The role of localized compressional ultra-low frequency waves in energetic electron preipitation
Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E.J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A. ORCID: https://orcid.org/0000-0002-7388-1529; Rodger, Craig J.; Degeling, Alexander W.; Forsyth, Colin; Singer, Howard J.. 2018 The role of localized compressional ultra-low frequency waves in energetic electron preipitation. Journal of Geophysical Research - Space Physics, 123 (3). 1900-1914. https://doi.org/10.1002/2017JA024674
Before downloading, please read NORA policies.
|
Text
Rae_et_al-2018-Journal_of_Geophysical_Research__Space_Physics.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (1MB) | Preview |
Abstract/Summary
Typically, ultra‐low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon‐borne electron precipitation across keV‐MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave‐particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1002/2017JA024674 |
Programmes: | BAS Programmes > BAS Programmes 2015 > Space Weather and Atmosphere |
ISSN: | 0148-0227 |
Date made live: | 08 May 2018 13:15 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/513197 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year