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1 Abstract 
Deep-sea megafaunal biomass has typically been assessed by sampling with 
benthic sledges and trawls, but non-destructive methods, particularly 
photography, are becoming increasingly common. Estimation of individual wet 
weight in seabed photographs has been achieved using equations obtained 
from measured trawl-caught specimens for a limited number of taxa. 
However, a lack of appropriate conversion factors has limited estimation 
across taxa encompassing whole communities. Here we compile relationships 
between measured body dimensions and preserved wet weights for a 
comprehensive catalogue of abyssal epibenthic megafauna, using ~47,000 
specimens from the Porcupine Abyssal Plain (NE Atlantic) housed in the 
Discovery Collections. The practical application of the method is 
demonstrated using an extremely large dataset of specimen measurements 
from seabed photographs taken in the same location. We also collate 
corresponding field data on fresh wet weight, to estimate the impact of fixation 
in formalin and preservation in industrial denatured alcohol on the apparent 
biomass. Taxa with substantial proportions of soft tissues lose 35 to 60% of 
their wet weight during preservation, while those with greater proportions of 
hard tissues lose 10 to 20%. Our total estimated fresh wet weight biomass of 
holothurians and cnidarians in the photographic survey was ~20 times the 
previous estimates of total invertebrate biomass based on trawl catches. This 
dramatic uplift in megabenthic biomass has significant implications for studies 
of standing stocks, community metabolism, and numerical modelling of 
benthic carbon flows. 
 
Key words: biomass, invertebrate, preservation, wet weight, photograph, 
deep sea, Porcupine Abyssal Plain 

2 Introduction 
Deep-sea epibenthic invertebrate megafaunal biomass has typically been 
assessed by sampling with sledges and trawl nets (Gage & Bett 2005). Our 
current understanding of the ecology of these assemblages is based on these 
techniques, including studies of community dynamics over time (Billett et al. 
2001) and space (Alt et al. 2013), food web interactions (van Oevelen et al. 
2012), the potential links between resource availability and community 
dynamics (Ruhl et al. 2014), and their contributions to large scale and global 
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assessments of standing stocks (Rex et al. 2006, Wei et al. 2010). Although 
trawling and similar approaches are necessary to obtain specimens for 
taxonomy, histology, and genetics, such samples have major quantitative 
uncertainty in terms of the seabed area sampled, and likely do not accurately 
represent the megabenthic community present (Rice et al. 1979, Bett et al. 
2001). 
 
The investigation of deep-sea communities has increasingly favoured non-
destructive methods, primarily photography (Jamieson et al. 2013), which can 
produce quantitative data on the megabenthos (Jones et al. 2009, Smith & 
Rumohr 2013). Trawling has long been known to provide semi-quantitative 
sampling of megabenthic biomass, as a result of variable coverage and poor 
quantification of the seabed area sampled by trawls (Gage & Tyler 1991), 
lower catching efficiency of trawls, and body-size and tissue-type based 
variation in trawl efficiency (Owen et al. 1967, Rice et al. 1979, Smith & 
Hamilton 1983, Bett et al. 2001, Durden et al. 2015b). Large photographic 
surveys of the seabed have revealed substantially higher standing stocks of 
deep-sea megabenthos than corresponding trawl catch data (Morris et al. 
2014, Durden et al. 2015a), thus the use of seabed photography to improve 
quantification of biomass is logical and of potentially substantial significance 
to our understanding of deep-sea ecology generally, and carbon budgets in 
particular. For example, consider the expectation that the distribution of 
biomass in marine communities may be constant across logarithmic size 
classes (Sheldon et al. 1972), or increase continuously in logarithmic classes 
among the benthos (Bett 2013, Kelly-Gerreyn et al. 2014). Consequently, a 
substantial fraction of standing stock carbon may be represented by the 
megabenthos that are currently grossly underestimated from trawl catch data. 
 
Some previous photographic studies have estimated megafaunal biomass 
using abundances estimated from photographs in combination with mean wet 
weights of trawled specimens, largely in high-level taxonomic groupings for 
key faunal groups (e.g. Smith & Hamilton 1983, Thresher et al. 2011). 
Detailed estimation of abyssal invertebrate wet weights from dimensions 
measured in seabed photographs, has been achieved for echinoderms (Ruhl 
et al 2014), and for high-level taxonomic groupings at the Mid-Atlantic Ridge 
(Alt et al. 2013) and the northeast Atlantic (Christiansen & Thiel 1992). Further 
conversions between body length wet weight from trawl-caught specimens 
have been published for individual species (e.g. Enypniastes eximia; Bailey et 
al. 1994). However, a lack of appropriate conversion factors for many taxa 
has limited estimation across complete megafaunal communities. 
 
Here we establish a comprehensive compilation of relationships between 
measured body dimensions and preserved wet weights for abyssal epibenthic 
megafauna from the Porcupine Abyssal Plain (PAP, NE Atlantic). We 
accessed specimens from the exceptional archive of trawl-caught 
megabenthos housed in the Discovery Collections at the National 
Oceanography Centre, Southampton (Horton et al. submitted). We develop 
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links between those data and an extremely large dataset of specimens 
measured from seabed photographs taken in the same location, to test the 
practical application of the method. We collate corresponding field data on 
fresh wet weight, to estimate the impact of preservation on the apparent 
biomass of the megabenthos assemblage. Finally, we illustrate the 
significance of our approach by comparison with previously published 
estimates of PAP megafaunal biomass. 

3 Method 

3.1 Dimension to wet weight conversions from trawled specimens 
Conversions were created using ~47,000 specimens collected in the vicinity of 
the Porcupine Abyssal Plain Sustained Observatory Site (PAP; 48°50’N 
16°30’W, 4850m water depth; Hartman et al. 2012) using a semi-balloon otter 
trawl (Billett et al. 2001) on a number of research cruises between August 
1996 and October 2002 [RRS Discovery 222 (Rice 1996), 226 (Rice 1997), 
229 (Bett 1998), 231 (Rice 1998), 237 (Sibuet 1999), 266, and on RRS 
Challenger 135 (Billett & scientists 1998) and 142 (Billett & scientists 2000)]. 
Specimens were fixed in borax-buffered 10% formalin-seawater at sea, and 
subsequently transferred to 80% industrial denatured alcohol for long-term 
preservation once ashore (generally within two months of sample collection). 
For the analyses presented here, specimens were reduced to those 
considered to be complete and intact (e.g. including coelemic fluid in the case 
of holothurians). Damaged and / or partial specimens were excluded, except 
in the case of ophiuroids and brisingids where no complete, intact specimens 
were available. Recommendations for the processing of fluid-preserved 
specimens (Simmons 2014) were generally followed. 
 
Physical dimensions and wet weights were recorded for each specimen. The 
dimension selected was generally the linear ‘length’ (Table 1). In asteroids, 
the radius from the centre of the disk to the end of an outstretched arm was 
measured. A similar measurement was made for ophiuroids, and the disk 
diameter was also measured. The column diameter was measured in 
anemones. The length of the longest leg was measured in pycnogonids. 
Otherwise, appendages were excluded, particularly those that are flexible or 
retractable, such as the vellum and papillae in holothurians. Visible surface 
liquid was removed by blotting using absorbent towel prior to weighing. Wet 
weights of crustaceans, echinoderms and molluscs included the shells. In 
taxa where dimensions could not be reproducibly measured (Table 2), only 
wet weights were recorded. 
 
Power relationships were established between the measured dimension and 
the preserved wet weight of the specimen, with the form 

! = !×!! 
where P is preserved wet weight (g), L is measured dimension (mm), and A 
and B are coefficients fitted using linear regression of the logarithm of the 
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formula above. An R2 value was computed to evaluate the goodness of fit. 
Preliminary relationships were presented in Durden et al. (2015a). 
3.2 Application to seabed photographs 
These conversions were applied to individuals identified and measured in 
28,200 seabed photographs (representing some 3.6 ha of seabed) from the 
PAP site obtained with the Autosub6000 autonomous underwater vehicle from 
RRS Discovery research cruise 377 (Ruhl & scientists 2013, Morris et al. 
2014). Methods for image processing and annotation are detailed in Morris et 
al. (2014); in brief, distinctly identifiable megafauna were classified and 
measured in vertical seabed photographs, following processing of the images 
to correct for camera orientation. Image pixel dimensions were converted to 
physical units using the altitude and orientation of the camera (Jones et al. 
2009, Morris et al. 2014). 
 
Invertebrates were identified to the lowest practicable taxonomic levels, which 
was not always to the same detail for specimens in photographs as for those 
caught in trawls. Matching morphotypes identified in photographs to taxa 
identified in the trawl catches was not always straightforward. Some 
morphotypes differ in appearance as a result of trawl capture and subsequent 
fixation (e.g. retraction of tentacles and contraction of oral disc in anemones, 
retraction of papillae in holothurians). In cases where specimens from multiple 
species were grouped, it is indicated in Tables 1 and 2. 
 

 
Figure 1. Example measured dimensions (in yellow) of representative morphotypes: (a) body 
length of Annelida – Laetmonice spp.; (b) length of Arthropoda – Munidopsis spp.; (c) leg 
length of Pycnogonida; (d) oral disc diameter of Cnidaria – Sicyonis sp., see also (e) the disk 
and column diameters as measured in trawl-caught specimens (see Table 2); (f) radius from 
body centre to end of arm of Echinodermata, Asteroidea – Styracaster spp.; (g) alternate 
measurements of disc diameter and radius from body centre to end of arm of Echinodermata 
– Ophiuroidea; (h) body length of Echinodermata, Holothuroidea - Oneirophanta mutabilis, 
also note (i) body length excluding sail of Psychropotes longicauda; (j) arm length of Mollusca 
– Cephalopoda. 
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Some morphotypes presented difficulties in the selection of a measured 
dimension that was practical in the photographs, and matched the dimension 
measured of the preserved specimens. Figure 1 shows examples of the 
measured dimensions in images that were also possible in preserved 
specimens. For certain anemones, a common measured dimension in both 
the photographs and preserved specimens was not practical, so a further 
conversion between the dimension measured in preserved specimens 
(column diameter) and the dimension measured in photographs (oral disk 
diameter) was applied (Figure 1). These conversions were established by 
measuring both dimensions in a subset of images where both dimensions 
could be observed, and were applied to image measurements prior to wet 
weight conversion. Power relationships were established between the column 
diameter and the disc diameter (Table 3), with the form 

! = !×!! 
where C is the column diameter (pixels), D is the oral disk diameter (pixels), 
and G and H are coefficients fitted using linear regression of the logarithm of 
the formula above. An R2 value was computed to evaluate the goodness of fit. 
The underestimation of the measured dimension is acknowledged in taxa 
where legs or arms may not be extended fully in photographs (e.g. 
pycnogonids, brisingids), but measurements of preserved specimens would 
be of extended appendages. 
3.3 Preserved to fresh wet weight conversions 
Conversions between fresh wet weights, measured at sea, and preserved wet 
weights following fixation in buffered formalin and preservation in industrial 
denatured alcohol were established using batch wet weights of trawl-caught 
specimens, aggregated by taxon, collected from RRS Discovery 237 (Sibuet 
1999), RRS Discovery 229 (Bett 1998), and RRS Challenger 142 (Billett & 
scientists 2000). Again, recommendations for the processing of fluid-
preserved specimens (Simmons 2014) were generally followed. Note that 
these batch weights included all specimens (including both damaged and 
intact specimens) in the determinations of both preserved and fresh weights. 
Consequently, apparent data outliers (e.g. samples where fresh wet weights 
included attached clinker in anemones, for example) were identified, 
evaluated using Q-Q plots and Cook’s distance in R software (R Core Team 
2015), and removed. Following this data editing, relationships were 
established of the form 

! = !×! 
where P is the preserved wet weight (g), F is the fresh wet weight (g), and J is 
a coefficient determined by linear least-squares regression fitted in R (R Core 
Team 2015) with zero intercept. 
 
Total biomass (g fresh wet weight ha-1) was calculated by converting the 
measured dimension for each specimens observed in the seabed 
photographs to fresh wet weight using the methods detailed above, and 
summing for each morphotype. Morphotypes for which no specific 
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conversions were available, estimates were based on conversions for the 
nearest morphological analogue. 

4 Results and Discussion 
Dimension to preserved wet weight conversions for 34 taxa are presented in 
Table 1, and preserved wet weights of a further six taxa for which dimensions 
could not be measured are given in Table 2. Published size and preserved 
wet weight data are scarce for many deep-sea taxa, so we have included 
values for as many groups as possible. The number of specimens available 
per taxon ranged from 6 to 44,630, with 24 of the conversions based on at 
least 50 specimens. The goodness of fit of the conversions derived from the 
trawl catch data (R2) varied between taxa, with 24 conversions having at least 
0.75. Conversions computed from small numbers of specimens should of 
course be treated with caution. 
 
For some taxa, the trawled specimens represented a wide range of 
dimensions and preserved wet weights (e.g. Figure 2 a and b), likely 
encompassing much of the seasonal and inter-annual variations in individual 
size. However, the trawl-caught specimens did not always include the full 
range of dimensions determined from the photographs. The size classes of 
taxa in photographs overlapped those from the trawls, but for some taxa, 
smaller or larger individuals were measured in the photographs (e.g. Figure 2 
e). This comparison provides an indirect validation of the dimensions 
measured in photographs, as there was no drastic difference in sizes, and 
indicates the broad equivalency of sizes between trawled and photographed 
specimens, suggesting that the application of our conversions was 
appropriate. However, extrapolation of conversions beyond the size ranges of 
the trawl-caught specimens may not be appropriate. 
 
The use of the oral disk to column diameter conversion in the four actiniarian 
taxa resulted in a substantial improvement in the correspondence of size 
classes between photographs and trawls. For example, of 86 individuals of 
Daontesia porcupina (Riemann-Zürneck 1997a) identified in photographs, 72 
were larger than the range of trawled specimens without the conversion, this 
was reduced to 2 after the conversion was applied. Similarly, of 259 
photographed individuals of Amphianthus bathybium (Hertwig & Herdman 
1882), 234 were larger than the trawl-measured size range, reduced to only 8 
after conversion. Further improvements to this method for anemones, and 
other taxa that retract or shrink substantially upon collection, could be made 
by photographing and collecting specific individuals in-situ, given sufficient 
ROV time. 
 
Published conversions between preserved and fresh wet weights in deep-sea 
taxa are also scarce. Here we have included conversions for as many taxa as 
possible (Table 4), even where sample numbers were low. The goodness of 
fit (R2) was, nevertheless, generally high (0.93 to 0.998). 
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Figure 2. Distributions of dimension (mm) and preserved wet weight (g) from trawl-caught 
specimens (black) and estimated from photographs (grey): (a) Daontesia porcupina 
(diameter); (b) Amphianthus bathybium (diameter); (c) Styracaster spp. (radius); (d) 
Ophiuroidea (radius), (e) Psychropotes longicauda (length), (f-j) corresponding preserved wet 
weight data. 
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Taxa with substantial proportions of soft tissues, such as some holothurians, 
tunicates, sipunculids and cephalopods, appear to lose 35 to 60% of their 
fresh wet mass on preservation. This is similar to the loss estimated generally 
for holothurians (40%) by Billett et al. (2001) from data on shallow-water 
species given by Conand (1989). Taxa with greater proportions of hard / 
structural tissues, such as asteroids, some arthropods and gastropods, lose 
10 to 20% of their fresh wet mass on preservation. Our estimates do not 
consider changes in preserved wet weights with time, which have been 
studied in shallow-water polychaetes and amphipods (Gaston et al. 1996, 
Wetzel et al. 2005). For example, Mills et al. (1982) found that wet weight 
increased immediately after fixation in formalin, followed by a reduction in wet 
weight over time. As our specimens were preserved for at least two months 
prior to measurement, their wet weights may have largely stabilised, as 
potentially suggested by the high R2 values (Table 4). 
 
The development of wet weight conversions from photographic dimensions for 
a wide range of taxa will facilitate the improved estimation of deep-sea 
megafaunal biomass from the large numbers of seabed photographs now 
being routinely captured in many studies (e.g. Morris et al. 2014, Wynn et al. 
2014). The improved quantification of benthic megafaunal biomass using 
photographs (see e.g. Christiansen & Thiel 1992, and expanded upon here), 
can be illustrated with key taxa from the PAP. Holothurians dominate the 
biomass at the PAP and their temporal variation has long been the focus of 
research (Billett et al. 2001, Billett et al. 2010), while the dominance of 
cnidarians has only recently been appreciated (Durden et al. 2015b). Billett et 
al. (2010) estimate mean holothurian biomass across all trawls over the years 
1989-2005 at 1903 (95% CI 1693-2138) g wet weight ha-1, cnidarian biomass 
at 44 (38-51) g wet weight ha-1, and that of total invertebrates at 2111 (1888-
2359) g wet weight ha-1. Durden et al. (2015a) employed a towed camera 
survey and preliminary conversions to wet weight from photographs, and 
estimated total invertebrate biomass at the PAP at 24200 g wet weight ha-1, 
eight times the highest value reported by Billett et al. (2010). Holothurian and 
cnidarian biomass were estimated at 18500 and 5400 g preserved wet weight 
ha-1, respectively, ten and 125 times the values reported by Billett et al. 
(2010). Using the conversions presented here, and the photographic survey 
reported by Morris et al. (2014) at the PAP site, holothurian biomass was 
estimated at 36200 g fresh wet weight ha-1, and cnidarian biomass at 9200 g 
fresh wet weight ha-1. These estimates are each twice those given by Durden 
et al. (2015a), and 19 and 214 times the estimates by Billett et al. (2010). The 
sum of holothurian and cnidarian biomass is ~20 times the Billett et al. (2010) 
value for total invertebrate biomass. Given these dramatic uplifts in 
megabenthic biomass over trawled estimates from the PAP, it is clear that 
biomass estimation by this method will have a profound effect on studies of 
standing stocks, community metabolism, and the numerical modelling of 
carbon flows (e.g. van Oevelen et al. 2012). 
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Table 2. Individual specimen preserved wet weight data for PAP taxa where 
reliable dimension measurement was not possible 
Taxon Range (g) Median (g) n 
TUNICATA    
Culeolus spp. 0.01 – 2.02 0.34 1599 
CNIDARIA    
Zoantharia 0.01 – 0.43 0.10 538 
ECHINODERMATA    
Freyastera spp. / Freyella spp. 0.07 – 17.67 0.87 312 
Pterasteridae 0.33 – 8.67 4.5 2 
Crinoidea 0.05 – 1.59 0.7 13 
PORIFERA 5.23 – 11.57 8.0 3 
 
 
 
Table 3. Conversion from photograph-measured dimension (oral disk 
diameter, D, pixels) to preserved specimen dimension (column diameter, C, 
pixels). Conversion is in the form C = G x DH, where C is column diameter, D 
is oral disk diameter and F and G are factors in a relationship determined from 
n individuals, with goodness of fit, R2. 
Morphotype G H R2 n 
Iosactis vagabunda 0.414 1.075 0.81 45 
Sicyonis biotrans 0.015 1.614 0.86 5 
Daontesia porcupina 2.527 0.599 0.71 5 
Amphianthus bathybium 0.114 1.283 0.83 8 
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Table 4. Fresh wet weight to preserved wet weight conversions in the form: 
preserved wet weight (g) = J x fresh wet weight (g), where J is a factor 
determined by linear regression with zero intercept. 
Taxon J R2 n 
ANNELIDA    
Polynoidae 0.812 0.995 6 
ARTHROPODA    
Cirripedia 0.751 0.98 11 
Pycnogonida 0.838 0.98 9 
Cerataspis spp. 0.781 0.97 4 
Stereomastis spp. 0.822 0.99 8 
Munida spp. / Munidopsis spp. 0.780 0.98 7 
CNIDARIA    
Actiniaria    
Iosactis vagabunda 0.887 0.99 13 
Parasicyonis biotrans 0.784 0.998 7 
Daontesia porcupina 0.818 0.99 8 
Actinauge abyssorum 0.722 0.99 13 
Amphianthus bathybium 0.664 0.95 13 
Segonzactis platypus 0.681 0.98 9 
Sicyopus commensalis 0.966 0.96 9 
Zoanthidea 0.755 0.99 5 
Umbellula spp. 0.656 0.98 9 
ECHINODERMATA    
Asteroidea    
Pythonaster atlantidis 0.845 0.999 3 
Styracaster chuni / Styracaster horridus 0.873 0.999 10 
Dytaster grandis grandis 0.820 0.998 11 
Hyphalaster inermis 0.873 0.99 8 
Freyella spp. / Freyastera spp. 0.886 0.99 12 
Pterasteridae 0.820 NA 1 
Holothuroidea    
Amperima rosea 0.627 0.995 13 
Benthodytes spp. 0.470 0.99 8 
Deima validum validum 0.648 0.98 12 
Ellipinion spp. / Kolga spp. 0.460 0.99 10 
Zygothuria candelabri 0.604 0.96 12 
Oneirophanta mutabilis 0.539 0.99 6 
Paroriza prouhoi 0.527 0.96 10 
Peniagone spp. 0.684 0.93 11 
Pseudostichopus aemulatus / Molpadiodemas villosus / 
    Pseudostichopus spp. 

0.413 0.93 11 

Psychropotes longicauda / 
    Psychropotes semperiana (Théel 1882) 

0.505 0.96 6 

Molpadia spp. 0.576 0.98 9 
Crinoidea 0.680 0.94 8 
Echinoidea 0.570 NA 1 
Ophiuroidea 0.835 0.996 10 
ECHIURA 0.670 0.99 6 
MOLLUSCA    
Cephalopoda 0.415 0.99 7 
Gastropoda 0.861 0.99 13 
Bivalvia 0.715 0.97 8 
TUNICATA 0.657 0.99 8 
SIPUNCULA 0.649 0.99 5 
PORIFERA 0.791 0.97 8 

 


