nerc.ac.uk

Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data

van der Kruk, Jan; Gueting, Nils; Klotzsche, Anja; He, Guowei; Rudolph, Sebastian; von Hebel, Christian; Yang, Xi; Weihermüller, Lutz; Mester, Achim; Vereecken, Harry. 2015 Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data. Journal of Earth Science, 26 (6). 844-850. https://doi.org/10.1007/s12583-015-0610-3

Full text not available from this repository. (Request a copy)

Abstract/Summary

Due to the recent system developments for the electromagnetic characterization of the subsurface, fast and easy acquisition is made feasible due to the fast measurement speed, easy coupling with GPS systems, and the availability of multi-channel electromagnetic induction (EMI) and ground penetrating radar (GPR) systems. Moreover, the increasing computer power enables the use of accurate forward modeling programs in advanced inversion algorithms where no approximations are used and the full information content of the measured data can be exploited. Here, recent developments of large-scale quantitative EMI inversion and full-waveform GPR inversion are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches. In both cases a detailed forward model is used in the inversion procedure that is based on Maxwell’s equations. The multi-channel EMI data that have different sensing depths for the different source-receiver offset are calibrated using a short electrical resistivity tomography (ERT) calibration line which makes it possible to invert for electrical conductivity changes with depth over large areas. The crosshole GPR full-waveform inversion yields significant higher resolution of the permittivity and conductivity images compared to ray-based inversion results.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1007/s12583-015-0610-3
ISSN: 1674-487X
Date made live: 12 Apr 2016 15:00 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/513431

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...