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Abstract We ask whether dissolved organic nitrogen (DON) and phosphorus (DOP) could account for
previously identified Arctic Ocean (AO) inorganic nutrient budget imbalances. We assess transports to/from
the AO by calculating indicative budgets. Marked DON:DOP ratio differences between the Amerasian and
Eurasian AO reflect different physical and biogeochemical pathways. DON and DOP are exported to the
North Atlantic via Davis Strait potentially being enhanced in transit from Bering Strait. Fram Strait transports
are balanced. Barents Sea Opening transports may provide an additional nutrient source to the Barents
Sea or may be locked within the wider AO Atlantic Water circulation. Gaps in our knowledge are identified
and discussed.

1. Introduction

Dissolved nutrients contain elements essential for ocean life, including nitrogen and phosphorus. In the Arctic
Ocean (AO), rivers and adjacent oceans supply nutrients that support primary production over the Arctic shelf
seas but are limiting toward the central AO as they are depleted [Tremblay and Gagnon, 2009]. Changes in the
AO have resulted in impacts to primary production and carbon cycling as open water areas expand [e.g., Arrigo
et al., 2008; Pabi et al., 2008; Brown and Arrigo, 2012], highlighting the need to constrain and better under-
stand nutrient sources to the upper, productive layers [e.g., Arrigo et al., 2011; Le Fouest et al., 2013; Tremblay
et al., 2015]; modification of freshwater inputs [Peterson et al., 2006, 2002; Shiklomanov and Lammers, 2009]
and riverine nutrient loads as materials previously locked in the permafrost are released by enhanced melting
[Frey and McClelland, 2009; Frey et al., 2007; Raymond et al., 2007]. Ultimately, a proportion of nutrients
delivered to the AO are exported to the North Atlantic (NAtl) [Torres-Valdés et al., 2013, TV13 hereafter].

TV13 showed that the AO exports 1.0 ± 0.3 kmol s−1 of phosphate to the NAtl but that known supplies of
total dissolved phosphorus (TDP), mainly from rivers [Holmes et al., 2011], accounted for only ∼7% of that
export. The nitrate budget was balanced (1.0 ± 1.6 kmol s−1; TV13) despite the substantial AO denitrification
rate (average 29.4 kmol-N s−1, range 14–66 kmol-N s−1) [Chang and Devol, 2009]. Known nitrogen sources
comprising riverine dissolved inorganic [Holmes et al., 2011] and remineralized organic [Tank et al., 2011],
and fixation [Blais et al., 2012], total only 2–12% of the denitrification rates (TV13), implying additional
and unknown sources of both N and P. Hence, we hypothesized that oceanic transports of dissolved
organic nutrients—nitrogen (DON) and phosphorus (DOP)—could supply the imbalances, perhaps following
ultraviolet (UV) photo-oxidation and bacterial remineralization.

Riverine dissolved organic matter (DOM) supplied to the AO was believed to be mostly refractory [e.g., Cauwet
and Sidorov, 1996; Dittmar and Kattner, 2003]. However, 10–30% can be degraded over time scales from weeks
to years [Alling et al., 2010; Mann et al., 2012; Wickland et al., 2012; Letscher et al., 2011, 2013b] despite high con-
tent of recalcitrant substances in terrigenous DOM [Lara et al., 1998; Para et al., 2013]. Oceanic DOM originates
from productive regions, and semilabile forms can be transported downstream, supporting biological pro-
duction elsewhere [e.g., Torres-Valdés et al., 2009; Reynolds et al., 2014]. Pacific and Atlantic waters may supply
DON and DOP to the AO, because they are downstream from the highly productive Bering and Nordic Seas.

We present a first-order quantitative assessment for AO DON and DOP imports and exports by calculating
“indicative budgets,” and draw inferences regarding sources/sinks of DON and DOP.
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Figure 1. Labrador Current and Nordic Seas station locations. Symbols: Atlantic Water inflow (red arrows) via the West
Spitsbergen Current (red) and Barents Sea Opening (brown); Polar Outflow (blue arrows) via the East Greenland Current
(blue) and Labrador Current (dark-green). Additional stations: central (yellow diamond) and east (green square) Labrador
Sea. Also shown: Atlantic Water-dominated stations (black) and stations with Polar (upper 50 m) and Atlantic Waters
(grey-filled) characteristics. Color coding is used in further figures. Inset: the wider Arctic Ocean.

2. Data and Methods

TV13 combined the Arctic boundary velocity field of Tsubouchi et al. [2012, T2012 hereafter] with dissolved
inorganic nutrient concentrations to generate pan-Arctic inorganic nutrient budgets. Here we adopt a dif-
ferent approach. DON and DOP data colocated with the AO boundary sections are not available. However,
enough regional measurements exist to enable the characterization of circum-Arctic water masses with mean
DON and DOP concentrations. By combining these concentrations with the velocities of T2012 at appropriate
vertical and horizontal scales, we calculate indicative budgets, which are sufficiently accurate to allow us to
assess whether AO nutrient budget imbalances could be closed by organic nutrients.

Samples for the analysis of DON, DOP, and inorganic nutrients were collected from the upper 500 m of the
water column in the Nordic Seas in June 2012 aboard the RRS James Clark Ross (JR271) from 32 stations and in
the Labrador Current (LC) in May 2013 aboard the CCGS Hudson (HUD13-008) from seven stations, with two
additional stations in central and east Labrador Sea (Figure 1). Text S1 in the supporting information provides
analytical details.

The measurements of Simpson et al. [2008] in the southeastern Beaufort Sea provided DON and DOP as an esti-
mate for Bering Strait. We used their Pacific Water-associated mean DOP concentration (0.76 ± 0.27 μmol L−1)
and a mean DON concentration (3.15±1.51 μmol L−1) within their mean DOP depth range. River data were
taken from Holmes et al. [2011], who reported TDP river supply. Chang and Devol [2009] estimated a pan-Arctic
average denitrification rate of 29.4 kmol N s−1 (range 14–66 kmol N s−1), with the highest rates in the Barents
Sea (12.9 kmol N s−1).

Inorganic nutrient vertical distributions are typical: low surface concentrations increase monotonically with
depth (Figure S1). Nitrate and phosphate are lowest in the upper 100 m (undetectable to∼12μmol-nitrate L−1,
0.05–1.0 μmol-phosphate L−1), increasing to 12–16 μmol-nitrate L−1 and 0.8–1.1 μmol-phosphate L−1

at 500 m. In contrast, dissolved organic nutrients (Figures 2a and 2f) are highest in the upper 100 m,
averaging 5.6 ± 1.7 μmol-DON L−1 (range 3.2–17.0 μmol L−1) and 0.17 ± 0.11 μmol-DOP L−1 (range unde-
tectable to 0.65 μmol L−1) in the Nordic Seas. Below 100 m, they average 3.9 ± 0.7 μmol-DON L−1 and
0.06 ± 0.04 μmol-DOP L−1 (range 2.6–7.4 μmol-DON L−1 and undetectable to 0.2 μmol-DOP L−1).

LC DOP concentrations are high, ranging from 0.56 μmol L−1 at 475 m to 1.33 μmol L−1 at ∼3.5 m (Figure 2).
DOP averaged 0.85 ± 0.18 μmol L−1 in the upper 100 m and 0.72 ± 0.09 μmol L−1 below. DON and DOP ver-
tical distributions in central and east Labrador Sea (Figures 1 and 2) are instead consistent with those in the
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Figure 2. (a) DON and (f ) DOP vertical distributions (central and east Labrador Sea, grey and black lines, respectively). Horizontally averaged (b–e) DON and
(g–j) DOP profiles for selected water masses; LC (n = 7), EGC (n = 5 DON, n = 4 DOP), WSC (n = 6) and BSO (n = 5). Envelope: 1 standard deviation about
the mean. Nitrate versus phosphate (k) and DON versus DOP (l).

Nordic Seas. LC DON concentrations (6.2± 1.7 μmol L−1 above 100 m and 4.4± 0.3 μmol L−1 at greater depths)
are only slightly higher than those in the Nordic Seas.

DON contributes 15–42% of the total dissolved nitrogen (TDN) pool below 100 m and 22–100% above. In
the Nordic Seas, DOP contributes ≲17% to the TDP pool below 100 m, and it ranges from negligible to ∼85%
above. Across the LC, DOP contributes 34–47% below 100 m and 38–82% above. With the exception of
DON and DOP in the East Greenland Current (EGC), dissolved organic pools dominate total dissolved nutrient
pools in the surface layer. LC DOP also contributes significantly at depth. These data are shown in Figures S1b
and S1d.

JR271 and HUD13-008 hydrographic data were used to characterize inflowing/outflowing water masses
nutrient content. We selected nutrient concentrations within their temperature and salinity (T , S) limits using
water mass definitions from Aksenov et al. [2010]. Atlantic Water (AW; T ≥ 2∘C, S ≥ 34.7) enters the AO through
the Barents Sea Opening (BSO) and via the West Spitsbergen Current (WSC) in Fram Strait. Polar outflows com-
prise near-freezing surface and halocline waters, with T<0∘C, 30.2≤ S ≤ 33.3 and T < 0∘C, 33.3 ≤ S ≤ 34.4 for
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upper (UHW) and lower (LHW) halocline waters, respectively. They exit the AO within the EGC in Fram Strait,
and through west Davis Strait, where they join the LC. DON and DOP in T-S space are shown in Figure S2.

Mean profile nutrient concentrations (Cn, mmol m−3) were generated for the LC (i.e., west Davis Strait outflow),
EGC, WSC, and BSO (Figure 2; further details in the supporting information Text S2). DON and DOP transports
(kmol s−1) were calculated as the product of Cn, including Simpson et al. [2008] data, and volume transports
(V , m3 s−1) for west Davis Strait, Bering Strait, and upper 100 m EGC, WSC, and BSO from T2012. Transport
uncertainties (sd) were estimated as 𝜎2 =[Vsd(Cn)]2 +[Cnsd(V)]2 +2VCn𝜌sd(V)sd(Cn), with V and Cn as above,
associated uncertainties sd(V) and sd(Cn), and uncertainty correlation |𝜌| ≤ 1. Uncertainties are assessed in
supporting information Text S3.

Upper 100 m DON and DOP transports were calculated for the EGC, WSC, and BSO. Organic nutrients are
concentrated in near-surface waters (Figure 2). Upper layers are likely to contain semilabile forms, whereas at
depth (if detectable) organic nutrients are probably refractory [Hansell, 2013]. DON and DOP transports will
be most important near the surface where velocities are highest. Deep DOP concentrations there are near or
below the detection limit, so we assume that deep transports are low and/or negligible. DON is similar, since
concentrations at depth are rather constant (average 3.9 ± 0.7 μmol L−1), and volume transports across Fram
Strait are nearly balanced (T2012). Hence, sub-100 m DON transports are likely balanced.

LC DON and DOP transports were calculated for the full available depth, prompted by the comparatively high
DON and DOP concentrations down to the deepest measurement (475 m). Accordingly, we combined mean
nutrient profiles with volume transport down to 620 m, west Davis Strait (T2012).

3. Results

Above 100 m nitrate is broadly similar across inflowing and outflowing water masses: 6.7 ± 1.4, 7.2 ± 0.8,
7.92 ± 2.2, and 7.2 ± 1.4 μmol L−1 for the LC, EGC, WSC, and BSO, respectively. Phosphate is higher in out-
flowing waters (0.78 ± 0.07 and 0.77 ± 0.08 μmol L−1 for the LC and EGC, respectively) than in inflowing
waters (0.62 ± 0.12 and 0.51 ± 0.08 μmol L−1 for the WSC and BSO, respectively). DON is highest in the LC
(5.58 ± 0.58 μmol L−1), similar in the WSC and BSO (5.30 ± 1.57 and 5.10 ± 0.90 μmol L−1, respectively) and
lowest in the EGC (4.35 ± 0.25 μmol L−1). DOP is highest in the LC (0.81 ± 0.10 μmol L−1), similar in the WSC
(0.11 ± 0.07 μmol L−1) and BSO (0.14 ± 0.08 μmol L−1), and lowest in the EGC (0.06 ± 0.02 μmol L−1).

LC DON and DOP transports are −17.7 ± 2.33 kmol-DON s−1 and −2.82 ± 0.36 kmol-DOP s−1 and
are ultimately delivered to the NAtl. Fram Strait transports in the EGC (−3.79 ± 0.77 kmol-DON s−1,
−0.05±0.02 kmol-DOP s−1) and the WSC (3.39±1.46 kmol-DON s−1, 0.07±0.05 kmol-DOP s−1) approximately
balance. Transports via the BSO are 8.36 ± 1.83 kmol-DON s−1 and 0.23 ± 0.13 kmol-DOP s−1, representing
an important supply of organic nutrients to the Eurasian AO. The inferred Bering Strait DON import
(3.15 ± 1.54 kmol s−1) is approximately half that via the BSO, but the DOP import (0.76 ± 0.28 kmol s−1) is
3 times larger. Riverine transports are comparatively small (1.92 kmol-DON s−1 and 0.07 kmol-TDP s−1).
Combined BSO, Bering Strait, and river imports (∼13.43 kmol-DON s−1 and 1.06 kmol-DOP s−1) are smaller
than LC exports. Net transports suggest a modest DON export (−4.66± 3.08 kmol-DON s−1) and an important
DOP export (−1.74± 0.50 kmol-DOP s−1) to the NAtl. Summarizing, major DON and DOP imports occur via the
BSO and Bering Strait, respectively, and major DON and DOP exports occur via the LC. Results are summarized
in Table 1.

4. Discussion
4.1. Comparison With Measurements Elsewhere
Our DON measurements are consistent with the broad range of observations elsewhere in the upper ocean
(5.1 ± 1.7 μmol L−1), which show that DON contributes 76 ± 22% of the TDN [Sipler and Bronk, 2015]. DON in
the Nordic Seas (5.6 ± 1.7 μmol L−1) and LC (6.2 ± 1.7 μmol L−1) is slightly higher than in the subpolar NAtl
(4.5 ± 0.6 μmol L−1) [Letscher et al., 2013a; Sipler and Bronk, 2015]. In the upper layers of the AO (≤100 m) DON
occurs at 3.9–8 μmol L−1 [Sipler and Bronk, 2015], with some of the highest values observed in the Chukchi Sea
(6–8 μmol L−1) [Letscher et al., 2013b] and close to river mouths; 7.4 ± 1.3 μmol L−1 along the Siberian Shelf
[Dittmar et al., 2001] and 15 μmol L−1 in the Mackenzie [Tremblay et al., 2014]. Within the AO, high concen-
trations are likely the result of DON enhancement from biological production [Letscher et al., 2013b]. Lower
concentrations have been observed in the Canada Basin (3–4 μmol L−1) and Amundsen and Nansen Basins
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Table 1. Indicative Transports and Budgets of Dissolved Organic Nutrients for the Arctic Oceana

LC Mean ± sd EGC Mean ± sd WSC Mean ± sd BSO Mean ± sd BS Mean ± sd Rivers Net Mean ± sd

VolT −3.71 ± 0.37 −0.87 ± 0.17 0.64 ± 0.2 1.64 ± 0.21 1 ± 0.1b 0.07d

DON 4.77 ± 0.41 4.35 ± 0.25 5.30 ± 1.57 5.10 ± 0.90 3.15 ± 1.51c

DONTn
−17.70 ± 2.33 −3.79 ± 0.77 3.39 ± 1.46 8.36 ± 1.83 3.15 ± 1.54 1.92d −4.66 ± 3.08

DOP 0.76 ± 0.06 0.06 ± 0.02 0.11 ± 0.07 0.14 ± 0.08 0.76 ± 0.27c

DOPTn
−2.82 ± 0.36 −0.05 ± 0.02 0.07 ± 0.05 0.23 ± 0.13 0.76 ± 0.28 0.07d −1.74 ± 0.50

aVolume transport (VolT ) is given in sverdrup (Sv; 1 Sv = 106 m3 s−1), mean profile concentrations (e.g., DON) in
μmol L−1 and nutrient transport (e.g., DONTn

) in kmol s−1. Outflowing waters: Labrador Current (LC); East Greenland
Current (EGC). Inflowing waters: West Spitsbergen Current (WSC); Atlantic Waters flowing through the Barents Sea
Opening (BSO); Bering Strait (BS); River discharge (Rivers).

bData from Tsubouchi et al. [2012].
cData from Simpson et al. [2008].
dData from Holmes et al. [2011]; total dissolved phosphorus (includes the inorganic and organic fractions).

(5 μmol L−1, <30 m) [Letscher et al., 2013b]. Our DON observations in the Nordic Seas and LC agree, therefore,
with prior observations within the AO.

Our DOP measurements are also consistent with observations elsewhere in the open ocean and continental
shelves; ranging from low/undetectable to 0.45 μmol L−1, and contributing 40–100% of the TDP in the upper
100 m [Karl and Björkman, 2015]. Our average Nordic Seas DOP concentration (0.17 ± 0.11 μmol L−1) is higher
than, but consistent with, the NAtl average (∼0.12 ± 0.02 μmol L−1) [Karl and Björkman, 2015]. DOP within
the AO (and environs) range from low/undetectable to ∼2.6 μmol L−1 [Simpson et al., 2008; Lin et al., 2012;
Tremblay et al., 2014]. Some of the highest concentrations have been observed in the Bering Sea (up to
0.45 μmol L−1) and Chukchi Sea (up to 0.41 μmol L−1) [Lin et al., 2012], Kugmallit Bay (Canadian Beaufort
Shelf; up to 1.33 μmol L−1) [Tremblay et al., 2014], and associated with Pacific-derived waters at 150–200 m
(0.76 ± 0.27 μmol L−1, southeastern Beaufort Sea) [Simpson et al., 2008]. Hence, our observations across the
LC (0.85 ± 0.18 μmol L−1, upper 100 m) are among the highest recorded in the Arctic-Subarctic environment.

4.2. Relevance of DON and DOP for the AO Nutrient Budget
We set out to investigate whether net oceanic transports of dissolved organic nutrients could account for
(i) AO N loss via denitrification (29.4 kmol s−1), and (ii) the export of phosphate (−1.0 ± 0.3 kmol s−1). Our
simple assessment suggests the AO to be a minor/modest exporter of DON (−4.66± 3.08 kmol s−1) and a large
exporter of DOP (−1.74 ± 0.50 kmol s−1). The results therefore, do not support our hypothesis. To support it,
results should yield net imports equivalent to the denitrification rate and to the phosphate export. However,
given the AO circulation, patterns emerge with regard to sources and sinks of DON and DOP, and how these
might have further impacts downstream.

Figures 2k and 2l plot concentrations of nitrate versus phosphate and DON versus DOP. The inorganic N:P
relationship from profiles in the Nordic Seas sector and from profiles in central and east Labrador Sea
(nitrate=15.6*phosphate − 1.59) is consistent with Atlantic waters, while that from profiles across the LC
(nitrate=13.2*phosphate−4.47) is consistent Pacific-derived polar waters. We see the expected offset between
waters of Atlantic and Pacific origin (e.g., nitrate=17.4*phosphate−3.07 and nitrate=12.36*phosphate−10.5,
respectively) [Jones et al., 1998]. With our new organic nutrient data, we find clear relationships between DON
and DOP concentrations associated with Atlantic waters and inferred Pacific-derived waters, analogous to
the inorganic nutrient relationships. For the Atlantic waters, DON=12.1*DOP + 3.47 and for Pacific waters,
DON=7.33*DOP− 0.26 (Figure 2l), with the intercept in the former possibly representing the refractory pool at
depth. There is a clear offset between the two relationships equivalent to 0.5μmol-DOP L−1 at 4μmol-DON L−1,
increasing to 0.8 μmol-DOP L−1 at 8 μmol-DON L−1.

There are biogeochemical implications of this DON:DOP difference. The consistency of the slopes in DON:DOP
relationships may be indicative of a common biological origin, but influenced by different removal processes
(e.g., denitrification), additional autochthonous and allochthonous sources, and/or water mass modification.

LC DON and DOP transports (i.e., polar outflow) seem enhanced (5.5- and 3.7-fold, respectively) relative to
the inferred Pacific-water-derived transports (Table 1). While the latter may be a point for discussion given
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the complex nature of water mass transformation via winter convection and halocline water formation, and
organic matter decomposition upstream [e.g., Anderson et al., 2013; Lowry et al., 2015; Tremblay et al., 2015],
hence, not truly representing annual average transports across Bering Strait, our assumption provides a
reference point enabling us to make first-order inferences.

LC DON and DOP transports hold relevant nonetheless and are somewhat consistent with the export of inor-
ganic nutrients via Davis Strait, which were found to be 2 to≳3 times larger than the import across Bering Strait
(TV13). The above possibly reflects the net effect of physical and biogeochemical processes upstream and/or
the composition of DOM: (1) a fraction of the organic nutrients imported via Bering Strait may get locked in
the halocline under a strong stratified surface layer; (2) the DON:DOP ratio of this DOM pool may render it
unappealing to bacteria and phytoplankton alike (i.e., it cannot relieve nitrogen limitation); and/or (3) biolog-
ical production of semilabile and refractory dissolved organic matter over the Chukchi Sea and adjacent shelf
seas dominates over sinks along the pathway to Davis Strait. If the latter holds true and the increase of open
water primary production due to summer sea ice retreat [Arrigo et al., 2008; Brown and Arrigo, 2012] yields
larger biologically derived DOM, it is likely this will also affect the quality and quantity of nutrients exported
to the NAtl.

Deep transports of DON across Fram Strait may be balanced, since concentrations in inflowing and outflowing
waters are similar: 3.6 ± 0.4 μmol L−1 for the WSC between 101 and 501 m, and 3.7 ± 0.4 μmol L−1 for the EGC
between 101 and 320 m. These concentrations are consistent with DON observations in the Laptev Sea of
3.6 ± 0.4 μmol L−1 (200–500 m) and 3.4 ± 0.3 μmol L−1 (>500 m) [Dittmar et al., 2001; Sipler and Bronk, 2015],
which may be typical in deep Eurasian AO waters. We are not aware of concomitant DOP measurements.
Across Fram Strait these are near or below the detection limit at depth. We have already shown that Fram
Strait surface water transports are approximately in balance.

DON and DOP imports through the BSO (8.36 ± 1.83 kmol-DON s−1 and 0.23 ± 0.13 kmol-DOP s−1) might (1)
become relevant for Eurasian AO biogeochemistry if these organic pools are recycled during transit through
the Barents Sea; (2) alternatively, if unused, these might be incorporated into the wider AO scale Atlantic Water
driven circulation [e.g., Dmitrenko et al., 2015; Rudels et al., 2004]. If the former held true, the DON transport
could potentially offset ∼65 ± 11% of the N lost to Barents Sea denitrification (12.9 kmol-N s−1) [Chang and
Devol, 2009], and the DOP transport could account for 23% of the phosphate export. If the latter, then organic
nutrient pools might be locked under/within AW and/or AW-derived halocline waters in the Eurasian Basin.
However, with current data availability, the above scenarios remain to be tested.

4.3. Conclusions
We have assessed the hypothesis that DON and DOP are important for the AO nutrient budget. Indicative
budgets allowed us to investigate whether DON could account for the nitrogen lost via denitrification in the
AO, and whether DOP could account for the phosphate exported to the NAtl, as previously suggested by TV13.

Results do not support our hypothesis, but do provide insights concerning sources and sinks of dissolved
organic pools within the AO and how these may influence nutrient transports downstream. We find a clear
difference in the DON:DOP relationship between the Amerasian and Eurasian sectors of the AO analogous to
the N:P ratio of inorganic nutrients. DON and DOP exported to the NAtl via Davis Strait seem to be enhanced
relative to the inferred Pacific-derived transports. This may reflect the net effect of a combination of processes
upstream such as water mass transformation, halocline formation, DOM production, and organic matter
decay. Furthermore, this may be indicative of how current/future changes in the AO may influence the quality
and quantity of nutrients (inorganic and organic) exported to the NAtl. Transports across Fram Strait seem
balanced. BSO transports may potentially contribute toward offsetting denitrification and the export of
phosphate. Alternatively, these nutrient pools could be incorporated into the wider AW-derived circulation
and be kept away from sunlit layers.

4.4. Implications
TV13 calculated AO inorganic nutrient budgets with sufficient data leading to acceptable accuracy so that it
was possible to reach two conclusions. First, that the balanced nitrate budget together with known interior
sinks (through denitrification) implied an unknown N source; and second, that the AO contained an unknown
source of P to support the net phosphate export. The hypothesis tested herein—that these unknown sources
might derive from dissolved organic nutrients—has not been supported. What, therefore, are the logically
possible ways forward, whereby these problems may be solved?
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1. Seasonality. TV13 inorganic nutrient data were collected from late spring through to autumn. Might these
budgets be different through winter (late autumn to early spring)?

a. There is seasonal variability in terms of quantity and quality of riverine nutrient supply; e.g., DON is
highest in spring and lowest in winter, while nitrate is higher in winter than in spring, when it gets
diluted and consumed [Holmes et al., 2011]. Although the contribution of river nutrient supply is
small relative to oceanic nutrient transports, could it influence the AO nutrient budget in winter?

b. Denitrification rates are linked to primary production and associated particulate organic matter flux
to bottom sediments over Arctic shelves [Chang and Devol, 2009]. If the absence of photosynthetic
activity in winter is reflected in winter denitrification rates, the N sink could be lower in winter,
reducing the apparent annual mean denitrification rate.

c. Likewise, microbiologically mediated DOM production over productive areas (i.e., Bering, Barents,
and Nordic Seas) most likely ceases in winter, so how does this affect nutrient transports (e.g., amount
and proportion of organic versus inorganic) into the AO?

Certainly the winter inflow of high-nutrient waters across Bering Strait conditions the winter water over the
Chukchi Sea, which later on influences phytoplankton blooms there [Lowry et al., 2015].

2. Organic nutrients and representativeness.
a. Given the lack of DON and DOP data across Bering Strait, we “inferred” their transport across this gate-

way using data collected in the southeastern Beaufort Sea from Simpson et al. [2008]. They observed
a DOP enrichment at middepth (150–200 m) associated with Bering Sea water. We in turn selected
the associated DON data to obtain a mean for our calculations. However, given the complex interac-
tions of physical and biological processes upstream as discussed above, it is likely that our inference
is not accurate enough. We need data across Bering Strait with enough resolution to resolve the sig-
nals of the inflowing water masses: e.g., the nutrient-rich Anadyr current on the Russian side, which
is difficult to sample.

b. Perhaps our “indicative” budgets are not representative. As shown in TV13, nutrient fields show sub-
stantial horizontal and vertical structure. Our approach here employs data with low spatial resolution,
which may not adequately resolve the net effect of mesoscale features, such as the complex recircu-
lation patterns of AW across Fram Strait [Hattermann et al., 2016] or narrow coastal currents that could
carry large amounts of terrigenous material: the coasts of Baffin Island, west and east Greenland,
Svalbard, mainland Norway, east Siberia, and Alaska.

c. Denitrification is highly uncertain. We have used the estimated pan-Arctic average of 29.4 kmol-N s−1

as reference, but with a range of 14 to 66 kmol-N s−1 [Chang and Devol, 2009], it requires to be
constrained.

3. Alternative nutrient sources.
a. Information regarding atmospheric deposition of nutrients to the AO is scarce, but some global mod-

eling assessments suggest these may be negligible; e.g., 7.0 × 10−3 kmol s−1 total P [Mahowald et al.,
2008], ≲1.13 × 10−13 kmol m−2 s−1 reactive N [Dentener et al., 2006].

b. It has recently been suggested that the melting of the Greenland Ice Sheet (GrIS) may drive large
nutrient supplies to the fjord systems around Greenland [e.g., Hawkings et al., 2015]. Certainly, the
fraction of any supply delivering nutrients to Baffin Bay would contribute to the AO nutrient budget
as assessed by us. Hawkings et al. [2016] estimated the GrIS melt runoff to supply ∼0.011 kmol s−1

(∼11 Gg yr−1) of bioavailable P, i.e., 1% of the phosphate exported from the AO (TV13) or 0.7% of
the DOP export estimated here. They also estimated total phosphorus inputs at ∼0.42 kmol s−1

(408 Gg yr−1), though what proportion of this may become bioavailable and on what times scales, is
yet to be determined.

Perhaps not surprisingly, our simple assessment prompts more questions than provides answers. However,
addressing these questions is important if we are to understand how current and future changes in the Arctic
environment affect the complex interaction of physical and biogeochemical processes that ultimately lead
to nutrient pools (both inorganic and organic) becoming available (or not) to primary producers and
bacteria, which has implications for ecosystem functioning and for nutrient transports to the NAtl. It is evident
that we lack the data to resolve temporal changes in nutrient transports and budgets, in particular, oceanic
biologically derived organic nutrient pools. Our simple analysis provides information to serve as starting point
to evaluate the role of dissolved organic nutrients in AO biogeochemistry at the pan-Arctic scale and also
beyond AO gateways.
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