004) to 75 

simulate future SWH changes is a first example. Some of the most frequently used 76 

regression methods are based on transfer functions, which represent the relationship 77 

between observed wave parameters, usually SWH, and atmospheric variables such as 78 

the squared wind speed (W=u2+v2), sea level pressure (P) and/or the squared sea level 79 

pressure gradient (G) representing the geostrophic wind (that is the sum of the squared 80 

zonal and squared meridional SLP gradients). The atmospheric parameters obtained 81 

from model output under increased GHG scenarios can then be used to estimate the 82 

changes in the wave field through the statistical relationship between them obtained for 83 

the present-day period, assuming that such relationship holds also for the future period. 84 

Examples of application of such methodology can be found in Wang and Swail (2006), 85 

who used global anomalies of P and G as predictors in different regression models to 86 

simulate future SWH. Likewise, Wang et al. (2010) compared both dynamical and 87 

regression models to simulate future SWH changes over the North Atlantic at hourly 88 

(dynamical) and seasonal (statistical) scales. They tested the inclusion of W as a 89 

predictor in a set of regression models, but they concluded that it was preferable to use 90 

P and G predictors to simulate future changes on SWH due to the bias in the winds 91 

produced by the atmospheric models. Wang et al., (2012) and Wang et al., (2014) 92 

improved the regression model predictability by establishing a predictor-predictand 93 

relationship at 6-hourly time scale and including the lagged-dependent variable and the 94 

Principal Components (PCs) of P and G at 6-hourly time scale as predictors, which 95 

result in a better representation of the swell. More recently, Casas-Prat et al. (2014) 96 

have developed a more complex regression model that better accounts for the swell 97 



component to simulate future changes in the wave climate of the Western 98 

Mediterranean. In a similar way to atmospheric variables, large scale climate indices 99 

can also in principle be used as proxies for the statistical projections of waves (Woolf et 100 

al., 2002; Tsimplis et al., 2005;  Feng et al., 2014a). The obvious constraint is that they 101 

must be correlated for present-day climate with both wind sea and swell wave 102 

parameters (Shimura et al., 2013; Martínez-Asensio et al., in press).  103 

The statistical techniques offer low computational effort relative to dynamical 104 

modelling, which in turn permits the generation of larger ensembles resulting in a better 105 

understanding and quantification of uncertainties. Wang and Swail (2006) carried out an 106 

analysis of the uncertainty in SWH projections over the North Atlantic by running a set 107 

of statistical simulations forced with atmospheric variables simulated by three different 108 

climate models  (CGCM2, HadCM3 and ECHAM4/OPYC3) and three different 109 

scenarios (IS92a, A2 and B2) at a seasonal scale. They found that the uncertainty 110 

associated with the GCM used to feed the statistical model was much larger than that 111 

associated with the emission scenarios covering the period 1990-2049. Recently, Wang 112 

et al. (2015) reached the same conclusion by analyzing larger ensembles of statistical 113 

projections of 6-hourly SWH using Coupled Model Intercomparison Project Phase 5 114 

(CMIP5) simulations of 6-hourly SLP. Similar conclusions were pointed out by Charles 115 

et al. (2012) by comparing their results with those available in the literature. Hemer at 116 

al. (2013) went further into the uncertainty analysis by taking into account five 117 

independent studies projecting future changes in wave climate (namely those carried out 118 

by Wang and Swail, 2006; Mori et al., 2010; Hemer et al., 2012; Semedo et al., 2013; 119 

and Fan et al., 2013). They considered a total of four climate scenarios (A2, A1B, B2 120 

and IS92a), six GCMs (ECHAM5, CSIRO-Mk3.5, GFDL-CM2.1, HadCM3, ECHAM4 121 

and CGCM2), an ensemble mean of three CGCM2 simulations produced with different 122 

initial conditions, two ensemble means of 18 and 23 CMIP3 members, a set of three 123 

dynamical wave models (WaveWatch III, SWAN and WAM), one statistical model and 124 

three wave parameters (SWH, MWP and MWD). They found that the method used to 125 

obtain regional wave climates (the regional climate model, the downscaling technique, 126 

the dynamical wave model approach and the use of different predictors in statistical 127 

models) is also a high source of uncertainty.  128 

In our study the performance of a set of transfer function statistical models to project the 129 

future wave climate over the North Atlantic Ocean is studied. Our aim is to compare a 130 



wide set of these statistical models against a reference dynamical model and quantify 131 

their performances. The chosen statistical models are based on some of the most widely 132 

used transfer functions; the set was complemented by other, more specific models as 133 

well as by models based on large scale climate indices.  134 

A wind-wave hindcast and an atmospheric reanalysis are used to calibrate all the 135 

statistical models for the period 1958-2002. Altimetry SWH observations are used to 136 

validate both the dynamical and statistical models. Then, the atmospheric output of a 137 

climate model (ECHAM5) run under the A1B emission scenario for the period 2000-138 

2100 is used to obtain the changes in the atmospheric parameters used as predictors in 139 

statistical models and hence for the prediction of the winter SWH fields of the future. 140 

ECHAM5 is considered one of the best CMIP3 GCMs in simulating the recent past 141 

climate conditions in terms of inter-annual variability over the North-East Atlantic 142 

(Pérez et al., 2014). 143 

The 6-hourly surface winds output from the ECHAM5 climate model is used to force a 144 

dynamical regional wave model to project winter SWH, MWP and MWD fields. The 145 

differences between the dynamical and statistical approximations of the future wave 146 

field as well as their respective limitations are discussed.  147 

The paper is organized as follows: the dynamical and statistical models and their forcing 148 

are presented in section 2. The models are validated for present-day climate in section 3. 149 

Projections of wave climate are presented in section 4. In the last section results are 150 

discussed and conclusions are outlined.  151 

 152 

2. Data set and methodology 153 

The set of dynamical and statistical simulations and the procedure to generate all of 154 

them is schematically shown in Fig. 1, while the details are given in the sections below.  155 

2.1 Dynamical simulations 156 

Two wind-wave hindcasts over the North Atlantic (hereinafter HE40 and HEI) were 157 

obtained by forcing a third generation wave model that explicitly solves the wave 158 

transport equation (the WAM model, see WAMDI, 1988; Günther et al., 1992) with 6-159 

hourly surface wind fields from the atmospheric reanalysis ERA-40 (1958-2002) with a 160 



spatial resolution of 2.5x2.5 degrees and ERA-INTERIM (1989-2009) with a spatial 161 

resolution of 0.5x0.5 degrees, respectively. HE40 was used for the calibration of the 162 

statistical models, whereas HEI was used as a basis for validation purposes (more 163 

details are given in section 3). In a third simulation the WAM model was forced with 6-164 

hourly surface wind fields (1.875x1.875 degrees of spatial resolution) from the Max 165 

Plank Institute (MPI) ECHAM5 atmospheric GCM (Roeckner et al., 2003) run for the 166 

period 1950-2100. The period 1950-2000 is a historical run forced with observed GHG 167 

concentrations (the corresponding wave simulation will be referred to as DynHist), 168 

while the period 2001-2100 is a projection under the A1B emission scenario (the 169 

corresponding wave simulation will be referred to as DynProj).  170 

The domain of the WAM model was set to cover the North Atlantic region (from 1ºN to 171 

67ºN and from 59ºW to 8ºE) with spatial resolution varying between 2.5 km and 50 km 172 

(see Fig. S1 in Supplementary information). Wind fields were bi-linearly interpolated 173 

onto the described model grid. This is the configuration routinely used by the Spanish 174 

Port Authority for operational purposes. The temporal resolution of the output is 3 175 

hours. The separation of the wind-sea and swell components of the wave field is 176 

performed as in Hasselmann et al. (1996): the peaks (local maxima) of the directional 177 

wave spectrum are identified and attributed either to the sea or to the swell component 178 

depending on the period and direction of each peak. When the peak is in the same 179 

direction of the wind stress and the period is lower than 10 s, the waves are considered 180 

to be part of the wind-sea component; otherwise they are identified as swell. For the 181 

present study, all 3-hourly fields of wave parameters (SWH and its wind and swell 182 

components) corresponding to the two hindcasts HE40 and HEI and to the ECHAM 183 

simulation, were monthly averaged and bi-linearly interpolated onto a regular grid of 184 

1x1 degree over the North Atlantic domain. At each grid point, the mean seasonal cycle 185 

of each wave parameter was obtained by averaging each calendar month during the 186 

reference period 1961-1981 and removed from all the simulations. More specifically, 187 

both HE40 and HEI anomalies were obtained by removing the mean seasonal cycle of 188 

HE40 during the reference period and DynProj anomalies were obtained by removing 189 

the mean seasonal cycle of DynHist during the same period. The resulting anomalies 190 

were used for all purposes.  191 

2.2. Statistical simulations on a seasonal time scale  192 



Winter (DJFM) anomaly fields (i.e., the temporal anomalies with respect to the 193 

averaged calendar month during the period 1961-1981 at each grid point defined above) 194 

of SWH from the HE40 run and of atmospheric variables from the ERA-40 reanalysis 195 

were used to estimate the regression parameters of the statistical models. Prior to the 196 

regression, 6-hourly W and P fields from ERA40 reanalysis were interpolated onto the 197 

same 1x1 grid as HE40. Subsequently, P fields were used to obtain 6-hourly G fields, 198 

i.e., as the squared sum of the zonal and meridional SLP gradients (equation 4 in the 199 

Appendix of Wang et al, 2008). These were then used to derive the seasonal quantities 200 

used in the regression model fitting.  201 

The fact that the predictor-predictand relationships were established at the seasonal time 202 

scale while the dynamical modelling described in Section 2.1 simulates waves at a 6-203 

hourly time scale (even if they are seasonally averaged later on) must be taken into 204 

account when quantifying the fraction of the dynamical simulation variance accounted 205 

for by the statistical models. Wang et al. (2010) compared two statistical wind-wave 206 

simulations (one forced with 12-hours wind fields and another with winter averaged 207 

fields) against seasonal wave fields of ERA-40 and found that the simulation based on 208 

seasonal relationships reproduced less variance than the simulation based on higher 209 

temporal resolution. However, this only affects the absolute values of variance 210 

accounted for, not the comparison between the different statistical models tested here, as 211 

all them are based on seasonal quantities. It is also important to note that Wang et al. 212 

(2010) did not found any difference between the two simulations in terms of winter 213 

SWH changes projected for the end of the 21st century. 214 

 The regressions followed the most commonly used models in the literature and were 215 

completed with additional models. Recently developed statistical models appropriate for 216 

higher temporal resolution fields (6-hourly or daily) have not been considered here (e.g. 217 

those developed by Wang et al., 2012 and 2014 or Casas-Prat, 2014 or Camus et al., 218 

2014) as far as we focus on seasonal to interannual time scales. The models are listed in 219 

the following with the corresponding reference and an identification code that will be 220 

used throughout the paper:  221 

M1: SWH = a + b*P (Wang et al., 2004) 222 

M2: SWH = a + b*G (Wang et al., 2004) 223 

M3: SWH = a + b*W (Wang et al., 2010) 224 



M4: SWH = a + b*P + c*G (Wang and Swail, 2006) 225 

M5: SWH = a + ∑ 𝑏𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝑃)  226 

M6: SWH = a + ∑ 𝑏𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝐺)  227 

M7: SWH = a + ∑ 𝑏𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝑊)  228 

M8: SWH = a + b*P+ ∑ 𝑐𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝑃)  229 

M9: SWH = a + b*G+ ∑ 𝑐𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝐺) M10: SWH = a + b*W+ ∑ 𝑐𝑖 𝑃𝐶𝑖𝑛

𝑖=1 (𝑊)  230 

M11: SWH = a + b*P + c*G + ∑ 𝑑𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝑃) + ∑ 𝑒𝑖 𝑃𝐶𝑖𝑛

𝑖=1 (𝐺)  231 

M12: SWH = a + b*NAO (Woolf et al., 2002) 232 

M13: SWH = a + b*EA  233 

M14: SWH = a + b*NAO + c*EA + d*EA/WR + e*SCAN  234 

M15: SWHw = a + b*W  235 

M16: SWHs = a +  ∑ 𝑏𝑖 𝑃𝐶𝑖𝑛
𝑖=1 (𝑊)  236 

M17: SWH = �(< 𝑆𝑊𝐻𝑤2 > +< 𝑆𝑊𝐻𝑠2 >) 237 

where PC in M5-M11 and M16 stands for the Principal Components obtained from a 238 

singular value decomposition of a covariance matrix (see e.g. Wallace, et al., 1992) and 239 

n is the number of PCs included in the model, sorted by decreasing explained variance. 240 

The P, W and G covariance matrices were computed from winter anomalies of ERA40 241 

fields spanning the period 1958-2002 and covering the whole wave model domain. It is 242 

important to note here that the model domain includes the main areas where swells are 243 

generated, with the exception of the swells coming from the Southern Hemisphere, 244 

which can be neglected for this study. Principal Components were already used as large-245 

scale predictors by Wang et al. (2012; 2014), in an attempt to account for changes in the 246 

swell component related to remote atmospheric forcing. Namely, Wang et al (2012) 247 

used 6-hourly time series and found that the inclusion of higher order PCs (i.e., more 248 

than 30 leading PCs) in the pool of potential predictors has trivial effects on the 249 

resulting trend estimates, though it can result in a better representation of the large-scale 250 

patterns that generate swell.  Our model M11 is somewhat similar to the model of Wang 251 

et al. (2012) in the sense that both models use the PCs of P and G; however, the two 252 

models are not really comparable, because M11 is fitted to seasonal mean series instead 253 

of to 6-hourly series and moreover it does not include the lagged-dependent variable or 254 

M-order autoregressive term or the Box-Cox transformation. We chose this simplified 255 

version of the model because we deal with seasonal data, in contrast with the 6-hourly 256 



temporal resolution used by Wang et al (2012), and we do not expect significant time-257 

lag correlations between seasons.  258 

For each model with at least two predictors, a forward/backward stepwise regression 259 

was applied at each grid point in order to determine the number of predictors to be 260 

included (Draper and Smith, 1998) and their corresponding coefficients (see Appendix 261 

B). This procedure selects the most correlated independent variable and removes its 262 

influence through a regression analysis. Then it checks for correlation between the rest 263 

of the independent parameters and the residual signal, until the correlation becomes 264 

non-significant. When more than one predictor account for the same part of variability 265 

the regression model favours the predictor that accounts for the highest percentage of 266 

total variability. In other words, the statistical fit calculates the value of the coefficients 267 

and defines the number of parameters that optimise the fit to SWH data at each point. 268 

This also applies to the models using PCs as predictors. We have established a 269 

maximum number of PCs n=6 because for larger values the increase in explained 270 

variance was negligible (the fact that a small number of PCs is requested is due to 271 

working with seasonal values). The linear trends from all dependent and independent 272 

variables were removed before the estimation of the regression parameters.  273 

The regression coefficients estimated for the historical period were then used to project 274 

winter SWH along the 21st century using the projected atmospheric fields of the 275 

ECHAM5 GCM. Winter (DJFM) anomaly fields of P, G and W from ECHAM5 and 276 

their corresponding PCs were used as predictors to obtain projections of winter SWH 277 

for the period 1950-2100. It is worth noting that the projected atmospheric fields are not 278 

detrended and therefore the underlying assumption is that the correlation at inter-annual 279 

scales, which determines the regression parameters, remains unaltered at lower 280 

frequencies. This means that a long term trend in the predictor will result in a trend in 281 

winter SWH with the sign and intensity given by the regression. The PCs in M5-M11 282 

were obtained using a fixed-pattern projection approach, which consists of projecting 283 

winter anomaly fields from ECHAM5 onto the EOFs obtained from the ERA-40 284 

reanalysis used for the regression (Wang et al., 2004). In this way, the correspondence 285 

of the regression coefficients between these so called pseudo-PCs and the original PCs 286 

used to train the model is ensured. An eventual disadvantage of the fixed-pattern 287 

projection approach is that the percentage of hindcast variability explained by each 288 

original PC is not necessarily the same than for the corresponding pseudo-PC. To check 289 



this point, we have compared the percentage of winter SWH variance accounted for in 290 

HE40 and in DynHist by the 6 leading PCs and pseudo-PCs, respectively. For the HE40 291 

PCs we obtained variance fractions of 50% (M5 model), 41% (M6) and 68 % (M7); for 292 

the DynHist pseudo-PCs the fractions were 36%, 33% and 45%, respectively.  293 

The climate indices considered in this work correspond to the most relevant modes of 294 

atmospheric variability over the North Atlantic, namely the North Atlantic Oscillation 295 

(NAO), East Atlantic Pattern (EA), East Atlantic/Western Russian Pattern (EA/WR) 296 

and Scandinavian Pattern (SCAN). The climate indices were obtained for the same 297 

period than the atmospheric parameters (1958-2002) using P fields from ERA-40. 298 

Monthly anomalies of P fields over the Northern Hemisphere (20ºN-90ºN) were first 299 

computed removing the mean seasonal cycle at each grid point and then averaged for 300 

the winter season (DJFM). The EOFS were obtained from a singular value 301 

decomposition of the covariance matrix of P fields. Finally, the first ten EOFs were 302 

orthogonally rotated applying a “Varimax” rotation (Richman, 1986). The aim of the 303 

EOFs rotation was to reduce the mode complexity in order to obtain a more physical 304 

interpretability of the modes. The percentage of P variance accounted for by the ten 305 

selected rotated EOFs was 90.1%.  Seven of them (accounting for 72% of the variance) 306 

were similar to those found by the NOAA Climate Prediction Center 307 

(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml) using monthly Z500 308 

fields from NCEP/NCAR atmospheric reanalysis (Kistler et al., 2001) spanning the 309 

period 1950-2010. These were the SCAN (19%), NAO (16%), West-Pacific (WP) 310 

(10%), EA/WR (9%), Pacific-North American (PNA) (7%), Tropical-Northern 311 

Hemisphere (TNH) (6%) and EA (5%). The corresponding PCs of the leading rotated 312 

EOFs with a strong signal over the North Atlantic wave climate (Izaguirre et al, 2011; 313 

Shimura et al., 2013) were finally selected; they correspond to the indices NAO, EA, 314 

EA/WR and SCAN, which were used as independent variables to obtain the parameters 315 

of the regression models M12, M13 and M14. A model including the ten PCs was 316 

rejected because it did not result in any significant improvement. The same fixed-317 

pattern method described in section 2.2 was used to obtain projections of the climate 318 

indices during 1950-2100. That is, simulated winter anomaly fields of P from ECHAM 319 

were projected onto the selected rotated PCs derived from the ERA40 reanalysis. The 320 

resulting climate indices were finally introduced in models M12 to M14 to obtain SWH 321 

anomalies during 1950-2100.  322 



Models M1-M14 simulate total SWH. We further used two additional models: M15, 323 

describing the wind sea (SWHw) field, and M16, describing the swell component 324 

(SWHs). Winter (DJFM) anomalies of SWHw and SWHs were obtained from HE40 in 325 

the same way as for SWH and regressed against atmospheric variables from ERA40. 326 

The independent parameters used as predictors were winter anomaly W for SWHw 327 

(adequate to describe the local character of the field) and the corresponding PCs of W 328 

(accounting for large-scale processes) for SWHs. In order to provide estimates for total 329 

SWH, the relationship between this field and its components SWHw and SWHs was 330 

used. At quasi-instantaneous (3h) scales SWH, SWHw and SWHs from HE40 verify:  331 

𝑆𝑊𝐻2 =  𝑆𝑊𝐻𝑤2 + 𝑆𝑊𝐻𝑠2                                                  (1) 332 

In order that the same relationship holds at seasonal scales the winter (DJFM) average 333 

was applied to the 3-hourly squared fields of SWH. In this way the winter (DJFM) 334 

averages < 𝑆𝑊𝐻𝑤2 > and < 𝑆𝑊𝐻𝑠2 > simulated with M15 and M16 can be 335 

combined to obtain winter SWH as: 336 

< 𝑆𝑊𝐻 >= �(< 𝑆𝑊𝐻𝑤2 > +< 𝑆𝑊𝐻𝑠2 >)                   (2) 337 

 338 

3. Validation of present-day simulated wave climate   339 

The performance of all (dynamical and statistical) models was first evaluated for the 340 

present climate, using HEI as the basis for the evaluation. Altimetry SWH was also used 341 

for completeness, but only for some representative models (see Appendix A and 342 

Supplementary information, in particular Fig. S2). The validation process is 343 

schematically shown in Fig. 2, while the details are given in the sections below. 344 

3.1 Dynamical simulation 345 

The means and variances of winter (DJFM) averaged SWH fields derived from the 346 

historical run (DynHist) and the hindcast (HE40) are shown in Figs. 3a-d. The spatial 347 

patterns of the means are broadly similar, but DynHist shows higher values (differences 348 

of up to 0.5-1m) over most of the domain. The origin of such differences is that the 349 

winds in DynHist are stronger (by 0.9 m/s on average) than in HE40 over the North 350 

Atlantic (not shown). Differences in SWH of similar magnitude (-0.54 m) were found 351 

between HEI and altimetry (Fig. S2). These values are similar to previous works carried 352 



out in the North Atlantic, which reported biases ranging from -0.2 to 0.6  m (Ardhuin et 353 

al., 2010; Roguers et al., 2012; Reguero et al., 2012). Regarding the variances, both 354 

DynHist and HE40 show maximum values of similar magnitude in the north-eastern 355 

sector of the domain (Fig. 3c-d). Also the two variance patterns show some differences 356 

at regional scale (e.g., in the Bay of Biscay and west of Ireland), although the spatial 357 

averaged variance is similar (0.1 m2). 358 

3.2 Statistical simulations  359 

The stability of the regression parameters of the statistical models was tested by 360 

estimating the parameters for the period 1958-1988 (using HE40) and then using the 361 

parameters to predict SWH for the HEI period 1989-2009. Models M10, M11, M14 and 362 

M17 were also compared with altimetry (for the period 1991-2009) in terms of bias, 363 

unbiased root mean square differences (URMSD) and variance accounted for (Fig. S2). 364 

The comparison revealed that, in terms of bias, statistical models M17 (-0.42 m) and 365 

M10 (-0.46 m) were in slightly better agreement with altimeter data than HEI (-0.54 m), 366 

while HEI accounted for the highest percentage of variance.  367 

Figure 4 shows linear trends of statistically simulated winter SWH during the period 368 

1989-2009 fed with ERA-Interim. Coloured areas denote statistical significance (F-test) 369 

of the trend at a 5% level. They must be compared with the trends obtained from HEI 370 

(Fig. 6a), which show negative values of up to -4 cm/yr over the northern sector of 371 

North Atlantic. Such negative trends had already been obtained by other authors; e.g. 372 

Young et al. (2011) obtained trends of -2.5 cm/year for the period 1985-2008, although 373 

they used annual SWH values from altimeter observations over large regions of the 374 

North Atlantic. Most of the models based on statistical downscaling (M1-M11) are able 375 

to reproduce the HEI trend pattern; the exceptions are those including P or its PCs as 376 

unique predictors: M1, M5 and M8 (Figs. 4a, e, h). The models based on climate indices 377 

(M12-M14) show only weak negative trends over the northern sector (Figs. 4l-n).  378 

The percentages of variance of winter SWH from HEI accounted for by each statistical 379 

model are mapped in Fig. 5. Models M3, M7 and M10 account for a considerable 380 

amount of variance over large areas; on the contrary, M1 shows values lower than 50% 381 

everywhere. The spatial averaged fractions of variance captured by the best models are 382 

44% (M3), 51% (M7) and 68% (M10); local values reach up to 97% in some areas, 383 

especially at mid and high latitudes.  384 



Figure 6 shows the trends (computed over the validation period 1989-2009) of winter 385 

SWH, SWHw and SWHs for the HEI hindcast, the statistical models M15, M16 and the 386 

combination of both models according to equation 2. Similarly to M5-M11, a value of 387 

n=6 PCs was used to run M16. Hindcasted winter SWH and SWHw trends (Figs. 6a, b) 388 

are very similar in magnitude, especially at high latitudes, while the contribution of 389 

SWHs to the total trend is much lower, with maximum values of 2 cm/yr over reduced 390 

areas at high and mid latitudes, particularly in the Bay of Biscay (Fig. 6c). Statistical 391 

models for the two components were able to represent the main features of the observed 392 

winter SWH, SWHw and SWHs trends (see Figs. 6d-f). Regarding the accounted 393 

variance, M15 was able to recover a high percentage (77% on average) of the 394 

hindcasted SWHw, while M16 recovered a small percentage (37% on average) of the 395 

hindcasted SWHs. The agreement for the wind component was high over all the 396 

domain, reaching 99% of explained variance in some regions (Figs. 6g, h). The 397 

agreement for the swell component was higher over the SW sector of the domain, where 398 

M16 reached a 93% of explained variance coinciding with swell-dominated areas 399 

(sometimes referred to as 'swell pools', see Semedo et al., 2011). However, along a 400 

significant part of the European coasts, particularly to the North of the Bay of Biscay, 401 

the swell component is poorly recovered by the M16 model. This is a key issue, since 402 

swell is the dominant component of the wave climate in those areas (Semedo et al., 403 

2011). Overall, the models M10 and M17 explained the highest percentages of winter 404 

SWH variance, with values of 70% (Fig. 5j) and 67% (Fig. 6g).  405 

 406 

4. Projections of wave climate for the 21st century   407 

4.1 Dynamical projection  408 

Winter SWH trends for 2000-2100 obtained from the DynProj simulation under the 409 

A1B scenario are shown in Fig. 7a. White dots denote statistically non-significant (F-410 

test) trends at the 5% confidence level. The projection shows negative (significant) 411 

trends over the North Atlantic, with values of -0.7 cm/yr above 30ºN latitude. Below 412 

30ºN latitude trends are also negative, with values of -0.3 cm/yr. These results are 413 

consistent with previous studies based on dynamical approaches. For instance, Hemer et 414 

al. (2012) obtained a decrease of up to ~0.7m in annual SWH over the North Atlantic 415 

between 1979 and 2099, with higher decreases (~1m) during winter season (they used 416 



ECHAM5 wind fields under a SRES A2 scenario to force the WaveWatch III model; 417 

see Tolman, 2009 for details on the model). In the same line, Semedo et al. (2013) 418 

showed a decrease of up to 10% (~0.5m) in winter (DJF) SWH between 1959 and 2100 419 

over the North Atlantic (they used high-resolution surface winds from ECHAM5 under 420 

A1B scenario to force the WAM model). 421 

The linear winter trends of the two components of SWH (Figs. 7b, c) show different 422 

spatial patterns. SWHw shows negative changes in excess of -0.6 cm/yr at mid latitudes 423 

and in the NW sector of the North Atlantic, and positive (although non-significant) 424 

trends between 20-30ºN, mainly in the eastern sector, in the area under the influence of 425 

the Trade winds. SWHs shows smaller (in absolute value) trends than SWHw; they are 426 

between -0.1 cm/yr and -0.2 cm/yr over most of the domain, reaching -0.4 cm/yr around 427 

38-40ºN and 45ºW. All these trends (Figs. 7a-c) will be used in the following as the 428 

basis for comparison with the statistical models.  429 

In order to give a more complete description of the future wave projections provided by 430 

DynProj, the trends of both winter mean wave period (MWP) and mean wave direction 431 

(MWD) are also shown in Figs. 7d and 7e. The simulation shows small but statistically 432 

significant negative MWP trends over the North Atlantic (-0.4 s/century, on average) 433 

reaching maximum values (-0.7 s/century) over the Canary Islands. These results are in 434 

agreement with Semedo et al.(2013), who showed an overall decrease in DJF MWP of 435 

up to 5% (~0.5s ). Significant clockwise trends in MWD of about 10 deg/century are 436 

projected at 24ºN-36ºN latitudes reaching maximum values of 35 deg/century over the 437 

western sector. Conversely, counter-clockwise trends of about -10deg/century are 438 

projected over the north-western sector, reaching maximum values of up to -35 439 

deg/century at 36ºN-48ºN latitudes. This trend pattern is in agreement with those 440 

projected by Hemer et al. (2012) and Andrade et al., (2007).   441 

4.2 Statistical projections  442 

Winter SWH trends during 2000-2100 (A1B scenario) obtained using the statistical 443 

models M1-M11 are mapped in Fig. 8 (a-k). Averaged values of explained variance and 444 

trend differences with DynProj are listed in Table 1. Most of the models show very 445 

weak trends over most of the domain. The exceptions are the models including W as a 446 

predictor, namely M3, M7 and M10, which show trend patterns and values closer to 447 

DynProj (Figs. 8c, g, j). The variance accounted for by each statistical model is shown 448 



in Fig. 9. It is worth noting that models were detrended before the calculation of the 449 

explained variance, so that the latter does not include the variance associated with the 450 

trend. The variance accounted for is highest for M10, with an average value of 68% 451 

(Table 1) and a maximum of 95% in the north-central part of the basin, followed by M7 452 

(51% on average and a maximum of 94%), M3 (44% on average and a maximum of 453 

91%) and M11 (33% on average and a maximum of 90%).  454 

Models based on climate indices (M12-M14) yielded very weak winter SWH trends 455 

(Figs. 7l-n) and only accounted for a small fraction of the variance (Figs. 9l-n). For 456 

example, M14, which includes all four climate indices as independent parameters, 457 

accounted for 23% of the variance on average (Table 1), with maximum values of 72% 458 

(Fig. 9n). Climate indices accounted for SWH variance regionally. The EA index-based 459 

model (M13) accounted for 78% of the variance at 48ºN latitude (Fig. 9m) and the NAO 460 

index-based model (CM1) for 71% over the North Sea (Figs. 9l).   461 

The results of the statistical models that address separately winter SWHw and SWHs 462 

are mapped in Fig. 10, together with the total winter SWH estimated from the 463 

combination of the two components. The M15 and M16 models reproduce the spatial 464 

patterns of winter trends obtained from the dynamical model (Figs. 7b-c) but with 465 

slightly smaller values in the case of M16 (Figs. 10b-c). Regarding the explained 466 

variance, M15 accounts for a large amount of winter SWHw variance (80% on average, 467 

with maximum values of up to 98%, Fig. 10e), while M16 accounts for a smaller 468 

fraction (34% on average, with large values only in the SE sector of the domain, where 469 

it accounts for up to 83% (see Table 1). When both contributions are combined (Figs. 470 

10a,d), the spatial patterns of the trends and the variances accounted for are very similar 471 

to those obtained with M3 and M10. The negative trends obtained for SWH (reaching -472 

0.9 cm/yr) are stronger than those obtained with DynProj. In terms of variance, the 473 

combined model (M17) accounted for 64 % of the DynProj variance on average (Table 474 

1), reaching values of up to 96% in some areas. These results suggest that the statistical 475 

modelling of the wave field benefits from a separate modelling of the wind and swell 476 

components.  477 

In addition to the trends and for comparison with the DynProj used as a reference, we 478 

also plotted the time series of the simulations DynProj, M3, M7, M10 and M17 at the 479 

grid point where the strongest trends were found, namely 50ºN, 50ºW. The results are 480 



shown in Figure S3 and display very similar inter-annual variations in all simulations, 481 

indicating a good correspondence at these time scales among all models. 482 

 483 

5. Discussion and conclusions 484 

The ability of a statistical downscaling method based on 17 different combinations of 485 

predictors to project future changes in the wave climate of the North Atlantic Ocean has 486 

been explored. Statistical models have been calibrated during the period 1958-2002 by 487 

using atmospheric fields from ERA-40 reanalysis and wave fields from a dynamical 488 

hindcast (HE40). Another dynamical wave hindcast (HEI) and altimetry observations 489 

have been used to validate the statistical models. The changes projected by a dynamical 490 

wave model run for the period 2000-2100 are used as reference for the comparison. The 491 

reference dynamical projection (an ECHAM5 simulation run under the emission 492 

scenario A1B) shows a decrease of SWH over the North Atlantic, especially at high 493 

latitudes, which is in agreement with other works (e.g. Hemer et al., 2012, Semedo et 494 

al., 2013, Wang et al., 2014).  495 

Previous works like the one by Wang and Swail (2006) had found that wave climate 496 

projections are sensitive to the choice of the forcing (in particular the selected GCM), 497 

while others like the one by Hemer et al (2013) pointed to the downscaling method 498 

(including the regional climate model) and to the choice between dynamical or 499 

statistical approach as major uncertainty sources. Our study complements these results 500 

by demonstrating three main issues pointed out in the following.  501 

The first one is that among the statistical models used in our study (transfer functions of 502 

the seasonally averaged wave fields), the models resulting in better agreement with the 503 

dynamical simulation (in terms of winter inter-annual variability and trends) are those 504 

using the wind as predictor. Namely, the use of wind speed as independent variable 505 

makes that statistical models can account for a significant part of the winter SWH inter-506 

annual variability (68% on average for the model M10) and reproduce the long term 507 

changes shown by dynamical projections to a large extent. Regression models that use 508 

sea level pressure and/or its gradient on seasonal time scale as independent variables 509 

can also account for a part of the inter-annual variability of winter SWH (from 6% to 510 

33% on average), but they cannot reproduce the dynamically projected long term trends 511 

over the North Atlantic. It is important to note, however, that wind is a difficult variable 512 



to project. The latest Intergovernmental Panel on Climate Change Assessment Report 513 

(IPCC AR5, 2013) states that there is a high uncertainty associated with future winds 514 

and storms (Bindoff et al., 2013). This is the reason why many statistical models use 515 

SLP fields to project SWH, instead of winds (e.g. Wang et al., 2010; Wang et al., 2012; 516 

Wang et al., 2014; Casas-Prat et al., 2014). The point to be underlined from our work is 517 

that efforts should focus on reducing the uncertainties of projected wind fields, as this 518 

reduction would likely translate into more reliable projections of wave climate. 519 

A second issue dealt with in this work is the use of climate indices as predictors. The 520 

most important climate pattern over the North Atlantic is the NAO (Rogers et al., 1990) 521 

and its influence on wave climate has been discussed for more than a decade (Woolf et 522 

al., 2002; Bertin et al., 2013; Feng et al., 2014a,b). Hemer et al. (2013), for instance, 523 

forecasted negative SWH changes over almost the entire North Atlantic by the end of 524 

the 21st century using a CMIP3 ensemble, while at the same time they forecasted 525 

increases in the NAO index. This is consistent with observational studies (for example 526 

Woolf et al., 2002) that show a negative correlation between SWH and the NAO index 527 

at mid latitudes, but it is contradictory for the northern sector of the North Atlantic, 528 

where they are positively correlated. It should be noted, however, that dynamical GCMs 529 

run with increasing GHG are not in agreement with each other regarding the future 530 

behaviour of the NAO index: while Feng et al. (2014a) did not find a significant NAO 531 

trend during the 21st century using the MSLP fields of the CMIP5 ensemble under a 532 

RCP85 scenario, Cattiaux et al. (2013) found negative NAO trends using a different 533 

method. Even though a negative trend of the NAO index could be related to the negative 534 

SWH changes projected by Wang et al. (2014) over the northern sector of the North 535 

Atlantic, it could not explain the negative SWH changes projected at middle latitudes. 536 

What we have shown is that the NAO index alone is not capable of describing the wave 537 

field over the north Atlantic. Even when the four major regional climate indices over the 538 

North Atlantic are used, the statistical modelling is not sufficiently good. The same 539 

applies to the present climate, when it has been shown that the four climate indices 540 

account for only a part of winter SWH variability (Martínez-Asensio et al., in press). 541 

The non-stationarity of the relationships between wave parameters and climate indices 542 

may also be relevant. In this line, Hemer et al. (2012) found significant changes in the 543 

SWH-NAO relationships under warming conditions, especially over the Bay of Biscay. 544 



The third issue demonstrated in this work is that the combination of two regression 545 

models, one for wind waves and another one for swell, based on different independent 546 

parameters, can improve the projected wave fields. And this is in spite of the limited 547 

performance of the statistical models for the swell component over a large part of the 548 

domain. 549 

Summarizing, this study highlights the importance of the selection of the independent 550 

variables in the statistical models and demonstrates the uncertainty involved in 551 

simulating future wave climate on the basis of such statistical models. It must be noted 552 

that all regression models were tested using seasonal statistics of wave climate. If higher 553 

frequency processes were analyzed (e.g. storm events) the conclusions of the 554 

comparison may differ. The conclusions of this study are also relevant for future studies 555 

involving the outputs from the new developed CMIP5 models. A way to assess the 556 

uncertainties would be to rely only on those statistical methods that use winds as a 557 

predictor. The problem in this case is that there is a significant spread in the projections 558 

of winds, so the use of a large number of GCMs (i.e. from the new developed CMPI5 or 559 

the on-going CMIP6) would be recommended in order to better resolve the 560 

uncertainties. 561 
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Appendix A 577 

The along-track high-resolution SWH observations used to calibrate the hindcasts were 578 

obtained from the Ifremer altimeter Hs database (Queffeulou and Croizé-Fillon, 2010). 579 

This database consists of calibrated (Queffeulou, 2004) SWH measurements from seven 580 

altimeters (Jason-1, Jason-2, Topex/Poseidon, European Remote Sensing (ERS-1 and 581 

ERS-2), Envisat and Geosat Follow-On) spanning the period from January 1991 to 582 

December 2009. Along-track SWH observations were first aggregated onto a regular 583 

2x2 degree grid and monthly averaged. Only those grid points with more than a 10% of 584 

the maximum number of available observations per cell (N = 96412) were selected. 585 

Gridded SWH data were then linearly interpolated onto a 1x1 degree grid. Finally, 586 

winter (DJFM) averaged fields were calculated. The comparison between altimeter and 587 

modelled winter SWH fields was done in terms of bias, URMSD and percentage of 588 

variance accounted for during the period 1991-2009 (see Fig. S2).  589 

Appendix B.  590 

The Stepwise regression method used for statistical models with more than one 591 

predictor is illustrated with an example (see Table S1): the fitting of model M7 at a 592 

specific grid point (-40ºW, 50ºN). The method first selects the most correlated 593 

dependent variable (the one with the less p-value of an F-statistics) and removes its 594 

influence through a regression analysis. Then it checks for the p-values of the rest of the 595 

dependent parameters. The term with a smallest p-value (lower than a value of 0.05) is 596 

then included in the model, assuming that there is sufficient evidence that this term has 597 

a non-zero coefficient (i.e. the null hypothesis is rejected). Conversely, if a p-value of 598 

any term included in the model is higher than 0.1 it is then excluded from the model. It 599 

means that there is sufficient evidence that this term has a zero coefficient. This 600 

forward/backward procedure is repeated until the model is not improved in terms of its 601 

p-value (note that the p-value reflects the total model performance and not that of the 602 

individual terms). Three different models are fitted at each step in the example (see 603 

Table S1):  604 

Step 1:  SWH= - 5.7e10-4 PC1 605 

Step 2:  SWH= - 6.2e10-4 PC1 - 8.4e10-4 PC2  606 

Step 3:  SWH= - 6.5e10-4 PC1 - 8.4e10-4 PC2 + 2.9e10-4 PC3  607 

The p-values and explained variances for each of these models are shown in Table S1. 608 
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Table and Figure Captions 758 

Table 1. Spatially averaged percentages of variance of DynProj winter SWH (2000-759 

2100, A1B scenario) accounted for by the statistical simulations (M1-M17). Spatially 760 

averaged winter SWH trends and the corresponding standard deviation (cm/year). 761 

Differences between averaged winter SWH trends of statistical simulations and DynProj 762 

(cm/year).    763 

Figure 1. Dynamical and statistical simulations flowchart.  764 

Figure 2. Validation process flowchart.  765 

Figure 3. Mean value and variance of winter (DJFM) SWH fields for DynHist (a, c) 766 

and HE40 (b, d) for the common period 1958-1999. Spatially averaged values are also 767 

shown. 768 

Figure 4.  Winter SWH trends (cm/yr) inferred from the statistical models (a-n) for the 769 

period 1989-2009. Coloured areas denote model statistical significance (F-test) at 5% 770 

level. Spatially averaged values are also shown. 771 

Figure 5.  Percentage of variance of hindcasted winter SWH accounted for by each of 772 

the statistical models (a-n) for the period 1989-2009. Coloured areas denote model 773 

statistical significance (F-test) at 5% level. Spatially averaged values are also shown. 774 

Figure 6. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for HEI (a-c), M17 775 

(d), M15 (e) and M16 (f) obtained for the period 1989-2009. The percentage of HEI 776 

winter SWH, SWHw and SWHs variance accounted for M17, M15 and M16 777 

respectively (g-i). Coloured areas denote model statistical significance (F-test) at 5% 778 

level. Spatially averaged values are also shown. 779 

Figure 7. Linear trends of winter SWH (a), SWHw (b), SWHs (c) MWP (e) and MWD 780 

(f) obtained from DynProj for the period 2000-2100. White dots denote no statistical 781 

significance (F-test) at 5% level. Spatially averaged values are also shown. 782 

Figure 8. Linear trends (cm/yr) of winter SWH obtained from the statistical models (a-783 

n) for the period 2000-2100. Coloured areas denote model statistical significance (F-784 

test) at 5% level. White dots denote no statistical significance (F-test) of the trend at 5% 785 

level. Spatially averaged values are also shown. 786 



Figure 9. Percentage of variance of the DynProj winter SWH accounted for each of the 787 

statistical models (a-n) for the period 2000-2100. Coloured areas denote model 788 

statistical significance (F-test) at 5% level. Spatially averaged values are also shown. 789 

Figure 10. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for M17 (a), M15 790 

(b) and M16 (c) for the period 2000-2100. Percentage of variance of DynProj winter 791 

SWH, SWHw and SWHs accounted for M17 (d), M15 (e) and M16 (f). Spatially 792 

averaged values are also shown. 793 

Table S1. P-value of each independent variable of the model M7 throughout the 794 

stepwise regression procedure at grid point (-40ºW, 50ºN).  The percentage of HEI 795 

winter SWH variance accounted for M7 at each step is also shown. 796 

Figure S1.  Domain of the WAM model in the North Atlantic. Grid points with the 797 

different resolutions used in different regions (black dots). 798 

Figure S2. Bias (in meters) (a-e), URMSD (in meters) (f-j) and variance accounted for 799 

(in %) (k-o) between winter altimeter SWH and HEI (a, f, k), M17 (b, g, l), M10 (c, h, 800 

m), M11 (d, i, n) and M14 (e, j, o) for the period 1991-2009. Coloured areas denote that 801 

the statistical regression of the model is significant (F-test) at a 5% level. Spatially 802 

averaged values are also shown. 803 

Figure S3. Winter SWH anomaly time series at 50N latitude and -50W longitude 804 

projected by DynProj (blue line), M3 (green line), M7 (red line), M10 light blue line) 805 

and M17 (purple line).  806 
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 808 

 809 

 810 
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 812 

 813 



Table 1. Spatially averaged percentages of variance of DynProj 814 
winter SWH (2000-2100, A1B scenario) accounted for by the 815 
statistical simulations (M1-M17). Spatially averaged winter SWH 816 
trends and the corresponding standard deviation (cm/year). 817 
Differences between averaged winter SWH trends of statistical 818 
simulations and DynProj (with an averaged value of-819 
0.29cm/year). 820 

Model 
 

Variance 
account (%)  

Mean trend  
(cm/year) 

Std trend  
(cm/year) 

Trend diff.  
(cm/year) 

M1 5.9 -0.04 0.04 0.25 
M2 15.1 -0.06 0.10 0.23 
M3 43.7 -0.11 0.16 0.18 
M4 19.5 -0.07 0.09 0.22 
M5 27.4 -0.03 0.04 0.26 
M6 22.0 -0.07 0.09 0.22 
M7 51.4 -0.17 0.11 0.12 
M8 28.1 -0.03 0.05 0.26 
M9 27.7 -0.09 0.11 0.20 
M10 67.7 -0.19 0.14 0.10 
M11 33.1 -0.08 0.10 0.21 
M12 2.8 0.01 0.05 0.30 
M13 8.7 -0.01 0.01 0.28 
M14 23.2 -0.02 0.05 0.27 
M15 80.3 -0.12 0.19 0.01 
M16 33.8 -0.09 0.05 0.09 
M17 63.8 -0.20 0.19 0.09 
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Figure 1. Dynamical and statistical simulations flowchart.  829 
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 831 

Figure 2. Validation process flowchart.  832 
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 842 

 843 

Figure 3. Mean value and variance of winter (DJFM) SWH fields for DynHist (a, c) 844 

and HE40 (b, d) for the common period 1958-1999. Spatially averaged values are also 845 

shown. 846 

 847 



 848 

 849 

Figure 4.  Winter SWH trends (cm/yr) inferred from the statistical models (a-n) for the 850 

period 1989-2009. Coloured areas denote model statistical significance (F-test) at 5% 851 

level. Spatially averaged values are also shown. 852 

 853 



 854 

 855 

Figure 5.  Percentage of variance of hindcasted winter SWH accounted for by each of 856 

the statistical models (a-n) for the period 1989-2009. Coloured areas denote model 857 

statistical significance (F-test) at 5% level. Spatially averaged values are also shown. 858 

 859 



 860 

Figure 6. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for HEI (a-c), M17 861 

(d), M15 (e) and M16 (f) obtained for the period 1989-2009. The percentage of HEI 862 

winter SWH, SWHw and SWHs variance accounted for M17, M15 and M16 863 

respectively (g-i). Coloured areas denote model statistical significance (F-test) at 5% 864 

level. Spatially averaged values are also shown. 865 

 866 



 867 

 868 

Figure 7. Linear trends of winter SWH (a), SWHw (b), SWHs (c) MWP (e) and MWD 869 

(f) obtained from DynProj for the period 2000-2100. White dots denote no statistical 870 

significance (F-test) at 5% level. Spatially averaged values are also shown. 871 

 872 



 873 

 874 

Figure 8. Linear trends (cm/yr) of winter SWH obtained from the statistical models (a-875 

n) for the period 2000-2100. Coloured areas denote model statistical significance (F-876 

test) at 5% level. White dots denote no statistical significance (F-test) of the trend at 5% 877 

level. Spatially averaged values are also shown. 878 

 879 



 880 

 881 

Figure 9. Percentage of variance of the DynProj winter SWH accounted for each of the 882 

statistical models (a-n) for the period 2000-2100. Coloured areas denote model 883 

statistical significance (F-test) at 5% level. Spatially averaged values are also shown. 884 

 885 



 886 

 887 

Figure 10. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for M17 (a), M15 888 

(b) and M16 (c) for the period 2000-2100. Percentage of variance of DynProj winter 889 

SWH, SWHw and SWHs accounted for M17 (d), M15 (e) and M16 (f). Spatially 890 

averaged values are also shown. 891 
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 900 

Table S1. P-value of each independent variable of the model M7 throughout 901 

the stepwise regression procedure at grid point (-40ºW, 50ºN).  The percentage 902 

of HEI winter SWH variance accounted for M7 at each step is also shown.  903 

     Before stepwise regression   
Step 1: PC1 
included   

Step 2: PC2 
included   

Step 3: PC3 
included 

  Corr. Coef. 
 

Pvalue of an F-statistic  

PC1 -0.63 
 

0.000007 
 

0.000007 
 

0.000000 
 

0.000000 
PC2 -0.54 

 
0.000213 

 
0.000000 

 
0.000000 

 
0.000000 

PC3 0.12 
 

0.437032 
 

0.216563 
 

0.032044 
 

0.032044 
PC4 0.10 

 
0.507104 

 
0.573319 

 
0.092025 

 
0.063947 

PC5 0.30 
 

0.048526 
 

0.531827 
 

0.951542 
 

0.841806 
PC6 0.00 

 
0.998939 

 
0.708841 

 
0.425440 

 
0.388856 

Var.acc. (%)         40.9   79.5   82.2 
 904 

 905 

 906 
 907 
 908 
Figure S1.  Domain of the WAM model in the North Atlantic. Grid points with the 909 

different resolutions used in different regions (black dots). 910 
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 913 
 914 

Figure S2. Bias (in meters) (a-e), URMSD (in meters) (f-j) and variance accounted for 915 

(in %) (k-o) between winter altimeter SWH and HEI (a, f, k), M17 (b, g, l), M10 (c, h, 916 

m), M11 (d, i, n) and M14 (e, j, o) for the period 1991-2009. Spatially averaged values 917 

are also shown.  918 

 919 

 920 

Figure S3. Winter SWH anomaly time series at 50N latitude and -50W longitude 921 

projected by DynProj (blue line), M3 (green line), M7 (red line), M10 light blue line) 922 

and M17 (purple line).  923 
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