
 

 

Wintering in the sun: niche partitioning by three nonbreeding Pterodroma petrel 1 

species in the equatorial Pacific Ocean 2 

 3 

Running head:  Niche partitioning by nonbreeding Pterodroma petrels 4 

 5 

M. J. Rayner1,2 *, N. Carlile3, D. Priddel3, V. Bretagnolle4, M. G. R. Miller5, R. A. Phillips6, L. 6 
Ranjard7, S.J. Bury8& L. G. Torres9 7 

 8 
1 Auckland Museum, Private Bag 92018, Auckland, 1141, New Zealand. 9 

2 School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, PB 92019, 10 
New Zealand. 11 

3Office of Environment and Heritage, PO Box 1967, Hurstville, NSW 2220, Australia. 12 
 13 
4Centre National de la Recherche Scientifique, Centre d’Etudes Biologiques de Chizé, 14 
F-79360 Beauvoir-sur-Niort, France. 15 
 16 
5Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 17 
6811, Cairns, Queensland, 4870, Australia. 18 
 19 
6British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, 20 
Cambridge CB3 0ET, UK 21 
  22 
7Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia 23 
 24 
8National Institute of Water and Atmospheric Research, PO Box 14-901, Kilbernie, Wellington 6011, 25 
New Zealand 26 
 27 
9Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, 28 
Oregon State University, Newport, Oregon, United States of America. 29 
 30 
 31 
*mrayner@aucklandmuseum.com 32 
 33 
 34 
 35 
 36 

 37 

 38 

 39 

 40 

Key words: Species distribution models, stable isotope analysis, niche, foraging ecology, seabirds, 41 
tropical Pacific  42 



 

 

Abstract 43 

Niche divergence is expected for species that compete for shared resources, including migrants that 44 

occupy similar regions during the non-breeding season.  Studies of temperate seabirds indicate that 45 

both spatial and behavioural segregation can be important mechanisms for reducing competition, but 46 

there have been few investigations of resource partitioning by closely-related taxa in low productivity, 47 

tropical environments.  We investigated niche partitioning in three gadfly petrel taxa, Pterodroma 48 

leucoptera leucoptera (n = 22) , P. leucoptera caledonica (n = 7) and P. pycrofti (n = 12) during their 49 

non-breeding season in the eastern tropical Pacific Ocean by combining tracking data from 50 

geolocator-immersion loggers with remotely-sensed environmental data in species distribution models 51 

(SDMs), and by comparing feather stable isotope ratios.  The three taxa showed spatial partitioning; 52 

two foraged in the North Equatorial Counter Current and one in the South Equatorial Current. This 53 

reflected differences in their realised habitat niches, with significant taxon-specific responses to 54 

thermocline depth, sea surface temperature and bathymetry.  There were also differences among taxa 55 

in activity patterns, and all birds spent a much larger proportion of time in flight at night than during 56 

the day, suggesting predominance of nocturnal foraging behaviour.  Comparison of stable isotope 57 

ratios in feathers suggests that P. leucoptera leucoptera and P. pycrofti mainly consume vertically-58 

migrating mesopelagic fishes, whereas the diet of P. leucoptera caledonica also include some lower 59 

trophic level including crustaceans and squid.   Unique insights can be gained from studies of the 60 

foraging ecology of tropical pelagic seabirds, in comparison with temperate and polar waters, and are 61 

urgently required for understanding and protecting tropical avifauna in key marine habitats 62 
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Introduction 70 

The distribution of top predators in the marine environment is frequently linked to physical 71 

oceanographic processes that govern spatial and temporal variation in primary productivity and 72 

associated prey availability (Block et al. 2011).  In particular, physical forcing in marine boundary 73 

currents creates convergence and upwelling zones known as some of the most productive marine 74 

environments on earth, where predators target and compete for prey concentrations that can be 75 

predictable at meso to large spatial scales (Belkin et al. 2009, Bost et al. 2009).  Studies of seabird 76 

distribution during the breeding season demonstrate that populations minimise interspecific 77 

competition in such foraging zones through a variety of mechanisms including segregation in space 78 

and time, behaviour and diet (Phalan et al. 2007, Navarro et al. 2013, Moreno et al. in press).  During 79 

the nonbreeding season, when seabirds are free from central-place foraging constraints, studies 80 

highlight the importance of spatial and dietary segregation, frequently across ecological gradients 81 

related to ocean temperature, reflecting the location of boundary systems (Spear et al. 2007, Thiebot 82 

et al. 2012, Cherel et al. 2013, Navarro et al. 2015, Quillfeldt et al. 2015). 83 

Small gadfly Pterodroma petrels within the subgenus cookilaria (~ 10 species) are a group of seabirds 84 

that usually make long distance migrations during the non-breeding season to productive boundary 85 

systems in the temperate northern and southern Pacific Ocean where they exhibit both spatial and 86 

temporal resource partitioning (Rayner et al. 2011, Rayner et al. 2012, Priddel et al. 2014).  However, 87 

not all cookilaria migrate to temperate habitats, with some species occupying tropical non-breeding 88 

habitats such as the eastern tropical Pacific Ocean (ETPO) (Kessler 2006), where they are part of a 89 

diverse seabird community (Au & Pitman 1986, Ballance et al. 1997, Spear et al. 2007, Priddel et al. 90 

2014).  Both theoretical (Pianka 1974) and empirical data (Torres 2009, Young et al. 2010) suggest 91 

that in such low productivity tropical habitats, competitors will increase niche separation to avoid 92 

competition.  Accordingly, the community of cookilaria in the ETPO represents a distinctive 93 

ecological system for investigating niche partitioning in small Procellariiformes, providing a useful 94 

comparison with studies in temperate systems (Ainley et al. 1992, Navarro et al. 2015)   95 



 

 

A number of gadfly petrels endemic to breeding sites in temperate Australasia are known, or 96 

considered likely, to occupy the ETPO during part of their seasonal cycle.  Gould’s Petrel 97 

(Pterodroma leucoptera; ~200–250 g) occurs as two subspecies with low levels of gene flow between 98 

populations breeding on islands off the coast of New South Wales, Australia (P. leucoptera 99 

leucoptera, hereafter leucoptera) and on the main island of New Caledonia (P. leucoptera caledonica, 100 

hereafter caledonica)(de Naurois 1978, Priddel et al. 1995, Gangloff 2010).  During the nonbreeding 101 

season, both subspecies migrate to the ETPO (Priddel et al. 2014).  Pycroft’s petrel (Pterodroma 102 

pycrofti, hereafter pycrofti) is endemic to islands off the northeast coast of New Zealand (~130 –200 g 103 

(Marchant & Higgins 1990) but has a poorly known nonbreeding distribution that likely extends,  in 104 

part, to the tropical Pacific (Spear et al. 1992).  Recent genetic research indicates that pycrofti is a 105 

sister taxon to leucoptera and caledonica (Steeves et al in prep) presenting an opportunity for 106 

comparative analysis of foraging ecology in these morphologically and genetically similar taxa.   107 

We investigated niche separation in leucoptera, caledonica and pycrofti during the nonbreeding 108 

season by combining tracking data from geolocator-immersion loggers with remotely-sensed 109 

environmental data in species distribution models (SDM), and by comparing stable isotope ratios in 110 

feathers grown by tracked individuals during the same period.  Our aims were to present the first 111 

detailed analysis of the nonbreeding movements of individual pycrofti and to highlight differences in 112 

habitat use and foraging ecology indicative of niche partitioning among these three closely-related 113 

taxa.   114 

 115 
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Materials and Methods 117 

Tracking data 118 

Tracking methods for leucoptera and caledonica are provided by Priddel et al. (2014).  In summary, 119 

combined geolocator-immersion loggers (MK14, British Antarctic Survey, Cambridge, UK and 120 

NanoLAT2900, Lotek, Ontario, Canada) were deployed on adult leucoptera (subspecies population 121 

size 800 – 1000 breeding pairs (Priddel & Carlile 2007)) at Cabbage Tree Island (Australia) on March 122 

2010 and caledonica (subspecies population size 1000 – 10000 breeding pairs (Brooke 2004)) at 123 

Grande Terre (the main island of New Caledonia) in January 2010.  Loggers were retrieved at both 124 

sites between November 2010 and January 2011 providing data on the entire nonbreeding period for 125 

22 leucoptera and 7 caledonica respectively.  Similar loggers (MK18, British Antarctic Survey, 126 

Cambridge, UK, 2g) were attached to twelve pycrofti (subspecies population size 2500 – 4000 127 

breeding pairs (Brooke 2004)) at Red Mercury Island (New Zealand) in December 2009, and 10 128 

(83%) were retrieved in January 2011, of which two failed to provide data.  All loggers were attached 129 

using the methods described by Rayner et al. (2008) and weighed < 1.5% of adult body mass. 130 

 131 

Light data from the loggers were processed following the methods of Rayner et al. (2012). The 132 

nonbreeding phase was defined according to Priddel et al. (2014) based on the first location outside or 133 

inside a 1000 km buffer (an arbitrary but standardised measure) around the colony at the end or start, 134 

respectively, of the breeding season.  The loggers tested for saltwater immersion data every 3 s, with 135 

the data binned into ten minute intervals, resulting in values ranging from 0 (dry) to 200 (immersed 136 

for whole period).  These data were analysed using the methods of Rayner et al. (2012), providing 137 

temporal data on percent of time immersed, flight bouts greater than 10 minutes, and duration of flight 138 

bouts during daylight and darkness (based on the timing of civil twilight) for each species. 139 

 140 

Construction of species distribution models (SDM) 141 



 

 

Post-processed geolocation data from each species during the nonbreeding season were included in 142 

binomial species distribution models (SDM) following methods presented in Torres et al. (2015).  In 143 

brief, locations from tracked individuals of each species (leucoptera n = 22, caledonica n = 7, pycrofti 144 

n = 8) were used to construct monthly kernel density estimates (search radius 200 km) during the non-145 

breeding season for all three species between April and October.  Presence data for each SDM were 146 

those locations that fell within the 50% density contour for each of those months, which was 147 

considered to represent core habitat.  Background data (otherwise known as pseudo-absences) 148 

implemented in the SDM for each month were uniformly-spaced locations (every 100 km2) falling 149 

within the 90% density contour for all species locations (April through October; n = 6245).  This 150 

method was based on the assumption that all habitat was equally available to the three taxa within the 151 

timeframe of their non-breeding phase. Background locations were randomly assigned dates between 152 

the date of arrival and departure for each species, and bird identity in proportion to the number of 153 

presence points from each bird. Using these background and presence data we produced binomial 154 

boosted regression tree (BRT)(Freidman 2001) models of presence-availability (Boyce et al. 2002, 155 

Torres et al. 2015) that describe the distribution of each cookilaria petrel relative to the available 156 

habitat across the entire tropical pacific region exploited by all species. 157 

For each species model of presence-availability, a range of static and remotely-sensed environmental 158 

data were used to describe habitat use.  Depth values at each presence and background point were 159 

extracted from the 30 arc-second General Bathymetric Chart of the World (http://www.gebco.net/; 160 

GEBCO). Seabed slope angle and minimum distance to land were derived from the GEBCO 161 

bathymetry data using the package ‘raster’ in R 3.1.1 (R Core Team 2014).   Several dynamic 162 

oceanographic variables (Table 1) were obtained from NOAA ERDDAP web servers using the 163 

Xtractomatic routines in R (http://coastwatch.pfel.noaa.gov/xtracto/): Chlorophyll-a concentration 164 

(CHL; 8-day), Sea surface temperature (SST; 8-day), sea surface height deviation (SSH; 1-day), 165 

Ekman upwelling (EKM; 3-day) and wind speed (WIND; 3-day). We obtained gridded, annual 166 

climatology data (12 month) for top of thermocline depth from IFREMER  167 

(http://www.ifremer.fr/cerweb/deboyer/mld); selecting the appropriate monthly grids for the non-168 



 

 

breeding period. The median values obtained for these environmental variables were those within a 169 

200km radius of each location. This extraction technique accounted for the potential 200+ km spatial 170 

error in geolocation data (Phillips et al. 2004). The absolute deviation  of the dynamic variables were 171 

also included in the models to assess how environmental variability may influence petrel habitat and 172 

log transformations of slope, WIND, CHL and EKM were implemented in the models to account for 173 

skewed distributions.  174 

SDMs of each petrel species were generated using BRT models, which has demonstrated strong 175 

predictive performance and model parsimony, including for another pelagic petrel species (Elith et al. 176 

2006, Buston & Elith 2011, Torres et al. 2013, Torres et al. 2015). BRT is a machine learning method 177 

that can handle correlated, interacting and non-linear data, all of which are common in ecological 178 

studies (Leathwick et al. 2006, Elith et al. 2008).  Two algorithms are applied in BRT modelling: the 179 

first partitions the predictor space into homogeneous response groups using decision trees, and the 180 

second boosts this process to iteratively optimize the predictive performance of the model (Elith et al. 181 

2008). The process combines a large number of individual decision trees to generate a BRT model.  182 

The contribution of each predictor variable to a BRT model is determined by the number of times it is 183 

used to split a tree branch. If a predictor variable contributed less than 5% to the model, the model 184 

was re-run without that variable (Buston & Elith 2011). The learning rate (lr) of a BRT determines the 185 

contribution of each fitted tree to the final model and was set at 0.0025, while the bag fraction, which 186 

is the proportion of samples used at each tree from the whole dataset, was set at 0.5. Tree complexity 187 

(tc), which represents the number of nodes on each tree and determines the number of interactions 188 

between predictors, was allowed to vary between 1 and 4 so that the number of boosting iterations, 189 

known as the number of trees (nt), was greater than 1000, as recommended by Elith et al. (2008). 190 

Each model dataset included multiple presence and background points from the same bird track, and 191 

with varying sample sizes; to account for this internal structure in the datasets, CV-folds were 192 

specified (De'ath 2007) as all presence and background locations from an individual bird. CV-folds 193 

withhold subsets of data from the model at each tree that are subsequently used to test model fit. 194 



 

 

While generating each BRT, 10% of presence and 10% of background locations were withheld from 195 

model calibration for external validation to assess predictive performance and select optimal model 196 

parameters. Four metrics were used to select the optimal model and evaluate predictive performance: 197 

cross-validation deviance explained and area under the receiver operator curve (AUC) calculated 198 

during the modelling procedure, and by external validation metrics of deviance between observed and 199 

predicted values (validation deviance) and AUC (validation AUC) calculated using the withheld data.  200 

Due to the presence vs. availability design of the BRT models, k-fold cross validations (Boyce et al. 201 

2002) were also conducted on the optimal models to assess the predictive capacity of ‘used’ locations, 202 

while ignoring the predictability of absence locations because these are less certain when working 203 

with background or pseudo-absence data (Torres et al. 2015). The k-fold cross validation binned the 204 

predicted habitat suitability of each presence and absence location into equal-interval groups between 205 

0 and 1 (0-0.1, 0.1-0.2, 0.2-0.3, etc.), and the proportion of presence locations in each bin was 206 

determined. A Spearman-rank correlation (rs) was calculated between bin rank (0, 0.1. 0.2, 0.3, etc.) 207 

and the proportion of presence locations to assess whether the latter increased with increasing 208 

suitability of predicted habitat, indicating good predictive performance (Torres et al. 2015).   209 

Stable isotope ratios 210 

Observations of our study taxa indicate worn and fresh plumage at the end and beginning of each 211 

breeding season, consistent with previous research indicating that cookilaria moult occurs during 212 

nonbreeding when dietary signals are encorporated into new plumage (Marchant & Higgins 1990, 213 

Spear et al. 1992) (Hobson 1999). Stable isotope ratios of N (δ15N) and C (δ13C) provide an indication 214 

of both the trophic level and carbon source (benthic versus pelagic, inshore versus offshore, and 215 

information on water mass) of prey ingested during the time of tissue formation, which in the case of 216 

feathers from adult seabirds typically allows comparisons between trophic level and geographic 217 

segregation during the nonbreeding period (Hobson 1999, Phillips et al. 2009).  To enable a 218 

comparison between stable isotope ratios and distribution from tracking data, a single body feather 219 

was collected from each leucoptera (n = 10), caledonica (n = 8) and pycrofti (n = 10) upon geolocator 220 

retrieval.  Feathers were stored in plastic bags in the field. Once in the lab, feathers were cleaned with 221 



 

 

70% ethanol, rinsed in distilled water to remove contaminants, dried in at 50°C and cut into very fine 222 

fragments. Stable isotope analyses of a subsample (~0.7 mg) of each homogenized feather were 223 

carried out at National Institute of Water & Atmospheric Research (NIWA) using an AS200_LS 224 

autosampler and NA 1500N (Fisons Instruments, Rodano, Italy) elemental analyser combustion 225 

furnace connected to a DeltaPlus continuous flow, IRMS (Thermo-Fischer Scientific, Bremen, 226 

Germany). Operational details are outlined in (Rayner et al. 2008) with the exception that δ13C values 227 

were calibrated against CO2 reference gas, relative to the international standard Carrara Marble NSB-228 

19 (National Institute of Standards and Technology (NIST), Gaithersberg, MD, USA). This, in turn, 229 

was calibrated against the original Pee Dee Belemnite (PDB) limestone standard and was then 230 

corrected for 17O. A two-point normalisation process using NIST 8573 (USGS40 L-glutamic acid; 231 

certified δ15N = -4.52±0.12 ‰) and IAEA-N-2 (ammonium sulphate: certified δ15N = +20.41 ±0.2 ‰) 232 

was applied to δ15N data. Carbon isotope data were corrected via a two-point normalisation process 233 

using NIST 8573 (USGS40 L-glutamic acid; certified δ13C = --26.39±0.09 ‰) and NIST 8542 234 

(IAEA-CH-6 Sucrose; certified δ13C = -10.45 ±0.07 ‰). DL-Leucine (DL-2-Amino-4-235 

methylpentanoic acid, C6H13NO2, Lot 127H1084, Sigma, Australia) was run every 10 samples to 236 

check analytical precision and enable drift corrections to be made if necessary. Additional 237 

international standards NIST 8574 (USGS41 L-glutamic acid; certified δ13C = +37.63 ±0.10 ‰ and 238 

δ15N = +47.57 ±0.22 ‰), NIST 8547 (IAEA-N1 ammonium sulphate; certified δ15N = +0.43 ±0.04) 239 

were run daily to check isotopic accuracy. Repeat analysis of standards produced data accurate to 240 

within 0.25 ‰ for both δ15N and δ13C, and a precision of better than 0.32 ‰, for δ15N and 0.24 ‰ 241 

δ13C. 242 

Statistical analyses 243 

Migration arrival and departure dates were compared between species using contingency analysis. 244 

Following tests for normality, a combination of non-parametric tests (Kruskall Wallace tests) and 245 

parametric tests (ANOVA) were used  to test for differences among species in time spent within the 246 

non-breeding core range (50% kernel), activity parameters (based on the immersion data), and stable 247 

isotope ratios, respectively.  Parametric and non-parametric multiple comparisons were used to test 248 



 

 

for pairwise differences (Wilcoxon matched pairs and Tukey’s pairwise comparisons) between 249 

species. Analyses were conducted using JMP 11.2.0 (©SAS Institute 2013) with a threshold of 250 

significance at α = 0.05.  Unless indicated otherwise, data are presented as mean ± SD.  Geospatial 251 

processing of geolocation data was conducted using ArcGIS v10.3 (ESRI, CA, USA). Extraction of 252 

remote-sensing data, creation of static environmental variables and BRT modelling were conducted in 253 

R 3.1.1 (R Development Core Team 2013) using the packages dismo (Hijmans et al. 2012), Raster 254 

(Hijmans & van Etten 2012), Gbm, PresenceAbsence (Freeman 2007), and with custom code by Elith 255 

et al. (2008).  256 



 

 

Results 257 

Processing of light data from leucoptera (n = 22 adults), caledonica (n = 7 adults) and pycrofti (n = 8 258 

adults), provided a total of 5287, 2330 and 2965 locations, respectively, for SDM analyses.  259 

Leucoptera, caledonica and pycrofti exhibited spatial segregation in their core distributions within the 260 

central and eastern tropical Pacific Ocean, but there were no significant differences in migration 261 

timetables, including the time spent in core areas (Table 2).  The core region used by leucoptera was 262 

from 10°N–5°S, 150–165°W, encompassing the eastern sector of the Republic of Kiribati (Line 263 

Islands), whereas that used by caledonica was 3000--6000 km southeast in the region of the East 264 

Pacific Rise (0 – 15°S, 135°- 100°W) (Figs. 1 and 2). Core areas of pycrofti were from 0-10°N, 140°- 265 

135°W in the eastern equatorial Pacific, and situated between those of leucoptera and caledonica 266 

(Fig. 1 and 2).  The migration routes of pycrofti were similar to those of leucoptera and caledonica 267 

(Priddel et al 2014); all birds first migrated east from New Zealand (at approximately 40°S) and then 268 

north to reach their nonbreeding range, and the return (pre-breeding) migration was southwest through 269 

Melanesia to reach waters around their respective colony (Fig. 1).  270 

Species distribution models 271 

Optimal BRT models for each petrel species performed well according to internal validation metrics  272 

and external measures of predictive performance using the withheld data (Table 3). Four predictor 273 

variables were common to all three models: Thermocline, Depth, SST and Chl collectively 274 

contributed 79%, 74%, 68%, and 39%, respectively, to all three models (total contribution of 87%: 275 

261/300% for all three models). All models had a tree complexity of two, allowing one interaction 276 

between terms. Species-environment response plots for these four variables indicate that each species 277 

used different habitats (Fig. 3). Intra-species comparisons showed that presence of leucoptera and 278 

caledonica peaked in habitats where the thermocline was reached at > 100 m, and both species 279 

exhibited a positive response to a deeper thermocline.  Conversely, pycrofti showed a negative 280 

response to a deeper thermocline, with presence peaking in habitats with the thermocline at ~ 25 m 281 

(Fig. 3).  Niche separation by depth was also evident, with leucoptera presence peaking in the deepest 282 



 

 

regions (> 5000 m), pycrofti in habitats with water depths of 4-5,000 m, and caledonica in shallower 283 

habitats (< 4000 m) (Fig. 3). Leucoptera presence peaked in habitats with the highest SST (27-29 ºC), 284 

pycrofti at mid-temperatures (25-28 ºC), and caledonica in cooler waters (20 - 26 ºC) (Fig. 3). Overlap 285 

in habitat preferences relative to Chl was apparent between caledonica and pycrofti, with both taxa 286 

showing increased presence in waters with low Chl, whereas leucoptera avoided that habitat (Fig 3).     287 

At-sea activity patterns 288 

There were significant differences in flight activity between daylight and darkness in all three species; 289 

tracked birds spent less time on the water and made more, and longer flight bouts in darkness (Table 290 

5; pairwise tests at 0.01).  There was no significant difference in the daylight activity patterns between 291 

species; all three taxa spent a similar amount of time on the water (F2, 20 = 2.16, P = 0.14), and the 292 

number of flight bouts (P = 0.34), and flight bout duration (P = 0.42) were comparable (Fig. 4).  In 293 

contrast, during darkness, the time spent on the water by pycrofti was greater than in leucoptera and 294 

caledonica (Pairwise Tukey tests P < 0.05 and P < 0.001), and by leucoptera was greater than in 295 

caledonica (Tukey HSD  P < 0.05) (Table 4, Fig. 4).  The trend of higher night time activity by 296 

caledonica was consistent with the significantly higher number of flight bouts and longer duration of 297 

flight bouts during darkness than in leucoptera and pycrofti (F2, 20 = 8.61, P < 0.01; F2, 20 = 13.31, P < 298 

0.001); these last two taxa did not differ significantly in the number (P = 0.18) or duration of flight 299 

bouts (P = 0.06). 300 

Leucoptera and pycrofti exhibited higher flight activity during daylight and darkness at the beginning 301 

and ending of the nonbreeding period, with a reduction in activity in June to August (Fig. 4).  302 

Caledonica showed similar activity patterns across the nonbreeding season during daylight hours, 303 

whereas night time activity remained high from April to October (Fig. 4). 304 

 305 

 306 

 307 



 

 

Isotopic niche 308 

Nitrogen isotope ratios differed significantly between the three species (Fig. 5; F2, 27 = 19.52, P < 309 

0.001).  δ15N in feathers of pycrofti (16.91 ± 1.67) and leucoptera (15.22 ± 1.67) did not differ 310 

significantly (δ15N 16.91 ± 1.67 and δ15N 15.22 ± 1.67 respectively; pairwise tukey test, p = 0.09), but 311 

were higher than that in caledonica (12.45 ± 0.93, Pairwise Tukey tests both p < 0.01) (Fig. 5).  δ13C 312 

in feathers of caledonica (-15.72 ± 0.55) were higher than in leucoptera (-16.43 ± 0.60) but not 313 

pycrofti (-16.04 ± 0.28) (Fig. 5, F2, 27 = 4.93, P < 0.01, Pairwise Tukey tests:  caledonica - leucoptera 314 

(p <0.01), caledonica – pycrofti (P = 0.38), leucoptera - pycrofti (p = 0.18).   315 

  316 



 

 

Discussion: 317 

Pterodroma petrels are among the most wide-ranging of all birds, and capable of traversing >1,000 318 

km within a single day (Pinet et al. 2011, Rayner et al. 2011, Rayner et al. 2012).  Despite this 319 

capacity for long-distance travel and thus shared habitat use, our three study taxa showed clear 320 

differences in distribution and habitat use during the non-breeding season but not in the timing of 321 

movements to and from these habitats.  The core distributions of leucoptera and pycrofti were 322 

separated longitudinally - west of ~ 158° W, and east of 133° W, respectively - within the North 323 

Equatorial Counter Current (NECC) (Fig. 2, C), extending south to the edge of the cooler South 324 

Equatorial Current (SEC)(2-5°N) and north to the North Equatorial Current (NEC)(12-14°N), whereas 325 

caledonica was distributed mainly in the South Equatorial Current (SEC) (0 - 15°S) between 135°W 326 

and 95°W.  The preference of pycrofti and leucoptera for the waters of the NECC is consistent with 327 

at-sea observations of a range of procellariiform species in this region, including Puffinus newelli, 328 

Puffinus pacificus, Pseudobulweria rostrate and other gadfly petrels, Pterodroma cervicalis, 329 

Pterodroma externa and Pterodroma sandwichensis, (Ballance et al. 1997, Spear et al. 2001).  330 

Previous studies have suggested that leucoptera associates with the SEC (Ribic et al. 1997).  331 

However, this previous supposition is inconsistent with our data, which indicated that the tracked 332 

leucoptera occupied strikingly different habitats to its sister taxon in the western NECC.  This result 333 

reaffirms the utility of tracking studies for revealing population-specific foraging ranges for taxa that 334 

are similar morphologically, and therefore difficult to distinguish at sea (Rayner et al. 2011).  335 

Moreover, this utility is particularly relevant for caledonica and leucoptera with significantly different 336 

populations sizes (caledonica ~ 10 000  breeding pairs, leucoptera ~ 1000 breeding pairs; (Brooke 337 

2004, Priddel & Carlile 2007), making it particularly important to determine foraging areas and 338 

ensure a balanced assessment of at-sea threats. 339 

Large scale spatial segregation is an important component of resource partitioning by small 340 

procellariform seabirds at high latitudes, as demonstrated by recent studies linking divergent 341 

distributions with species-specific preferences for particular sea surface temperature regimes, 342 

frequently partitioned across oceanic fronts (Navarro et al. 2013, Navarro et al. 2015, Quillfeldt et al. 343 



 

 

2015).  The ETPO lacks the strong latitudinal gradients in temperature typical of higher latitude 344 

regions in the Southern Ocean.  Instead, the SDMs for our study taxa indicate that spatial segregation 345 

was paralleled by subtle taxon-specific differences in habitat niche, across a range of environmental 346 

predictors. 347 

Functional relationships with depth of the thermocline (reflecting a subsurface gradient in temperature 348 

below the warm surface mixed layer), SST and depth indicates a division into two strategies of habitat 349 

use by the three taxa; leucoptera and pycrofti foraged in deep and warm  waters where the depth of 350 

the thermocline was the strongest predictor of presence yet where both species had opposing 351 

functional relationships with thermocline depth: leucoptera preferring a deeper thermocline and 352 

pycrofti a shallower one.  There is evidence that in the ETPO, the thermocline depth is a strong 353 

predictor of the abundance and distribution of other seabirds (Ballance et al. 1997, Spear et al. 2001, 354 

Ballance et al. 2006).  In the NECC, vertically-migrating prey aggregate at the top of the thermocline 355 

and are frequently driven to the surface by feeding tuna and dolphins and thus exploited by a range of 356 

diurnally-feeding seabirds (Ballance et al. 2006).  Leucoptera and pycrofti in these habitats are 357 

solitary foragers and not considered parts of this tuna-dolphin-seabird feeding assemblage (Spear et 358 

al. 2007), yet their presence was nevertheless predicted strongly by thermocline depth, indicating that 359 

similar ecological processes influence their distribution.  Conversely, the presence of caledonica in 360 

the SEC was associated with cooler SSTs and shallower waters, particularly over the east Pacific rise, 361 

where thermocline depth was a weak predictor.  Bathymetric features associated with the east Pacific 362 

rise in this region likely provide foraging opportunities as a result of upwelling that are targeted by 363 

various Pterodroma species (Rayner et al. 2012). 364 

In the ETPO low iron availability reduces primary production resulting in a low chla environment 365 

(Pennington et al. 2006).  The responses of the tracked birds to chla gradients were weak and 366 

indicated the use of waters with generally uniform and low chla values, particularly by leucoptera and 367 

pycrofti which maintained core habitats in oligotrophic waters of the NECC.  This result is 368 

inconsistent with the results of studies demonstrating spatial relationships between chla, prey and 369 

predators in the ETPO (Ballance et al. 2006) and at higher latitudes where chla is more abundant 370 



 

 

(Weimerskirch 2007, Peron et al. 2010). The analysis of immersion data from the three study taxa 371 

showed a striking pattern of reduced time resting on the surface, more numerous and longer flight 372 

bouts and higher variance in activity parameters during darkness than daylight.  These results suggest 373 

that although our study taxa may forage opportunistically during daylight, their primary foraging 374 

strategy in the ETPO is to exploit nocturnally available prey, which is consistent with previous 375 

research on tropical (Spear et al. 2007, Pinet et al. 2011, Ramirez et al. 2013) ) and temperate 376 

procellariiform seabirds (Imber 1973, Imber 1996, Rayner et al. 2012).  In a nine-year study (1983-377 

1991), Spear et al (2007) demonstrated that the diet of small procellariform species in the ETPO, 378 

including leucoptera, was dominated (>90%) by vertically-migrating mesopelagic fishes that were not 379 

associated with diurnally feeding surface predators.  Although our comparison of nitrogen stable 380 

isotope ratios in feathers grown during the nonbreeding period suggest little dietary segregation 381 

between leucoptera and pycrofti, which occupy waters north of the equatorial front and NECC, the 382 

mean  δ15N values in these two taxa were higher than in caledonica, which occupy habitats in the 383 

SEC.  Values of 13 to 18‰ for δ15N in leucoptera and pycrofti feathers indicates that the tracked birds 384 

were foraging at a similar trophic level to tropical piscivores (Young et al. 2010), confirming a diet 385 

likely dominated by mesopelagic fishes (myctophids, bregmacerotids, diretmids, and 386 

melamphaids)(Spear et al. 2007).  In contrast, the lower δ15N of caledonica (11.0 to 14.0‰) suggests 387 

the additional consumption of prey from lower trophic levels, such as cephalopods or marine 388 

crustaceans (δ15N of 8.1 to 10.2‰, and 3.6 to 6.5‰, )(Quillfeldt et al. 2005).  This interpretation 389 

assumes there are no differences in regional baselines for δ15N, which is supported by the similarity in 390 

δ13C values for all three study taxa, which is consistent with foraging in deep tropical waters within a 391 

narrow latitudinal range (Hobson et al. 1994, Young et al. 2010).   392 

In conclusion, our study of three closely-related Pterodroma petrels in the ETPO is consistent with 393 

theoretical and empirical data on niche overlap, which predicts divergence in habitat use, diet or 394 

behaviour among competitors that are sympatric in low resource environments.  The slight 395 

behavioural differences appear unlikely to reduce inter-specific competition given the high 396 

morphological similarities between the three taxa. Rather, competition appears to be avoided by 397 



 

 

habitat segregation. The SDMs provide evidence that the spatial separation between these three taxa is 398 

driven by differences in realized habitat niches.  However unlike temperate systems, where seabird 399 

distributions can be predicted by strong surface temperature, wind or productivity gradients, two of 400 

three of our species were present in oligotrophic waters north of the equator, and the overall 401 

distribution of our study taxa was mediated by subtle horizontal and vertical temperature gradients, as 402 

well as depth.  Thermocline depth in particular was a strong predictor of presence, and its role appears 403 

linked to the unique foraging niche of the study taxa.  All three taxa were highly active during 404 

darkness, and thermocline depth likely plays a critical role by governing the proximity to the surface 405 

of the key prey source, which are vertically-migrating mesopelagic fishes.  The nocturnal foraging 406 

niche of the Pterodroma petrels parallels the diurnal tuna-dolphin-seabird assemblages that make use 407 

of shallow thermoclines in the same region (Spear et al. 2007).  Our study highlights the unique 408 

insights that can be gained from comparative studies of foraging ecology between pelagic seabirds in 409 

tropical systems and temperate or polar waters, and reinforces the importance of the ETPO as a 410 

critical habitat for numerous small Procellariiformes that breed in temperate regions.  Management 411 

programs seeking to protect key marine habitats for the many highly threatened temperate and tropical 412 

Pterodromas would benefit from further tracking to map foraging areas during the breeding and non-413 

breeding seasons, and to identify oceanographic drivers and their impacts on distributions. 414 
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Table 1. Environmental variables used in construction of boosted regression tree models. 425 

Variable (units) Product code Temporal 

resolution 

Spatial 
resolution 
(degrees) 

Data source 

Sea Surface Temperature (°C)(SST) TMHchla8day 8-day 0.05  MODIS AQUA www.oceancolor.org 

Chlorophyll-a Concentration 

(mg/m3)(Chl) 

TMHsstd8day 8-day 0.05  MODIS AQUA www.oceancolor.org 

Sea surface height deviation anomaly 

(m)(SSHD) 

TTAsshd1day 1-day 0.25  DUAACS AVISO www.aviso.oceanobs.com 

Wind speed (m/s)(Wind) TQAumod3day 3-day 0.25  METOP ASCAT www.eumetsat.int 

Ekman upwelling (m/day) TQAwekm3day  3-day 0.25  METOP ASCAT www.eumetsat.int 

Top of thermocline depth (m)  Monthly 

climatology  

2 IFREMER 

http://www.ifremer.fr/cerweb/deboyer/mld 

Depth (m)  Static 0.0083 GEBCO 

www.gebco.net 

Seabed slope angle (°)(Slope)  Static (derived) 0.0083 GEBCO 

www.gebco.net 

Distance to nearest land (km)  Static (derived) 0.0083 GEBCO 

www.gebco.net 

 426 
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Table 2.Timing of arrival and departure in core nonbreeding habitats for leucoptera, caledonica, and pycrofti in the eastern tropical Pacific Ocean in 2010.  P values indicate 429 
significance of contingency analysis to assess differences between species in arrival and departure dates, and time spent in core areas. Data are shown as means ± standard 430 
deviation in days, with range in parentheses.    431 

 
P. l. leucoptera P.l. caledonica P. pycrofti P 

Arrival  nonbreeding 
habitat  

 
24 Apr ± 9.8 days 
(7 Apr – 12 May) 
n = 14 

 
18 May ± 13.0 days 
(4 May – 13 Jun) 
n = 7 

 
21 Apr ± 12.35 days 
(5 Apr – 14May) 
n = 8 

0.20 

Departure 
nonbreeding habitat 

 
14 Sep ± 18.7 days 
(15 Aug – 16 Oct) 
n = 9 

 
4 Oct ± 23.5 days 
(31 Aug  - 28 Oct) 
n = 7 

 
5 Sep ± 4.24 days 
(2 Sept – 13 Sept) 
n = 5 

0.51 

Time in nonbreeding 
core 

 
141.3 ± 17.6 days 
(113-161) 
n = 9 
 

135.9 3 ± 31.1 days 
(78-174) 
n = 7 

137.0 ± 16.6 days 
(110-152) 
n = 5 

0.13 
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Table 3.Boosted regression tree (BRT) model parameters and validation results for leucoptera, caledonica and pycrofti. Thermocline = thermocline depth; SST=sea surface 443 
temperature; Slope  = seabed slope angle; Chl = chlorophyll a concentration; SSTad = sea surface temperature absolute deviation around median;  SSHD = sea surface height 444 
deviation; Wind = wind speed. AUC varies from 0 to 1, with 1 indicating perfect model fit, 0.5 indicating random assignment. Cross validated deviance represents the mean 445 
residual deviance per fold across the whole BRT model (lower values denotes better fit, but values cannot be compared between models). Validation deviance indicates the 446 
mean residual deviance between the withheld presence and absence values (1 or 0) and model predicted values for those points (higher values denote better model fit). rS 447 
indicates Spearman’s rank correlation derived from k-fold cross validation of withheld presence points from each model. 448 

 449 

Species Number of 
individuals 
tracked (total 
presence 
points) 

Parameters (% 
contribution) 

# of 
interactio
ns 

learning 
rate 

# trees Cross 
validated 
deviance 
(internal) 

Cross 
validated 
AUC 
(internal) 

Validation 
deviance 
(external) 

Validation 
AUC 
(external) 

rS (P-
value) 
(external)  

Leucoptera 22 (1963) 

Thermocline (43.0) 
SST (22.0) 
Depth (14.3) 
log(Slope)  (9.1) 
log(Chl) (8.6) 
SSHD (3.1) 

2 0.0025 1350 0.151 0.765 0.938 0.841 0.9904 
(<0.0001) 

Caledonica 7 (1102) 

SST (36.0) 
Depth (26.8) 
log(Chl) (15.7) 
Thermocline (9.4) 
SSTad (6.6) 
SSHD ( 5.5) 

2 0.0025 1800 0.207 0.822 0.671 0.888 0.9880 
(<0.0001) 

Pycroft 8 (1659) 

Depth (33.3) 
Thermocline (26.7) 
log(Chl) (14.8) 
SST (10.4) 
SSHD (9.6) 
Wind (5.2) 

2 0.0025 4550 0.294 0.829 0.952 0.833 0.9893 
(<0.0001) 



 

 

 450 

 451 



 

 

Table 4. Activity patterns of leucoptera, caledonica and pycrofti tracked with geolocator-immersion loggers in 452 
the tropical Pacific during the nonbreeding period. Flight bouts constitute periods where loggers were dry for ten 453 
minutes or longer. Values are the mean  ± SD.  454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 

 

Proportion of time spent 
on water (%) Number of flight bouts  

Duration of flight bouts 
(min) 

Daylight Darkness Daylight Darkness Daylight Darkness 

leucoptera 75.6 ± 6.5 28.9 ± 17.4 2.0 ± 0.7 5.6 ± 1.4 25.1 ± 5.0 53.6 ± 11.2 

caledonica 75.8 ± 4.6 7.9 ± 4.6 1.7 ± 0.5 7.2 ± 0.5 21.7 ± 5.0 67.0 ± 16.2 

pycrofti 83.1 ± 11.1 51.0 ± 18.3 2.4 ± 1.5 4.5 ± 1.3 25.8 ± 8.9 45.6 ± 7.9 



 

 

 466 

Figure 1 option 1. Locations and general post-breeding (solid lines) and pre-breeding (dashed lines) migration 467 
routes of (a) leucoptera, (b) caledonica and (c) pycrofti tracked with geolocators between March and November 468 
2010. Locations shown in bold colour are those that were within monthly 50% kernels during the nonbreeding 469 
season (Apr-Oct) and used as presence data in the species distribution models.   470 

 471 



 

 

 472 

Figure 1 option 2. Locations and general post-breeding (solid lines) and pre-breeding (dashed lines) migration 473 
routes of leucoptera, (green) caledonica (blue) and pycrofti (red) tracked with geolocators between March and 474 
November 2010. Locations are those that were within monthly 50% kernels during the nonbreeding season 475 
(Apr-Oct) and used as presence data in the species distribution models.  Respective species colonies shown as 476 
squares coloured as above. 477 

 478 

 479 

 480 



 

 

 481 

Figure 2. Nonbreeding distribution of leucoptera, caledonica and pycrofti between April and October 2010 482 
overlaid on averaged oceanographic climatologies for the month of July.  The 90% (black dashed lines) kernel 483 
contours of all species locations and the 50% (coloured solid lines) for each species from April to October: 484 
leucoptera (green lines), caledonica (blue lines) and pycrofti (red lines). The environmental layers are ordered 485 
by collective contribution to all three species models: A) Thermocline depth (m), B) Depth (m), C) Sea surface 486 
temperature (C°) and D) Chlorophyll-a concentration (mg/m3).  Dashed lines represent approximate locations of 487 
the North Equatorial Current (NEC), North Equatorial Counter Current (NECC) and South Equatorial Current 488 
(SEC) adapted from (Pennington et al. 2006). 489 



 

 

 490 

Figure 3.Comparison of fitted functions derived from presence-availability boosted regression tree models of 491 
leucoptera (green lines), caledonica (blue lines) and pycrofti (red lines) in relation to the four most influential 492 
predictor variables across all taxa.  Y axes represent the relative effect of each predictor variable (x axes) on 493 
petrel habitat use while fixing all other variables to their mean value. Positive Y-axes values represent a positive 494 
contribution by the predictor variable to species presence, and negative values indicate a negative contribution. 495 
The percent contribution of each predictor variable to each species model is given by labels in plot, coloured as 496 
per species. 497 
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Figure 4. Mean monthly activity metrics during daylight (clear symbols) and darkness (filled symbols) for 508 
leucoptera (triangles), caledonica (squares), and pycrofti (circles) tracked with geolocator-immersion loggers 509 
during the nonbreeding season including A) Percent of time on water,  B) Number of flight bouts and C) 510 
Duration of flight bouts. 511 
 512 
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 514 
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 517 
 518 
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 524 
 525 
 526 
Figure 5. Feather stable isotope ratios of leucoptera (green square, n = 12), caledonica (blue triangle, n = 7), and 527 
pycrofti (red circle, n = 10) tracked with geolocator-immersion loggers during the non-breeding season. 528 
Coloured symbols and errors are the mean ± s.d., and unfilled symbols correspond to individual values.   529 
 530 
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