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Abstract 
 
Throughout the world, historic drainage of wetlands has resulted in a reduction in the area of wet 

habitat and corresponding loss of wetland plant and animal species.  In an attempt to reverse this 

trend, water level management in some drained areas is trying to replicate a more natural 

‘undrained’ state.  The resulting hydrological regime is likely to be more suitable to native wetland 

species; however the raised water levels also represent a potential reduction in flood water storage 

capacity.  Quantifying this reduction is critical if the arguments for and against wetland restoration 

are to be discussed in a meaningful way.  We present a simple model to quantify the hydrological 

storage capacity of a drainage ditch network under different water level management scenarios.  

The model was applied to the Somerset Levels and Moors, UK, comparing areas with and without 

raised water level management.  The raised water level areas occupy 11% of the maximum 

theoretical storage but when put in the context of the recent severe flooding of winter 2013/2014 

occupy only 0.6 % of the total flood volume and represent an average increase in flood level of 7 

mm.  These results indicate that although the raised water level scheme does occupy an appreciable 

volume of the maximum possible ditch storage, in relation to a large flood event the volume is very 

small.  It therefore seems unlikely that the severity of such large flood events would be significantly 

reduced if the current water level management for ecological benefit ceased. 

Keywords: wetland; flooding; Somerset Levels and Moors; pumped catchment; model 

1 Introduction 

Grazing marshes have assumed a significant role in the conservation of British wetlands representing 

a stage in the conversion of 'virgin' land into farmland (Mountford, 1994).  As such they support 
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vegetation that is neither typical of primeval wetland nor of intensive cultivation (Moss 1907; 

Williams 1970).  In the ancient undrained wetland wild grazing animals (e.g. horses, deer) would 

have helped maintain the herbaceous vegetation (arresting scrub invasion), but their place was 

taken by livestock as the wetlands were ditched and converted to grazing marsh.  Since the Roman 

occupation, freshwater  grazing marshes have been created both by the enclosure of high coastal 

saltmarsh and the drainage of inland mires, and now such areas are typically permanent pasture, 

intersected by a network of drainage channels (Williams and Hall, 1987).  Drainage and land use 

change have modified or destroyed large areas of wetland in England and the loss of wetland species 

has been observed over many years (Mountford, 1994).  Drainage, leading to subsidence and peat 

decomposition, can also significantly alter soil hydraulic properties, including water retention, 

hydraulic conductivity and specific yield, and in turn reduce the wetland’s capacity to regulate the 

hydrological cycle (Price and Schlotzhauer, 1999; Kellner and Halldin, 2002; Kennedy and Price, 2005, 

Acreman and Holden, 2013). 

To address the negative impacts of drainage, encouragement has been given to land owners to 

maintain water levels in ditches typical of a natural annual cycle (i.e. high water levels in winter and 

low water levels in summer) with the hope that a more ‘natural’ regime will support increased 

numbers of wetland species.  Raised water levels in ditches can produce a high soil water table and 

as such are effective for promoting the desired wet conditions.  This management practice was 

especially promoted by agri-environment schemes such as the Somerset Levels and Moors 

Environmentally Sensitive Area (ESA) and there is evidence that this initiative has at least arrested 

the decline of some wetland species (Swetnam et al. 2004).  Whilst raising water levels may support 

delivery of some ecosystem services, others may be lost or reduced.  Acreman et al., (2011) looked 

at the effect of various management practices on the extensively drained Somerset Levels and 

Moors and found that raised water levels increased delivery of services, such as carbon 

sequestration, climatic regulation, biodiversity (in the long term) and recreation and education.  

They also found that food production, freshwater availability, biodiversity (in the short term) and 

flood storage were reduced.  It is flood storage that is the particular focus of this paper. 

Effective management of hydrological systems requires a quantified understanding of the impact of 

management on the service(s) in question, and a combination of monitoring and modelling is likely 

to underpin that understanding.  A conceptual model is the first step in identifying which elements 

should be included in the study and an iterative process then takes place whereby the model is 

tested numerically and altered and/or refined as necessary in order to improve the representation of 

reality (Acreman and Miller, 2007).  Depending on the nature of the study area, model development 

can be highly complex and time consuming.  Various models for predicting in-field water tables exist 

ranging in complexity from empirical ditch-drainage equations (e.g. Youngs, 1985) which relate 

water table height to rainfall, drain spacing and hydraulic conductivity (Equation 1) to complex 

groundwater/surface water models such as MIKE-SHE (DHI, Hørsholm, Denmark), which provide 

numerical solutions to both unsaturated and saturated processes.   

Equation 1 Steady-state drainage equation where Hm is the mid-drain water-table height, D is the drain 

spacing, q is the steady-state rainfall rate,K is the hydraulic conductivity and  is a factor dependent upon the 

position of an impermeable barrier (Youngs, 1985).  

   
     

 
   

 
  

 
 



 

However for a catchment containing many thousands of separate fields and hundreds of km of 

ditches, a catchment-wide fully distributed application of either of these modelling approaches 

model is likely to take considerable time and require detailed input data, and may therefore be 

unsuitable for many applications.  A rapid yet robust approach is desirable in situations that require 

management questions to be answered quickly and with confidence. 

In this study, we developed a simple model of ditch and soil water storage.  The model was applied 

to the winter 2013/2014 floods in the Somerset Levels and Moors to quantify the reduction in flood 

storage volume resulting from the maintenance of raised water levels.  The volumes calculated using 

the model were assessed in relation to direct rainfall, instantaneous flood volume and inflow 

volume.  In relation to the 2013/2014 floods, our initial hypothesis to be tested was that the impact 

of the raised water level areas was minimal and that the main driver of flooding was unusually high 

rainfall. 

 

2 Methods 

2.1 The Model 

A simple hydrological storage model has been developed to provide rapid quantitative assessment 

of hydrological storage volume in a landscape dominated by drainage channels and permeable soils.  

Storage is available in both the ditches themselves and in the soil adjacent to the ditches.  The 

conceptual basis for this model comes from observations of water table elevation from Tadham 

Moor (on the Somerset Levels and Moors).  When rainfall consistently exceeds evapotranspiration a 

dome-shaped water table forms sloping downward from field centre to bounding ditch. When 

evaporation consistently exceeds rainfall a bowl-shaped water table forms sloping from bounding 

ditch to field centre. The model is developed specifically for application to wet winter conditions 

when evaporation is small in comparison to rainfall and the hydrological gradient is towards the 

ditch.  It does not account for any topographic variation and assumes that parameters are uniform 

across the study area. 

Rather than attempting to produce a dynamic model that computes the volumes of water moving 

through the study site and how those volumes change with time, a steady-state approach is taken.  

The model consists of two elements, within channel storage and soil storage.  The total storage per 

unit length of ditch is calculated as the sum of the two elements. 

Storage component 1: the available volume in the surface water body (m3.m-3).  Calculated by 

multiplying the width of surface feature by the vertical distance from ditch water level to the 

adjacent land surface (i.e. the depth of water required to fill the ditch). 

Storage component 2: the available volume in the soil profile (m3.m-3).  Instead of using hydraulic 

conductivity to calculate the flux into and out of the soil, the parameter ‘Extent of influence’ is used 

to describe the width of soil away from the ditch that is likely to receive water from the ditch during 

a flood event.  The storage is then calculated by multiplying the extent of influence by a factor 

describing the active pore space of the soil (the likely available volume to receive water).  A simple 



straight line approximation of the shape of the water table is used.  At the ditch/soil interface this is 

equal to the ditch water level, and it meets the soil surface at the distance defined as extent of 

influence (Figure 1). 

 

Figure 1 The two storage elements required in the calculation of total ditch storage.  Yellow shading indicates 
the available storage capacity in the ditch and orange shading indicates the available storage capacity in the 
soil.  The blue shading indicates the water level in the ditch and saturated soil. The water level in the ditch has 
an influence on the adjacent soil water table.  

The sum of storage components 1 and 2 gives the total storage per metre and this is multiplied by 

the total ditch length to give the total storage volume.  The final output from the model is the total 

storage volume and by comparing this for a range of water level management scenarios the 

difference in available storage between scenarios can be calculated.  

An important aspect of the model design is that it assumes the presence of a low permeability layer 

underneath the permeable soils such that there is no vertical movement of groundwater and that 

aquifer storage does not play a significant role in the local storage of surface water. This is not 

uncommon in the drained lowland permeable landscapes.  The simplicity of this model and 

moderate data requirements make it well suited to rapid application over large areas.   

 

2.2 Data analysis 

For the calculated storage volumes to have relevance to flood risk management, they are expressed 

in relation to other hydrological volumes.  The perspective that this gives helps to underpin any 

conclusions as to the likely impact on total storage of the water level management practice in 

question.  The hydrological volumes selected for comparison, and their associated advantages  and 

disadvantage, are described in Table 1. 

Table 1 Hydrological volumes calculated for comparative purposes 

Hydrological 
volume name 

Description Advantages Disadvantages 

Direct Rainfall For the study period, 
total rainfall is multiplied 

 Relatively quick and 
easy to calculate. 

 Doesn’t account for 
inflows from upstream 



by area to give the total 
volume of water falling 
on the study area. 

 Data are generally 
available 

and is therefore likely to 
be an underestimate. 

Estimated flood 
volume 

For a point in time, the 
aerial extent of flooding is 
measured. 
A flood volume/area/ 
depth relationship is 
developed from analysis 
of the corresponding 
digital surface model.  
The two are combined to 
estimate flood volume 
from aerial flood extent. 

 For a point in time, 
provides a ‘measured’ 
flood volume. 

 The elevation data 
required are often 
available. 

 A single ‘snapshot’ that 
doesn’t account for 
rainfall or inflow. 

 The aerial extent data 
may require using 
moderately costly 
monitoring techniques 
such as aerial image 
acquisition for large 
areas, or standard 
surveying of the water’s 
edge for small areas. 

Apportioned 
inflows 

Available flow data are 
scaled-up according to 
catchment size in order 
to quantify the total 
inflow to the study area.  
The total inflow is then 
apportioned between the 
units. 

 Gives a more accurate 
measure of inflow 
volume. 

 Flow data are 
available for many 
major water courses. 

 Required specialist 
hydrological knowledge 
of both the concept & 
study area. 

 Data limitations may 
introduce uncertainty. 

 

2.3 The Study Site 

The trial application of this model was carried out in the Somerset Levels and Moors (from 

henceforth referred to as the SLMs), in the south west of the UK (Figure 2). 



 

Figure 2 The location of the Somerset Levels and Moors in the UK, and detailed view of the Water Level 
Management Plan areas, and Raised Water Level Areas. 

The SLMs cover an area of 650 km2 and consist of low-lying organic peat soils underlain by marine 

silts and clays, which form an impermeable sub-layer.  They are the largest remaining area of 

lowland wet grassland in England (more than 20% of the resource) and include 18 Sites of Special 

Scientific Interest (SSSIs) covering 7200 ha, 12 of which (6300 ha) are Special Protection Areas under 



the European Habitats Directive, with most of the area designated as a Ramsar site under the 

International Convention on Wetlands (Acreman et al., 2011). 

The area is naturally susceptible to flooding, receiving surface water and ground water from the 

surrounding uplands; the Mendip Hills to the north, the West Wiltshire Downs to the east, the 

Blackdown Hills to the south and Quantock Hills to the west.  Long term (1961 to 2014) average 

annual rainfall for the area is 852 mm.  The movement of water to the sea by gravity is hindered due 

to the low-lying nature of the SLMs, which in places are only 3 to 4 m above Ordnance Datum (OD) 

and 4-5 m below high tide levels.  The water that collects in the low-lying areas is directed, via the 

network of drainage channels, towards pumping stations that lift the water into a network of 

embanked rivers that act as high level carriers to convey the water to the Bristol Channel. 

The network of drainage channels is divided into 10 Water Level Management Plan (WLMP) areas, 

and within each area the watercourse network is classified by size as either: Main river, Viewed 

Rhyne or Ordinary watercourse.  Field surveys conducted in 2014 generated estimates for the widths 

of each and GIS analysis was used to find the total length of each watercourse type. Water levels in 

the watercourses are for the most part managed according to WLMP guidance, with the only 

exception being a subset of watercourses that are managed as raised water level areas (RWLA). The 

RWLA were introduced in the SLM ESA with the purpose of ‘further enhancing the ecological 

interests of grassland by the creation of wet winter and spring conditions on the Moors’ Tatum 

(1994).  The main difference in management between WLMP and RWLA areas is that winter water 

levels are held level with the ground surface as opposed to 0.6 m below (Table 2). 

Table 2 Winter and summer water levels for Water Level Management Plan and Raised Water Level Areas.  

 Water level relative to soil surface 

1st May to 30th November 1st December to 30th April 

WLMP area -0.3 m -0.6 m 

RWLA -0.3 m 0 m 

 

The following water level management regimes were considered: 

 Winter ditch storage under current conditions.  This assumes that winter water levels in the 

WLMP watercourses are maintained at 0.6 m below ground surface, except those in the 

RWLA, which are maintained at ground surface level. 

 Winter theoretical maximum ditch storage.  This assumes all WLMP and RWLA watercourses 

are maintained at 0.6 m below ground surface level.  No ditches are managed with water 

levels maintained at the ground surface. 

 Summer ditch storage.  This assumes that all WLMP and RWLA watercourses are maintained 

at 0.3 m below ground surface level. 

 

The focal point of this study is the winter flooding of 2013/2014 which was the wettest winter on 

record for the UK since records began in 1910 (Muchan et al., 2015). For that reason the period from 

1st December 2013 to 28th February 2014 inclusive is given particular attention, and is referred to as 

winter 13/14 from hence forth.  The long term (1961 to 2014) average annual rainfall for this period 

is 239 mm and the winter 13/14 total is 486 mm. The return period for this period is estimated to be 



50 to 80 years.  The result of this rainfall was extensive flooding across the SLMs, much of which 

persisted for over 6 weeks and caused localised disruption to communities and services, inundation 

of farmland and houses, with considerable loss to the local economy and serious stress on local 

communities. 

Table 3 Area and length of interest features. (Data provided by Somerset Drainage Board). 

  Area (ha.) 

Watercourse length in each Water Level 
Management Plan area.  Watercourse 

length in Raised Water Level Area shown 
in brackets. All lengths in km. 
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Allermoor 902 29 
23.7  

(0) 
19.6  

(0) 
78.1  
(2.1) 

121.4  
(2.1) 1.7 

Brue Valley North 2926 196 
38.9  

(0) 
70.6  
(4.6) 

287.2  
(15.2) 

396.7  
(19.8) 5.0 

Brue Valley South 4743 298 
24.7  

(0) 
77.1  
(1.6) 

437.7  
(28.3) 

539.5  
(29.9) 5.5 

Curry Moor 773 19 
21.0  

(0) 
22.0  

(0) 
64.7  
(0.7) 

107.7  
(0.7) 0.6 

Kings Sedgemoor 4499 588 
50.3  

(0) 
104.2  
(7.7) 

420.9  
(51.4) 

575.4  
(59.1) 10.3 

North Moor 1613 125 
7.1  
(0) 

45.9  
(2.2) 

181.8  
(15.2) 

234.8 
(17.4) 7.4 

Southlake 206 179 
5.3  

(3.0) 
5.2 

(4.9) 
23.2  

(20.6) 
33.7  

(28.5) 84.6 

West Moor 541 148 
9.2  
(0) 

13.7  
(1.4) 

45.2  
(10.8) 

68.1  
(12.2) 17.9 

West Sedgemoor 1576 577 
6.0  
(0) 

47.5  
(2.5) 

159.6  
(48.8) 

213.  
(51.3) 24.1 

Wet Moor 1487 371 
24.4  
(0.8) 

41.1  
(9.5) 

82.2  
(33.4) 

147.7  
(43.7) 29.6 

Total all areas 19265 2530 210.6 446.9 1780.6 2438.1   

 

2.4 Application of the model to the SLMs 

With the length and width of each watercourse type in each of the ten WLMP areas established 

(Table 3), the two remaining parameters to define were specific yield and extent of influence.  This 

was achieved through review of information in the available literature with a particular focus on that 

collected within the study area.  The results of the review are presented here. 

Specific Yield. This is generally used interchangeably with the term drainable porosity and is the ratio 

of the volume of water that drains from a saturated rock or soil by gravity to the total volume of the 

rock or soil (Meinzer, 1923).  Various methods have been employed to establish the specific yield of 



peat soils in the SLM.  Gilman (1994) analysed the water table response to rainfall events using the 

Institute of Hydrology lysimeter at West Sedgemoor (SLM) in autumn of 1990.  Analysis of these 

results suggests a specific yield of 25 %.  Dawson (2006) determined specific yield at -1.0 m pressure 

potential of samples from West Sedgemoor and found the mean specific yield to be 18%.  These 

values are comparable with those reported by a number of authors for the specific yield of a range 

of peat soils (Boelter 1968, Letts et al. 2000, Murtedza et al. 2002 and Parkin et al. 2004).  Armstrong 

(1993) reported specific yield values of 5% for the SLM from an analysis of water level fluctuations.  

Armstrong and Rose (1999) carried out water level modelling at Southlake Moor (SLM) and used a 

value of 15% for the porosity (understood to be drainable porosity in this case) of the peat.  They 

note a two layer system with permeable peaty subsoil overlain in places by less permeable peaty 

silty topsoil, with a porosity of 12%.  An application of the groundwater model MODFLOW (ref) to 

Tadham Moor found a reasonable calibration of the water level time series was achieved using a 

specific yield of 20% noting that ‘In general, specific yield values as high as 20% to 30% are generally 

considered typical, although there is a lack of information relating to peat deposits’ (Bradford, 2004).  

The mean and likely range of values is summarised in Table 4. 

Table 4 Summary of specific yield values relevant to the study area 

Reference Study type Study area Depth (m) Soil Type Specific Yield 

Gilman, 1994. Lysimeter West 
Sedgemoor 

Approx. > 0.1   25% 

Dawson, 2006. Lab sample West 
Sedgemoor 

0 to 0.15  Peaty loam 13% 

Dawson, 2006. Lab sample West 
Sedgemoor 

0.35 to 0.50 Humified 
peat 

16% 

Dawson, 2006. Lab sample West 
Sedgemoor 

0.85 to 1.0 Semi-
fibrous peat 

24% 

Armstrong, 
1993. 

Water table 
analysis 

Whole SLM Single value Single value 5% 

Armstrong and 
Rose, 1999. 

Water table 
analysis 

Southlake 
Moor 

0 to 0.4 Clay topsoil 12% 

Armstrong and 
Rose, 1999. 

Water table 
analysis 

Southlake 
Moor 

0.4 to > 2.0 Subsoil 
peat 

15% 

Bradford Groundwater 
modelling 

Tadham Moor   20% 

It was concluded that the likely range of specific yield for the peat soils in this study is 15% to 25% 
with the likely average value being 20%. 

 

Extent of influence. The distance into the field that the ditch has any control over the water table is 

determined by hydraulic conductivity, which in peat soils is well known to be highly variable in both 

horizontal and vertical directions. Whilst many studies report values for hydraulic conductivity, 

relatively few present estimates of ‘extent of influence’. Acreman et al. (2002) carried out analysis of 

water table data from Tadham Moor and concluded that dipwells up to 8 m from the ditch are 

influenced by the presence of the ditch, but at locations further away ditch water levels have no 

impact on water table elevation.  Boelter (1972) found that once the water table was drawn down 

into moderately well¬humified (hemic or mesic) peat, the zone of influence of the ditch did not 

extend beyond 5 m.  In less humified (fibric) peat, the hydraulic gradient towards the drain extended 



50 m.  Gilman (2004) collected water table data from West Sedgemoor in 1987 and visual inspection 

suggests the extent of influence to be ~12 m, although in summer an effect is noted up to 30 m from 

the ditch.  The mean and likely range of values is summarised in Table 5. 

Table 5 Summary of distance of influence and hydraulic conductivity relevant to the study area. 

Reference Study area Distance of influence of ditch (m) Comment 

Acreman et al., (2002) Tadham Moor 8 m  

Gilman, (2004) West Sedgemoor 12 m, although a summer effect 
up to 30 m from the ditch is 
noted. 

 

Boelter, (1972) Minnesota, USA.  5 m Well-humified 
peat 

Boelter, (1972) Minnesota, USA. 50 m Less humified peat 

It is concluded that the likely range of extent of influence for the peat soils in this study is 5 m to 
30 m with a likely average value being 9 m. 

3 Results 

Land in the SLM managed as RWLA covers 2529 ha or 13.1% of all WLMP areas and incorporates 264 

km, or 10.9%, of all watercourses.  The total ditch storage under current conditions totals 6,755,382 

m3 across all areas and varies between units from a minimum volume of 19,206 m3 at Southlake to a 

maximum volume of 1,606,434 m3 at Kings Sedgemoor in a pattern that reflects the density of 

ditches in each area.  The maximum theoretical ditch storage across all WLMP areas is 7,534,878 m3 

and varies between units from a minimum volume of 108,156 m3 at Southlake, to a maximum 

volume of 1,778,952 m3 at Kings Sedgemoor. 

 

Figure 3 Ditch storage volumes for each WLMP unit under each of three water level management conditions: 
Winter ditch storage available under current conditions (Wc), the winter theoretical maximum ditch storage 
(Wm) and summer ditch storage (S). Each bar represents the total ditch storage available under the 
corresponding conditions and is divided between channel storage (blue) and soil storage (brown) volumes.  
The distance of influence is 9 m and the specific yield is 0.2. 



Summer ditch storage follows the same pattern of variability but is 50% of the maximum theoretical 

ditch storage (Figure 3).  The management at Southlake, which is embanked and where 84.6% of 

ditches are RWLA, differs to that of all other units in that it is primarily used for flood storage.  

Comparison of  the total current ditch storage with the theoretical maximum ditch storage volume 

provides an index of  the relative impact that the raised water level areas have on the total ditch 

storage available.  The total ditch storage volume occupied by maintenance of high water levels in 

winter (the difference between maximum theoretical storage and storage under current conditions) 

is 779,496 m3 and equates to 10% of the theoretical maximum across all sites.  There is however 

great variability between sites from a minimum of 0.6 % of the total ditch storage at Curry Moor 

(SLM), to 82.2 % of the total ditch storage at Southlake, due to variability in the percentage of 

ditches managed as RWLA within each WLMP.  The majority of sites have a reduction in ditch 

storage of between 5 % and 27% due to maintenance of winter raised water levels.  Summer ditch 

storage is 50% of the maximum theoretical ditch storage at each site.  The split between channel 

storage and soil storage is consistent across sites with channel storage contributing approximately 

two thirds and soil storage contributing one third of the total ditch storage volume (Figure 3). 

3.1 Application to the 2013/2014 floods 

Current winter ditch storage, winter theoretical maximum ditch storage volume and summer ditch 

storage volumes are presented in the context of the total volume of rainfall to fall on each WLMP 

unit during winter 13/14 ( 

Figure 4).  During the period of the Winter 2013/2014 floods, rainfall was not evenly distributed 

across the study area.  Curry Moor received the highest rainfall (499 mm) and Brue Valley South 

received the lowest rainfall (382 mm); this was reflected in the extent and depth of inundation, with 

more severe flooding on Curry Moor.  Averaged across all areas, the theoretical maximum ditch 

storage is 9.7%, winter ditch storage is 7.8% and summer ditch storage is 4.9% of the total rainfall 

volume.  In all except one of the WLMP areas, the ditch storage volume lost through maintenance of 

RWLA is 2% or less. 

 
Figure 4 The total storage available with (just the grey shaded bars) and without (the sum of the grey shaded 

bars and the unshaded bars) RWLAs as a % of Direct Rainfall (DR), Measured Volume (MV) and Apportioned 



Inflow (AI) for each WLMP area.  In other words, the volume of storage occupied by maintenance of RWLAs is 

indicated by the unshaded bars. 

Where data are available, the ditch storage volumes are presented in relation to estimates of 

maximum flood volume calculated from a combination of LiDAR-derived level to volume 

relationships, telemetered water-level data and remotely sensed imagery.  In the six units where 

results exist, the average RWLA volume occupied as a percentage of the maximum flood volume in 

2014 across all sites is 0.6% and the average increase in flood level across all sites is 7 mm.  Between 

WLMP units, the range of proportion of volume occupied is 0.01% to 1.38% and the range of flood 

level increase is 3 mm to 116 mm.  By comparison, the volume occupied by maintenance of summer 

penning levels is between 1.02% and 14.6% (average 3.6%) of the maximum flood volume and this 

equates to an increase in flood level of between 21 mm and 62 mm (average 29 mm). 

The final set of calculations considers the volume of water flowing into the study area (apportioned 

inflows).  Available river flow time-series data (from a gauging station at Lovington on the River Brue 

just upstream of where it enters the SLM) were scaled-up according to catchment area for the whole 

study area, giving and total inflow volume within the for the combined WLMP areas.  The total 

inflow was then apportioned between each of the WLMP units.  The results of this analysis show 

that the total volume of storage in the ditch network is less than 1% of the total flow into the area 

during winter 13/14.  The volume occupied by the maintenance of RWLAs is less than 0.13% in all 

areas. 

3.2 Uncertainty 

 

Sensitivity analysis was carried out to investigate the impact of uncertainty in specific yield and 

distance of influence.  The winter ditch storage under current conditions and winter theoretical 

maximum ditch storage were calculated for combinations of specific yield ranging from 0.15 to 0.25 

and distance of influence ranging from 5 m to 30 m.  Within each site, the most dramatic impact on 

total ditch storage comes from uncertainty in distance of influence.  The maximum value of 30 m 

suggested by Gilman (2004), has the potential to double available the total ditch storage.  Specific 

yield has a smaller impact on the calculated volume, with the range of possible values (0.15 to 0.25) 

translating to a ~15% change in total ditch storage.  Expressed relative to the total volume of rainfall 

(winter 13/14) the mean range of percentage loss in ditch storage due to maintenance of RWLA is 

1.51% to 4.04%. 

 

4 Discussion 

The results indicate that, if considered simply as a percentage of the total storage, the storage 

volume occupied by the RWLAs is in some WLMP areas an appreciable proportion of the total.  

However when expressed in relation to the volumes of water present during a severe flood event, 

the volumes occupied are, with one exception, less than 2%.  The area-wide maintenance of summer 

water levels represents a greater reduction in total storage than that resulting from ecologically-

driven winter water management. 



Previous studies (Acreman et al., 2007; Mould, 2008) used a similar approach to calculate storage 

volume of the North Drain catchment of the SLM, which is most closely approximated in this study 

as the sum of Brue Valley North and Brue Valley South.  They calculated the available storage 

volume under current winter management to be 3.58 x 106 m3.  By comparison our calculations for 

the Brue Valley North and Brue Valley South indicate a volume of 2.71 x 106 m3.  A likely reason for 

the difference between the two is the method used to determine ditch lengths and widths.  They 

presented this in the context of the volume of the mean annual maximum flood (4.3 Mm3) to which 

the storage equates to 84%.  By contrast, the volumes estimated for the Brue Valley during the 

winter 13/14 floods range are 8.5 Mm3 (measured volume), 29 Mm3 (direct rainfall) and 520 Mm3 

(apportioned inflow) depending on method used.  This illustrates the unusual severity of the winter 

13/14 floods.  The ‘choice’ of comparison volume clearly makes a considerable difference to the 

calculated values.  

This is not to say that the SLM wetlands do not provide an important water storage function, rather 

that it is dominated by large-scale topography rather than small-scale ditch management. In the case 

of the winter 13/14 floods the temporary storage and subsequent release of floodwaters had the 

effect of reducing the maximum flood peak in the downstream water courses. The total volume of 

surface water stored was calculated for six WLMP areas (data availability meant that the calculation 

could not be made for all areas) and the volumes range from 4.2 x 106 m3 to 2.7 x 107 m3. In all but 

one area this equates to over double the volume of water falling as rainfall on the corresponding 

area during the winter 13/14 study period. Storage of surface water by wetlands has been noted in 

other studies.  

Acreman et al. (2003) present the results of modelling the impact of floodplain restoration through 

embankment removal, and hence increasing floodplain inundation, on flow in the River Cherwell, 

Oxfordshire, UK. They conclude that ‘restoring the river channel through the floodplain to pre-

engineered dimensions reduces peak flow by around 10–15% and increased peak water levels within 

the floodplain by 0.5–1.6 m. Embanking the river increases the peak flows downstream by up to 

150%.’ Hooijer (1996) calculated that flooding of 3500 ha of floodplain in the Shannon valley, 

Ireland, to an average depth of 1 m represented a storage equivalent to one day of peak discharge 

(around 400 m3 s–1 ). 

Studies in North America show similar results. Demissie and Khan (1993) reviewed and analysed the 

evidence for the influence of wetlands on streamflow in Illinois. They concluded that peakflow and 

floodflow volume decrease, and low flows increase with increasing percentage of wetlands in the 

watershed. More specifically, they report that wetlands have a more noticeable effect on peakflow 

and that the peakflow to average precipitation ratio decreased on the average by 3.7 percent for an 

increase of one percent wetland area in a watershed but that there were significant regional and 

seasonal differences in the rate of change. Novitski (1982) carried out a study of wetlands in 

Wisconsin. He concluded that surface-water depression wetlands, which are closest in hydrological 

character to those in this study, retains water and reduce flood peaks.  

 

The value of floodplains in storing water and reducing the severity of flooding downstream is 

unlikely to be seen as a benefit by those people living within the flooded area. This conflict, which is 

by no means peculiar to SLM, is going to be the subject of environmental and socio-economic 



studies for many years as an acceptable trade-off between the requirements of key stakeholders is 

developed. 

 

5 Conclusions 

We have constructed and tested a simple model of hydrological storage for flat areas dominated by 

drainage ditches.  The model was applied to an important wetland area in the UK to investigate the 

impact of water level management plans on the volume of hydrological storage available. 

We tested the null hypothesis that ‘raising water level in ditches in conservation areas does not 

reduce flood storage on the Somerset Levels and Moors’.  This study concludes that the loss in ditch 

storage resulting from RWLAs is small in comparison to the incoming volume of water.  In all except 

one area, the reduction in ditch storage through maintenance of summer water levels is greater 

than the reduction due to maintenance of RWLAs.  Expressed both as a proportion of the total 

volume of water during the flood event and as a reduction in flood level, the calculations presented 

here indicate that the areas managed with raised water levels have only a very minor impact on 

large flood events.  Above ground storage represents by far the largest component of flood water 

storage in the SLMs. 

A considerable uncertainty in these model results is due to the highly heterogeneous character of 

organic peat soils and their associated hydraulic properties.  We have assumed that the limited data 

points upon which we have based the ‘extent of influence’ parameter represent the whole SLMs 

area; however this may not be the case.  Large scale field sampling would be time-consuming and 

expensive, and so a need exists to find ways to understand and represent this variability in a 

meaningful way. 

Simple yet effective models are powerful tools for giving rapid ‘big picture’ answers to questions, 

and as such are attractive to decision makers.  The approach presented here could be of benefit to 

land and drainage managers, as well as those interested in ecosystem service delivery. 
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