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Dynamic models for longitudinal butterfly data

Abstract

We present models which provide succinct descriptions of longitudinal seasonal insect

count data. This approach produces, for the first time, estimates of the key parameters of

brood productivities. It may be applied to univoltine and bivoltine species. For the latter,

the productivities of each brood are estimated separately, which results in new indices

indicating the contributions from different generations.

The models are based on discrete distributions, with expectations that reflect the under-

lying nature of seasonal data. Productivities are included in a deterministic, auto-regressive

manner, making the data from each brood a function of those in the previous brood. A

concentrated likelihood results in appreciable efficiency gains. Both phenomenological and

mechanistic models are used, including weather and site-specific covariates.

Illustrations are provided using data from the UK Butterfly Monitoring Scheme, however

the approach is perfectly general. Consistent associations are found when estimates of

productivity are regressed on northing and temperature. For instance, for univoltine species

productivity is usually lower following milder winters, and mean emergence times of adults

for all species have become earlier over time, due to climate change.

The predictions of fitted dynamic models have the potential to improve understanding

of fundamental demographic processes. This is important for insects such as UK butterflies,

many species of which are in decline.

Supplementary materials for this article are available online.

Keywords: abundance indices; auto-regression; concentrated likelihood; generalised addi-

tive models; phenology; stopover models
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1. INTRODUCTION

Climate change is predicted to become an increasingly important cause of biodiversity

decline (Thomas et al., 2004; Pereira et al., 2010). Species’ responses to climate are often

complex and present challenges for modelling and prediction. We illustrate the models of

this paper with reference to butterflies, the most comprehensively monitored insects. Their

population status is increasingly recognised as an indicator for changes in biodiversity as

they respond sensitively and rapidly to changes in habitat and climate (Thomas, 2005).

Previous studies of UK butterflies imply positive associations of populations with warm

summer weather, but predicted relationships with winter weather are variable (Roy et al.,

2001; Dennis and Sparks, 2007; Isaac et al., 2011). Evidence for shifts in phenology (Roy

and Sparks, 2000) and increases in voltinism (Altermatt, 2010) have also been presented.

Extensive sources of citizen-science count data for butterflies are available both in the UK

and around the world and there is much interest in developing robust modelling approaches

to assist the monitoring and understanding of species’ responses to change. Butterflies have

multi-stage life cycles, and counts fluctuate within each year in response to their emergence

as adults, which is generally the only life stage with widespread data. Soulsby and Thomas

(2012) developed a mathematical model for this variation, but only allowed for discrete,

non-overlapping generations. Other models have been proposed to describe the within-year

variation, both non-parametrically using generalised additive models (GAMs, Rothery and

Roy, 2001; Dennis et al., 2013) and via stochastic mixture models (Matechou et al., 2014;

TR). Counts adjusted for seasonal fluctuations can then be used to produce longer-term

trends, but existing methods do not impose any relationship between counts from one year

to the next, which is the topic of this paper.

Causes of variation in both abundance and seasonal pattern from one year to the next

are multi-faceted, relating to numbers during the previous year, as well as other factors

driving the unobserved stages of the life-cycle, such as weather. We describe a novel dy-

namic framework which models count data across multiple sites from consecutive years, with
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abundance in any given year driven by that in the previous year. We adapt the approach

for bivoltine species, with the first brood in a year feeding into the second. The models can

be fitted efficiently using concentrated likelihoods. Performance is illustrated for a sample

of species, making comparisons with indices generated from GAMs, and introducing new

methods of exploring covariate dependence.

Although we present and illustrate the work in terms of butterflies, it may be applied to

other insect species, possibly after modification appropriate to their ecology. For example,

the flightless longhorn beetle, Dorcadion fuliginator, takes two years to reach maturity (Baur

et al., 2005), as do many dragonflies and some crickets. The models may also be adapted

for the study of migrant bird populations.

2. MATERIALS AND METHODS

For any species, suppose counts of adults are recorded at S sites, each visited on up to T

occasions, in each of Y successive years. Each can be treated as the realisation of a random

variable from a suitable discrete distribution. For example, if this is taken as Poisson, with

expectation λi,j,k for site i, visit j, and year k, the likelihood has the form

L(ρ, µ, σ, N 1; y) =
S∏

i=1

T∏
j=1

Y∏
k=1

exp(−λi,j,k)λyi,j,k

i,j,k

yi,j,k!
,

where {yi,j,k} are the counts and ρ, µ, σ and N 1, are the model parameters which we

describe in the next sections.

We adopt the Poisson distribution throughout, but there are other possibilities, such

as negative-binomial or zero-inflated Poisson, for which an approximate concentrated like-

lihood approach is possible (TR). Alternatively, Pagel et al. (2014) accounted for overdis-

persion with respect to this simple model by a mixed log-normal-Poisson distribution.

The methods of the paper provide joint modelling of data obtained at different temporal

scales. We consider two model types which are structurally different: a phenomenological

model based simply on normal probability density functions and mechanistic models that are
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based upon stopover models, which involve mechanisms allowing for estimation of survival.

2.1 Phenomenological model for univoltine species

For a univoltine species the counts within a season increase from zero and then decrease to

zero corresponding to the emergence and death of adult butterflies. This variation may be

described by Normal probability density N(µi,k, σ2
i,k), corresponding to site i and year k, so

that for the jth visit at time ti,j,k (e.g. week number in the season) we have

λi,j,k = Ni,k
1

σi,k

√
2π

exp
{

−(ti,j,k − µi,k)2

2σ2
i,k

}
, (1)

which we write as λi,j,k = Ni,kai,j,k, where Ni,k provides an estimate of relative abundance

for site i in a given year, k, and {ai,j,k} describes the seasonal variation over visits within

that year. Thus for site i and year k the counts for any visit have a Poisson distribution

with mean value proportional to the Normal probability density function centred on µi,k.

We allow the relative abundance Ni,k+1, for site i and year k + 1, to depend upon that

in the previous year, Ni,k, in a deterministic first-order autoregressive manner via a growth

rate, ρi,k which, assuming the species does not overwinter as an adult (in which case a model

for multiple generations is required), we define as “productivity”, i.e. Ni,k+1 = ρi,kNi,k.

Developing this recursion over time provides

λi,j,1 = Ni,1ai,j,1 and λi,j,k = Ni,kai,j,k =
(

Ni,1

k−1∏
m=1

ρi,m

)
ai,j,k for k > 1, (2)

which is similar to the model in Freeman and Newson (2008), but with a seasonal component.

The productivities, {ρi,k}, describe the successes of a given generation over sites (i) for each

year (k) and represent products of the number of eggs laid per adult and the probability

of each egg reaching the adult stage in the next generation. The expressions of equation

(2) characterise the univoltine models of the paper, with different formulations for the

seasonal pattern, {ai,j,k}, providing different models, as we shall see for a mechanistic model
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formulation in Section 2.3.

2.2 Phenomenological model for bivoltine species

Bivoltine butterfly species have two broods each year, with the adults of the second brood

arising from the eggs laid by the adults of the first. We may extend the model above to

describe counts from two annual broods by incorporating two Normal distributions in the

model for λi,j,k. Thus we set

λi,j,k = Ni,k,1
1

σi,k,1
√

2π
exp

{
−(ti,j,k − µi,k,1)2

2σ2
i,k,1

}
+ Ni,k,2

1
σi,k,2

√
2π

exp
{

−(ti,j,k − µi,k,2)2

2σ2
i,k,2

}
,

which we may write as

λi,j,k ≡ Ni,k,1ai,j,k,1 + Ni,k,2ai,j,k,2,

where at site i in year k the relative abundance for the first brood is given by Ni,k,1 and for

the second brood by Ni,k,2. For the means and variances of the two Normal densities the

final subscripts designate brood, and we have µi,k,2 > µi,k,1.

Whereas in TR two broods are described by a mixture of probability density functions,

here the relative abundance of a second brood in each year is assumed to depend on that

of the first brood that year. Dependence between the two broods in any year is introduced

by defining

Ni,k,2 = ρi,k,1Ni,k,1,

in addition to the between-year dependence, now given by

Ni,k+1,1 = ρi,k,2Ni,k,2.

Thus ρi,k,1 represents the productivity of the first brood in a given year k, and ρi,k,2 represents

the productivity of the second brood, which feeds into the relative abundance of the first

5



brood of the following year, Ni,k+1,1. So developing the recursion over time we write

λi,j,1 = Ni,1,1ai,j,1,1 + Ni,1,2ai,j,1,2

= Ni,1,1(ai,j,1,1 + ρi,1,1ai,j,1,2), (3)

and

λi,j,k = Ni,k,1ai,j,k,1 + Ni,k,2ai,j,k,2

=
(

Ni,1,1

k−1∏
m=1

2∏
b=1

ρi,m,b

)
ai,j,k,1 +

(
Ni,1,1ρi,k,1

k−1∏
m=1

2∏
b=1

ρi,m,b

)
ai,j,k,2

= Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)
k−1∏
m=1

2∏
b=1

ρi,m,b for k > 1. (4)

The extension to multivoltine species, with greater than two broods each year is imme-

diate, though not greatly applicable to UK species. The new development for bivoltine/

multivoltine species is naturally based on the fact that the relative size of a given brood

depends on the productivity of the previous brood. Notationally we denote the phenomeno-

logical models by PB, where B is the number of broods.

2.3 Mechanistic and stopover models

Relatively little is known regarding butterfly survival, and what is known results from

local short-term mark-recapture programs, which are expensive. To build survival into

our models we introduce additional parameters, the emergence times of adults, which are

typically unknown and of interest in their own right as indicators of phenological change in

a specific, key point in a species’ life-cycle. We do this as follows.

Suppose first of all that there is only one brood, and a site abundance Ni,k for site i and

year k. In order to describe the emergence times we introduce parameters βi,d−1,k, which

describe the proportions of Ni,k emerging at site i and just prior to visit d in year k. The
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expected number of individuals at site i at time ti,j,k in year k is given as

λi,j,k = Ni,kai,j,k = Ni,k


j∑

d=1
βi,d−1,k

 j−1∏
m=d

ϕi,m,k

 , (5)

where the index d = 1, . . . , j indicates the possible times of emergence for an individual

detected on visit j. The parameters βi,d−1,k describe the proportions of Ni,k emerging at site i

and visit d in year k, such that∑T
d=1 βi,d−1,k = 1, for each site i and year k. We define ϕi,m,k as

the probability that an individual that is present at site i at visit m in year k, will remain at

that site until visit m + 1. So for example, λi,3,k = Ni,k (βi,0,kϕi,1,kϕi,2,k + βi,1,kϕi,2,k + βi,2,k).

In order that the emergence parameters have the right type of shape we can set

βi,d−1,k = Fi,k(ti,d,k) − Fi,k(ti,d,k − 1), (6)

where Fi,k(ti,d,k) = P (X ≤ ti,d,k) for X ∼ N(µi,k, σ2
i,k), where µi,k is the mean date of

emergence and σ2
i,k is the associated variance. For each i, k, βi,0,k = Fi,k(1) and βi,T −1,k =

1 − Fi,k(T − 1).

This is a simple stopover model, proposed for butterfly data by Matechou et al. (2014);

see also TR. Stopover models are used in describing data on migrating birds, which rest

and feed during their journey at particular stopover sites where observations take place.

Typically, the resulting counts, graphed over time, reflect successive waves of birds arriving,

staying and then leaving. Matechou et al. (2014) observe that this is the same pattern

seen when adult butterflies are counted within a season, with for example bivoltine species

analogous to two waves of birds observed at a stopover site.

In Matechou et al. (2014) the above model is extended to account for multivoltine data,

and the expression of equation (6) then becomes a mixture of terms, each of which is an

area under an appropriate probability density function. In the multivoltine case we need a

different dynamic mechanistic model, in order to allow for the abundance of one brood to

feed into that of a succeeding brood, during the same year.
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In the univoltine dynamic stopover model, the recursions of equation (2) apply, but now

with the different specification of {ai,j,k} provided by equation (5). For the multivoltine

case in the dynamic mechanistic model we assign a separate site abundance to each brood

in a year. Thus we assume the two broods for bivoltine species to be separate such that,

for site i, visit j and brood b, in year k, we extend equation (5) to give

ai,j,k,b =
j∑

d=1
βi,d−1,k,b

 j−1∏
m=d

ϕi,d,k,b

 , for b = 1, 2, (7)

where we define {ϕi,d,k,b} as the appropriate survival probabilities of an individual from one

visit to the next, which are now estimated separately for each brood. This development

is an extension of that in the original specficiation of Matechou et al. (2014). For brood

b, the parameters {βi,d−1,k,b} describe the proportions of Ni,k,b arriving at visit d, and are

modelled here using Normal distributions, so that

βi,d−1,k,b = Fi,k,b(ti,d,k) − Fi,k,b(ti,d,k − 1),

where Fi,k,b(ti,d,k) = Pr(X ≤ ti,d,k), for X ∼ N(µi,k,b, σ2
i,k,b), and µi,k,b is the appropriate

mean date of emergence of adults for brood b and σ2
i,k,b is the corresponding variance. For

each i, k, and b, βi,0,k,b = Fi,k,b(1) and βi,T −1,k,b = 1 − Fi,k,b(T − 1). The recursions of

equations (3) and (4) then apply, but now with the new specification of {ai,j,k,b} from

equation (7). Notationally we specify the dynamic mechanistic model by MB, where B is

the number of broods.

2.4 Concentrated likelihood

We fit models to data by maximum likelihood. As in TR, the number of parameters in the

likelihood can be reduced by S, using a concentrated likelihood approach. S is typically large

for these models and so computational efficiency is substantially increased. We consider first

the univoltine case. Using equation (2), apart from an additive constant, the log-likelihood
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for site i may be written as

ℓi = Log(Li) =
T∑

j=1

[
−Ni,1ai,j,1 + yi,j,1log (Ni,1ai,j,1)

+
Y∑

k=2

{
−Ni,1ai,j,1

k−1∏
m=1

ρi,m + yi,j,klog
(

Ni,1ai,j,k

k−1∏
m=1

ρi,m

)}]
. (8)

For the data from all sites the log-likelihood is ℓ = ∑S
i=1 ℓi. Using equation (8) we obtain

∂ℓ

∂Ni,1
=

T∑
j=1

{
−ai,j,1 + yi,j,1

Ni,1
+

Y∑
k=2

(
−ai,j,1

k−1∏
m=1

ρi,m + yi,j,k

Ni,1

)}
,

and equating to zero we find

Ni,1 =
T∑

j=1

∑Y
k=1 yi,j,k

ai,j,1 +∑Y
k=2 ai,j,k

∏k−1
m=1 ρi,m

. (9)

We note how Ni,1 is a weighted sum over visits of totals at site i across years. Thus despite

an apparent strong dependence of {Ni,k} on {Ni,1} in (2), this is only a consequence of the

deterministic links between the {Ni,k}, and all data contribute to the estimation of {Ni,1},

and hence {Ni,k}. Substitution of the expressions for {Ni,1} from (9) in (8) results in a

concentrated likelihood, which is maximised with respect to only the parameters associated

with ρ and a (which contain the elements of µ and σ). Estimation of {Ni,1} is then made

by substituting estimates of {ai,j,k} and {ρi,m} into (9). The above approach holds for both

phenomenological and mechanistic models.

The concentrated likelihood for the bivoltine case is given similarly in Appendix A. We

maximise the concentrated likelihoods using the optim function in R (R Core Team, 2015),

with the limited-memory BFGS algorithm (Byrd et al., 1995). Associated R code for the

dynamic models is provided in the Supporting Information.
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2.5 Annual index of abundance

In the following we write θ̂ for the maximum-likelihood estimate of θ, for any parameter θ.

The averages of the relative site abundance estimates, for each year k, are used to create

an index of abundance Gk for year k. For a univoltine species we set

Gk = 1
S

S∑
i=1

N̂i,k =


1
S

S∑
i=1

N̂i,1 if k = 1

1
S

S∑
i=1

(
N̂i,1

k−1∏
m=1

ρ̂i,m

)
if k > 1,

(10)

for k = 1, . . . , Y , from equations (2). Similarly for the bivoltine case we estimate an index

Gk,b for each brood, b = 1, 2, as

Gk,1 = 1
S

S∑
i=1

N̂i,k,1 =


1
S

S∑
i=1

N̂i,1,1 if k = 1

1
S

S∑
i=1

(
N̂i,1,1

k−1∏
m=1

2∏
b=1

ρ̂i,m,b

)
if k > 1,

(11)

and

Gk,2 = 1
S

S∑
i=1

N̂i,k,2 =


1
S

S∑
i=1

N̂i,1,1ρ̂i,k,1 if k = 1

1
S

S∑
i=1

(
N̂i,1,1ρ̂i,k,1

k−1∏
m=1

2∏
b=1

ρ̂i,m,b

)
if k > 1,

(12)

for k = 1, . . . , Y , making use of the recursions demonstrated in equations (3) and (4).

The separate brood indices can be added to produce a single, annual index but there is

potentially great ecological benefit in maintaining them separately, as each corresponds to

different times of year and may be driven by different environmental factors.

Once indices are formed they are plotted against year, and we shall see examples in

Section 3. Standard errors for the indices can be obtained via bootstrapping, as for other

methods (Dennis et al., 2013; TR). Error bars are not presented here for clarity, but in

general the differences between the indices derived from the dynamic models and alternative

methods (which we explore in the next section), are smaller than the size of the errors.
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2.6 Application

We apply the dynamic models to national monitoring scheme data for a subset of UK

butterfly species. The UK Butterfly Monitoring Scheme (UKBMS) is the primary source of

count data for UK butterflies. The scheme relies on recorders who count butterflies under

favorable conditions each week between early April and late September, the main period

for butterfly activity. This results in a maximum of T = 26 each year, though typically not

all of the 26 designated visits are made, so the data do not need to be equally spaced. The

UKBMS has grown gradually since it began in 1976 to over 1100 sites monitored in 2012

(Botham et al., 2013). Population trends are typically calculated annually for 56 of the 59

butterfly species regularly found in the UK.

Many studies of UKBMS data involve application to a single illustrative species (Mat-

echou et al., 2014; Pagel et al., 2014). We demonstrate the dynamic models with appli-

cation to a sample of representative, taxonomically and ecologically diverse species. Six

univoltine and five bivoltine species were selected, with varying range size, habitat require-

ments and phenologies, although very scarce, habitat-specialist species, which generally

have limited data, were not considered in this analysis. Each model was fitted to data for

1978-2011. The UK butterfly transect data used in this study are archived by the UKBMS

(http://www.ukbms.org).

Sites at which the species of interest was never recorded or at which monitoring was

undertaken for fewer than five years were excluded from this analysis. For illustration, a

subset of 100 monitored sites was randomly selected for each species, with the exception of

Holly Blue, for which a sample of up to 200 sites was instead taken, since using only 100

sites produced bias in the estimates of productivity.

We illustrate the performance of the dynamic models in terms of abundance indices,

productivity, survival and phenology. Additional figures and tables are given in Appendix

S1 of the Supporting Information. This will be done for the samples of the univoltine

and bivoltine species, with and without the addition of covariates. Where parameters were
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assumed to be constant spatially the subscript for site, i, is omitted. In models for bivoltine

species, we let µ2 = µ1 + µd, where µ1 ≥ 0 and µd > 0, to ensure that µ2 > µ1.

The covariates we select are northing and measures of temperature. They were chosen

to demonstrate the potential of the models, and may not be optimal. All covariates were

standardised to have zero mean and unit variance. We use monthly mean and minimum

Central England Temperature data (Parker et al., 1992).

The average minimum daily temperature during October-March was used as a covariate

for overwinter productivity. For bivoltine species, the mean temperature within the flight

period of the first brood was used to describe productivity of the first brood. Productivi-

ties, which are necessarily positive, were regressed on the log scale. Survival in mechanistic

models was logistically regressed on mean temperature within the flight period of the brood

of interest. Scientific names and approximate flight periods for the species studied are pro-

vided in Table S1.1, and the latter were used to indicate the relevant temperature covariates.

Due to interest in the possible effect of covariates on estimates of survival, we primarily use

mechanistic models when covariates are employed and phenomenological models otherwise,

however alternatives are also possible.

3. RESULTS

3.1 Indices

Indices of abundance are derived from estimates of annual productivity and estimates of

initial abundance from the dynamic model, as described in Section 2.5. Here µ and σ

have been considered constant, although varying these between years provides useful in-

formation and we shall see examples of this later, but it had no distinguishable effect on

indices of abundance. We compare relative abundance indices for model P1 and an ap-

proach with GAM-based models for seasonal patterns, currently adopted by the UKBMS

and described by Dennis et al. (2013). To compare the different indices, each index was

standardised to have zero mean and unit variance. An additional comparison with the
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generalised abundance index (GAI) approach (TR) and consideration of goodness-of-fit are

given in Appendix S2 of the Supporting Information.

The fitted phenomenological dynamic models discussed in the context of indices have

35 and 71 parameters for B = 1, 2, respectively. Given that Y = 34, in the univoltine case

there are 33 annual estimates ρk, as well as µ and σ, and in the bivoltine case, there are 34

parameters ρk,1 and 33 parameters ρk,2, in addition to µ1, µd, σ1 and σ2.

Figure 1a) gives a comparison between annual indices of abundance for six univoltine

species. There is good agreement between the indices resulting from the dynamic model and

the standard GAM approach (Dennis et al., 2013). By estimating an index for each brood

(equations 11 and 12), dynamic models P2 allow us to add more information to indices for

bivoltine species, which we illustrate in two different ways in Figures 2a) and S1.1. We see

how the dynamic model allows us to elaborate the indices produced by the GAM approach,

by providing a separate index for each brood in the bivoltine case. This could, for example,

reveal differing trends between broods.

For model verification, Appendix S3 of the Supporting Information summarises the

results of applying the dynamic models to simulated data.

3.2 Productivity

Figure 1b) presents estimates of productivity for the univoltine species, from fitting model

P1. Values of ρk, greater than unity indicate growth compared to the previous year, and

values less than unity indicate decline. Hence as anticipated we see a tendency for produc-

tivities less than unity for species in decline, such as Small Skipper in recent years, while for

Marbled White productivities tend to be above unity during the initial period of growth,

followed by recent fluctuations about unity, when the population appears to be relatively

stable.

Figure 2b) presents estimated productivities for each brood for five bivoltine species,

using model P2. Values above/below unity represent growth/decline relative to the previous

brood. In Figure S1.2 we see how the productivities reflect the relative sizes of the fitted
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seasonal curves, for which the average over the series is shown (standardised to sum to

unity). The relative sizes of the broods will actually vary with productivity each year.

Figure 3 shows the results of including covariates in the dynamic models, in this case

for model M1 with ρi,k and ϕi,k (which we revisit in Section 3.3) varying with temperature

and northing. It is interesting that with the exception of Gatekeeper, higher productivity

is significantly associated with cooler winters and in all cases with more Northerly latitudes

(regression coefficients and associated standard errors are presented in Table S1.2a).

Figure 4 shows the effect of adding covariates for bivoltine species, in this case for

model M2 with productivity varying with temperature and northing, and survival varying

with temperature, which we discuss further in Section 3.3. As detailed in Section 2.6, first

brood productivity was associated with the mean temperature during the first brood, and

second brood productivity with the minimum winter overwinter temperture. Associations

of first-brood productivity, ρi,k,1, with northing and weather varied between species, and

regression coefficients for the slope parameters were generally significant (Table S1.3a). The

association of higher productivity with cooler winters shown for univoltine species is also

found for the second brood of the bivoltine species, with the exception of Wall Brown

and Holly Blue, which is a common garden visitor, unlike the other species which favour

grasslands, as well as gardens in the case of Small White and Green-veined White.

Given an estimate of productivity for each year, if desired the geometric mean of the

productivities over time may be used to provide a simple comparison between species.

3.3 Survival

The mechanistic models allow estimation of the survival probabilities, ϕ, of butterflies, from

which adult life expectancies (in weeks) can be estimated by 1/(1 − ϕ), assuming that a

species does not overwinter as an adult. Variation in life expectancy with temperature is

displayed for univoltine species in Figure S1.3, and for bivoltine species in Figure S1.4, based

on the models fitted with covariates in the previous section. Tables S1.2 and S1.3 show the

parameter estimates and associated standard errors from the MB models with covariates.
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For comparison estimates are also included for the P1 and P2 models with covariates for

ρ, which are not presented in the figures, but produce analogous estimates of the shared

parameters. There are differences in µ and σ since in the mechanistic model µ represents

the mean date of emergence which will be earlier than the mean flight date, and σ relates

to the length of the period of emergence, which will be shorter than the length of the flight

period in the P1 model. The associated errors for µ and σ are smaller for the P1 than for

the M1 model. For the bivoltine species there is more variation in the estimates from P2

and M2. As in the univoltine case, standard errors from the phenomenological model tend

to be smaller than those from the mechanistic model. The MB models with covariates have

8 and 14 parameters for B = 1, 2, respectively, compared to the PB models with 5 and 10

parameters for B = 1, 2, respectively. In these cases reduced precision is a consequence of

greater model complexity.

For univoltine species, there was a significant negative association of life expectancy

with higher average temperature during the flight period for four out of six species (Figure

S1.3 and Table S1.2a). Four univoltine species indicated significantly greater survival at

southerly sites. Standard errors in Table S1.2a) are generally small, but are large for two

instances for Green Hairstreak, which exhibit flatness in the associated plots (Figures 3 and

S1.3).

As for the associations of first brood productivity with weather, in bivoltine species

we find that the variation in first brood life expectancy with temperature differs between

the species sampled, and slope estimates were only significant for three out of five species

(Table S1.3). With the exception of Holly Blue, life expectancy for the second brood of the

bivoltine species increased significantly with temperature. Fitting model M2 with covariates

for northing and weather on ρ and ϕ for each brood produced unrealistic estimates of lifespan

for Brown Argus and Holly Blue, hence in Figure S1.4 we allow ϕ in the M2 model to vary

with temperature and brood only. This requires further investigation, but is likely to be

due to the relatively large number of parameters in model M2 and/or relatively small size
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of the sample. The corresponding standard errors for this model are sometimes large, for

example, for Holly Blue (Table S1.3).

3.4 Phenology

Here we demonstrate the potential to produce estimates of phenology using the dynamic

models. The P1 and P2 models were fitted with ρ, µ and σ each varying with year. Hence

the P1 model requires 101 parameters to be estimated, corresponding to 33 parameters for

ρk, and 34 parameters each for µk and σk. Similarly the P2 model has 203 parameters: 34 for

ρk,1, 33 for ρk,2, and 34 each for µk,1, µk,d, σk,1 and σk,2. To identify potential phenological

trends, the models were also fitted with the parameters of interest regressed upon year

(indicated by blue lines), as in the models fitted to univoltine species for comparison with the

GAI in Appendix S2 of the Supporting Information. We perform simple linear regressions

post model-fitting to identify potential trends between µ and productivity ρ, where green

lines indicate significant regressions (p-value > 0.05).

Figure 5 gives the mean and standard deviation of the flight periods for the univoltine

species and corresponding figures for the bivoltine species are given in Figures S1.5 and

S1.6. Figures 5a) and S1.5 suggest that the mean flight period date, µ, has advanced for all

species and broods, which is consistent with what is expected under climate change (Sparks

and Yates, 1997; Roy and Sparks, 2000). From Figures 5b) and S1.6 we see that the length

of the flight period has generally increased, also in agreement with previous findings (Roy

and Sparks, 2000). Table S2.1 suggests significant increases in σ for 5 out of 6 univoltine

species. The location of the fitted line for the Marbled White σk in Figure 5b) is due to the

increase in sample size over time giving more weight to the later years. Figures S1.5 and

S1.6 show a small number of outliers which require further investigation.

With the exception of Green Hairstreak, for the six univoltine species there was no clear

relationship between µk and ρk (Figure S1.7). For Green Hairstreak, which emerges early in

the season, lower productivities are associated with an earlier flight period, which may lead

to declines if advances in phenology continue with changes in climate. For most of the five
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bivoltine species, significant patterns between the mean flight period for each generation

and the associated productivity were not found (Figure S1.8). However for Brown Argus

and Green-veined White, productivity of the second generation was lower when the mean

flight period date of the second brood, µk,2, was advanced.

These results show that the dynamic models predict phenological changes consistent

with expected patterns. The dynamic models allow for improved estimates of phenology to

be studied in combination with demographic parameters, to reveal potential novel insights.

Changes in phenology may also be modelled using the mechanistic models, in order to

separate changes in emergence time from changes in survival.

4. DISCUSSION

The dynamic model framework allows novel investigation of the drivers of fluctuations in

abundance and provides a basis that can be adapted to both the study species and research

aim. We have presented only a preliminary application. The methods of TR, which model

data for each year separately, may be better suited for estimating indices of abundances

efficiently (see Table S2.1), whereas dynamic models provide additional information of value

for understanding demography. However the agreement of the indices obtained from the

different methods provides confidence that the dynamic models are performing correctly,

and that for multivoltine species indices may be derived separately for each brood.

For the majority of the sample species, higher overwinter productivity was associated

with cooler winters, which may act to reduce the impact of pathogens. Variability in lifespan

and first brood productivity of bivoltine species differed more between species. Given that

species have different life-histories, further research may look for trait-based variation, for

example overwintering stage: egg, larva, chrysalis or adult, all of which may be affected most

severely by different environmental factors. For example, Diamond et al. (2011) explored

relationships between changes in date of first appearance and species’ traits.

Further work is needed to explore the relevant covariates driving changes in produc-
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tivity, survival and phenology. Spatial covariates such as habitat/land-cover may describe

additional variation in the parameters. Inclusion of local weather could identify the period

within the life-cycle for which weather has the most impact on the adult stage. Growing

degree-days may also be explored (Hodgson et al., 2011). In this study covariates were

included additively on a logistic linear scale, whereas true relationships may be non-linear,

for example productivity/survival might be limited by extremes in weather. The models

could also be extended to model variation in productivity stochastically.

Alternatives to the Normal distribution for describing seasonal variation could be ex-

plored, for example to describe skewness (Calabrese, 2012). This study has only accounted

for species which are distinctly univoltine or bivoltine. A spline may be used to define

complex seasonal patterns (TR), and the models could be extended to allow more than two

broods each year. The models may be developed to accommodate variation in voltinism,

where the first generation contributes to both the second generation within the same year

and first generation the following year, with relevance for study of potential “lost gener-

ations” (Van Dyck et al., 2015). The dynamic models may also be used to study species

which aestivate under hot summer conditions (Spieth et al., 2011; Grill et al., 2013).

The dynamic models produce realistic estimates of parameters relevant to phenology,

providing further validation of the models. Phenological studies have typically involved

measures such as mean first encounter, mean peak encounter and mean length of the flight

period (Roy and Sparks, 2000; Diamond et al., 2014; Karlsson, 2014), which may be driven

by observer behaviour. The improved estimates of phenology from dynamic models provide

the opportunity to study linkages between changes in phenology and changes in abundance

and productivity, for example phenological mismatch (Hindle et al., 2015).

Using a phenomenological model may be optimal in scenarios with limited data, but the

mechanistic model allows for additional insights by estimating survival. Spatio-temporal

variation in the lifespans of butterflies has had limited attention, as have potential linkages

with other parameters, for example to explore how phenology affects survival, or whether

18



variation in survival can influence productivity. Using a mechanistic model separates rel-

evant parameters, for example to determine whether an increase in flight period length

is due to an extended period of emergence, or increased lifespan. The model could be

adapted to explore synchrony in populations (Powney et al., 2010), either between sites of a

given species or across sites but between multiple species, by incorporating random effects

(Lahoz-Monfort et al., 2011, 2013), for example in the ρ parameter for productivity. Den-

sity dependence, which has been highlighted for some butterflies (Nowicki et al., 2009), may

be incorporated here in productivity and/or survival by introducing a dependency on the

relative abundance. Additionally, allowing for spatial dependence of ρ and autocorrelation

in abundance may be advantageous (Johnson et al., 2012). Pagel et al. (2014) included

spatially autocorrelated random effects when modelling mean population density, but did

not account for the within-year variability in counts.

For some threatened, conservation-priority UK butterflies, such as Large Blue, Phengaris

arion, Brown Hairstreak Thecla betulae, and Marsh Fritillary, Euphydryas aurinia, data are

available on other stages of the butterfly life-cycle, such as counts of caterpillars or eggs.

An attraction of the model framework proposed is the potential for the incorporation of

data from multiple stages of the life-cycle, which could aid the monitoring and conservation

of rarer species for which coverage from standard monitoring schemes can be limited.

The dynamic models may address the “lack of mechanistic understanding about factors

driving butterfly population dynamics” (Isaac et al., 2011). Future application will generate

hypotheses for further investigation, with the potential to illuminate features of butterfly

phenology and demography which are at present poorly understood.
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APPENDIX A. CONCENTRATED LIKELIHOOD FOR BIVOLTINE SPECIES

Using equation (4), the log-likelihood for site i is given, apart from an additive constant, by

ℓi = Log(Li) =
T∑

j=1

[
− Ni,1,1 (ai,j,1,1 + ρi,1,1ai,j,1,2) + yi,j,1log {Ni,1,1 (ai,j,1,1 + ρi,1,1ai,j,1,2)}

+
Y∑

k=2

{
−Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)

k−1∏
m=1

2∏
b=1

ρi,m,b

+ yi,j,klog
(

Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)
k−1∏
m=1

2∏
b=1

ρi,m,b

)}]
, (A.1)

where we have defined {ai,j,k,b} and {ρi,k,b}, for site i, visit j and brood b in year k in the

previous sections. This gives

∂ℓ

∂Ni,1,1
=

T∑
j=1

[
− (ai,j,1,1 + ρi,1,1ai,j,1,2) + yi,j,1

Ni,1,1

+
Y∑

k=2

{
− (ai,j,k,1 + ρi,k,1ai,j,k,2)

k−1∏
m=1

2∏
b=1

ρi,m,b + yi,j,k

Ni,1,1

}]
,

and equating to zero we find

Ni,1,1 =
T∑

j=1

∑Y
k=1 yi,j,k

ai,j,1,1 + ρi,j,1ai,j,1,2 +∑Y
k=2

{
(ai,j,k,1 + ρi,m,1ai,j,k,2)

∏k−1
m=1

∏2
b=1 ρi,m,b

} . (A.2)

We note again how Ni,1,1 is a weighted sum over visits of totals at site i across years. As

in the univoltine case, we substitute the expressions for {Ni,1,1} from (A.2) into (A.1) and

maximise the overall concentrated likelihood with respect to parameters associated with ρ

and a. Estimation of {Ni,1,1} is obtained by substituting estimates of {ai,j,k,b} and {ρi,k,b}

into (A.2).

This concentrated likelihood approach applies for both the phenomenological and mech-

anistic models for bivoltine species, with variation only in the specification of {ai,j,k,b}.
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Figure 1: a) Relative abundance indices for each univoltine species from model P1 (black)
and the GAM approach (red) and b) annual estimates of productivity, ρk, from model
P1, which was fitted to estimate ρk across sites for each year. The horizontal dashed line
separates productivities above/below unity, corresponding to growth/decline compared to
the previous year. Dotted lines represent 95% confidence intervals for productivity.
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Figure 2: a) Relative abundance indices for each bivoltine species for the first (black) and
second (blue) broods from model P2 and the GAM approach (red) and b) annual estimates
of productivity for the first (ρk,1, black) and second (ρk,2, blue) brood from model P2, which
was fitted to estimate ρk,b across sites for each brood and year. The horizontal dashed line
separates productivities above/below unity, corresponding to growth/decline compared to
the previous brood.
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Supplementary material:
Dynamic models for longitudinal butterfly data

S1: Additional results and tables for the dynamic models applied to UKBMS

data

Table S1.1: Scientific names and approximate flight periods for the sample of butterfly
species studied. Approximate flight periods were used for relevant temperature covariates,
and specified as the first/last month for which the average weekly count was > 0.1. For
bivoltine species, we defined the mid point between the two generations by the month with
the minimum weekly count between the two peaks in counts, and hence assumed the break
between two generations to always be less than one month.

Common name Scientific name Flight period
Chalkhill Blue Polyommatus coridon July-September
Small Skipper Thymelicus sylvestris June-September
Green Hairstreak Callophrys rubi April-July
White Admiral Limenitis camilla June-August
Gatekeeper Pyronia tithonus June-September
Marbled White Melanargia galathea June-August
Wall Brown Lasiommata megera April-July-September
Holly Blue Celastrina argiolus April-June-September
Small White Pieris rapae April-June-September
Brown Argus Aricia agestis April-July-September
Green-veined White Pieris napi April-June-September
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circles) and second (blue) broods from model P2 and the GAM approach (red).
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S2: Comparison with the GAI approach

The GAI approach is more general than the dynamic models. GAI models provide a broad

framework for modelling butterfly count data for any given year, encompassing a range of

possible discrete distributions as well as phenomenological, stopover and spline alternatives

for modelling.

In Table S2.1 we compare estimates of µk and σk from model P1 and the GAI approach

(Dennis et al. 2014). The GAI models have structural similarities to the dynamic models,

but do not link abundance from different years separately, and hence unlike the dynamic

models do not provide estimates of productivity. Here we fitted the P/N1 model, which

assumes a Poisson distribution, with Normal, N(µ, σ2), probability density for describing

seasonal variation in the counts. We regressed µ and σ on year on the log scale, therefore

for the GAI we fitted a joint likelihood for multiple years, where there were four parameters

to estimate. Model P1 was also fitted with µ and σ regressed on year, with the addition of

annual estimates for productivity, compared with the GAI.

The estimates and associated standard errors from the two models are similar. The esti-

mates of dispersion of Table S2.1 suggest overdispersion in some cases, requiring attention,

e.g. by suitably inflating standard errors. Figure S2.1 demonstrates positive correlation in

estimates of site abundance from the two methods.

Indices of abundance from the dynamic model and GAI show good agreement with the

index resulting from the GAM approach (Dennis et al. 2013) in Figure S2.2. The index

from the dynamic model is often closer to the GAM index than the GAI is, for example in

some years for Gatekeeper and Marbled White. This could be a result of variation in the

set of sites monitored each year, which is accounted for by the GAM approach, as well as

in the dynamic model, where N (Section 2.5) can be estimated for every site for each year

(and brood where appropriate). In contrast, for the GAI only sites visited in a given year

contribute to the estimated index.

On average across the six species, the GAI took 12 seconds, whereas the dynamic model

12



took 87 minutes. Since differences between the indices produced from different methods

are fairly small, the GAI may be better suited to estimating indices of abundance, whereas

the dynamic model can provide estimates of productivity, as well as separate indices and

survival probabilities for different broods, but with greater computational requirements.
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Figure S2.1: Comparison of site parameters {Nik} from the P/N1 GAI model (NGAI) and
model P1 (NDYN), as fitted in Table S2.1. Both axes are displayed on the log scale and the
line indicates the 1-1 line.
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S3: Summary of results from the dynamic models applied to simulated data

Data were simulated based on T = 25, Y = 5 and S = 50 (except for the M2 model where

we set S = 100). The parameter values used are given in Tables S3.1 and S3.2. For each

of 100 simulated data sets, the initial site abundance parameters, {Ni,1,1}, were simulated

from a Poisson distribution with expectation of 150, and were used in combination with the

productivity parameters to produce site abundance values for consecutive broods and years.

The fitted models produce precise estimates of the true parameter values for the univoltine

models, with an increase in variability for more complex bivoltine models, particularly the

M2 model which produced less precise and slightly biased parameter estimates, at least for

a survey of this scale.

Table S3.1: Summary of output from 100 simulations for the a) P1 and b) M1 dynamic
model. Data were simulated for Y = 5 years and S = 50 sites. The mean is the mean
estimate of the parameter from 100 simulations. SE and RMSE are the associated standard
error and root-mean-square error, respectively.

Parameter True value Mean SE RMSE

a)

ρ1 0.75 0.75 0.002 0.023
ρ2 1.00 1.01 0.003 0.033
ρ3 1.25 1.24 0.004 0.043
ρ4 1.50 1.51 0.004 0.041
µ 10.00 10.00 0.003 0.027
σ 3.00 3.00 0.002 0.019

b)

ρ1 0.75 0.75 0.001 0.012
ρ2 1.00 1.00 0.002 0.020
ρ3 1.25 1.25 0.002 0.025
ρ4 1.50 1.50 0.003 0.026
µ 10.00 10.00 0.009 0.093
σ 3.00 3.00 0.003 0.027
ϕ 0.25 0.25 0.006 0.057
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Table S3.2: Summary of output from 100 simulations for the a) P2 and b) M2 dynamic
model. Data were simulated for Y = 5 years and S = 50 and S = 100 sites for the P2
and M2 models, respectively. The mean is the mean estimate of the parameter from 100
simulations. SE and RMSE are the associated standard error and root-mean-square error,
respectively.

Parameter True value Mean SE RMSE

a)

ρ1,1 0.90 0.91 0.003 0.033
ρ2,1 0.85 0.85 0.003 0.028
ρ3,1 0.80 0.80 0.003 0.027
ρ4,1 0.75 0.75 0.002 0.023
ρ5,1 0.70 0.70 0.002 0.021
ρ1,2 1.25 1.25 0.004 0.039
ρ2,2 1.42 1.41 0.004 0.042
ρ3,2 1.58 1.59 0.005 0.049
ρ4,2 1.75 1.75 0.005 0.049
µ1 10.00 10.00 0.005 0.047
µd 7.00 7.00 0.002 0.021
σ1 3.00 3.00 0.003 0.028
σ2 2.50 2.50 0.002 0.020

b)

ρ1,1 0.90 0.99 0.021 0.222
ρ2,1 0.85 0.93 0.019 0.207
ρ3,1 0.80 0.88 0.018 0.197
ρ4,1 0.75 0.82 0.017 0.180
ρ5,1 0.70 0.77 0.015 0.168
ρ1,2 1.25 1.19 0.026 0.263
ρ2,2 1.42 1.35 0.029 0.296
ρ3,2 1.58 1.51 0.032 0.331
ρ4,2 1.75 1.67 0.036 0.366
µ1 10.00 9.91 0.028 0.291
µd 7.00 7.13 0.032 0.344
σ1 3.00 2.98 0.005 0.052
σ2 2.50 2.51 0.008 0.076
ϕ1 0.30 0.32 0.017 0.170
ϕ2 0.40 0.38 0.007 0.074
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