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Abstract 

1. The age of the parents at the time of offspring production can influence offspring 

longevity, but the underlying mechanisms remain poorly understood. The effect of 

parental age on offspring telomere dynamics (length and loss rate) is one mechanism that 

could be important in this context.   

2. Parental age might influence the telomere length that offspring inherit or age-related 

differences in the quality of parental care could influence the rate of offspring telomere 

loss. However, these routes have generally not been disentangled.  

3. Here we investigated whether parental age was related to offspring telomere dynamics 

using parents ranging in age from 2 to 22 years old in a free-living population of a long-

lived seabird the European shag (Phalacrocorax aristotelis). By measuring the telomere 

length of offspring at hatching and towards the end of the post-natal growth period, we 

could assess whether any potential parental age effect was confined to the post-natal 

rearing period.  

4. There was no effect of maternal or paternal age on the initial telomere length of their 

chicks. However, chicks produced by older mothers and fathers experienced significantly 

greater telomere loss during the post-natal nestling growth period. We had relatively few 

nests in which the ages of both parents were known, and individuals in this population 

mate assortatively with respect to age. Thus, we could not conclusively determine 

whether the parental age effect was due to maternal age, paternal age, or both; however, it 

appears that the effect is stronger in mothers. 

5. These results demonstrate that in this species, there was no evidence that parental age 

was related to offspring hatching telomere length. However, telomere loss during nestling 

growth was reduced in the offspring of older parents. This could be due to an age-related 

deterioration in the quality of the environment that parents provide, or because parents 

that invest less in offspring rearing live to an older age. 
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Introduction 

Parental age at the time of offspring production can influence offspring lifespan in diverse taxa 

(Lansing 1947; Priest, Mackowiak & Promislow 2002; Fox, Bush & Wallin 2003; Tarin et al. 

2005; Bouwhuis et al. 2010; Ducatez et al. 2012; Gillespie, Russell & Lummaa 2013). However, 

the mechanisms underlying this effect remain poorly understood. Telomere dynamics, both length 

and loss rate, might be of critical importance in this context. Telomeres are highly conserved, 

tandem repeats of a short, non-coding DNA sequence (TTAGGG in all vertebrates) at the ends of 

eukaryotic chromosomes. Together with shelterin proteins, telomeres mark the chromosome ends 

and form protective caps that shield the coding sequences from loss during normal cell division 

(Blackburn 2005). Telomeres can limit cellular lifespan because, once telomeres become 

critically short, cells enter a state of replicative senescence and either die or remain in tissues and 

secrete inflammatory compounds that impair tissue function (Blackburn 2005). Both of these 

outcomes are thought to contribute to age-related declines in tissue function and organismal 

senescence (Aubert & Lansdorp 2008). In support of this, in many organisms, telomere length has 

been shown to decrease with age in diverse tissues (Monaghan & Haussmann 2006; Monaghan 

2010). Further, in a number of species, telomere length and loss rate are related to longevity; 

individuals with longer telomeres and/or slower rates of telomere loss have longer lives (Cawthon 

et al. 2003; Monaghan & Haussmann 2006; Bize et al. 2009; Monaghan 2010; Heidinger et al. 

2012; Barrett et al. 2013; Boonekamp et al. 2014; Asghar 2015).  

Some of the variation in telomere dynamics is genetically inherited (Broer et al. 2013), 

but environmental factors during development (Monaghan & Haussmann 2006; Monaghan 2010; 

Entringer et al. 2011; Boonekamp et al. 2014; Herborn et al. 2014), including the age of the 

parent, are also likely to be important (Unryn, Cook & Riabowol 2005; De Meyer et al. 2007; 

Njajou et al. 2007; Olsson et al. 2011; Eisenberg, Hayes & Kuzawa 2012; Broer et al. 2013; 

Asghar 2015). Parental age could influence offspring telomere length both pre- and post-

fertilisation (Haussmann & Heidinger 2015). For example, older parents might produce gametes 

with shorter telomeres than younger parents due to variation in the cell division history, exposure 

of gametes to damaging environmental effects, or in the fertilising power of sperm with different 

telomere lengths (Keefe, Liu & Marquard 2007).  

The quality of the embryonic environment has also been shown to influence offspring 

telomere length at birth (Entringer et al. 2012; Haussmann et al. 2012; Broer et al. 2013) and 

might change with parental age. In birds, the limited published research to date suggests that there 
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is a parental age effect (Voillemot et al. 2012) and that maternal, rather than paternal, age may be 

more important (Horn et al. 2011; Reichert et al. 2014; Asghar et al. 2015). In great reed 

warblers, maternal age influenced offspring post-natal telomere length, but this effect depended 

on the infection status of the mother (Asghar 2015). As they grew older, mothers uninfected by 

malarial parasites produced offspring with longer telomeres, whereas as infected mothers grew 

older, they produced offspring with shorter telomeres. In other vertebrates, there is evidence that 

paternal effects may be more important. In sand lizards, there is evidence of an effect of paternal 

age on offspring telomere length; sons produced by older fathers had shorter telomeres in 

adulthood (Olsson et al. 2011). In humans, both the average telomere length in sperm and in 

offspring, have been shown to increase with paternal age (De Meyer et al. 2007; Kimura et al. 

2008; Eisenberg, Hayes & Kuzawa 2012; Prescott et al. 2012). Importantly however, the 

offspring in all of these studies were sampled once, either near the end of the post-natal growth 

period or in adulthood, thus it is not possible to determine whether the observed relationships are 

primarily due to pre-natal effects of parental age, post-natal effects of parental age or both.  

If it is the quality of the post-natal environment that matters, the effect of parental age on 

offspring telomere length might depend on how the quality of the rearing environment varies with 

parental age. In many organisms, parental age influences the habitat quality and/or the care 

provided for offspring (Clutton-Brock 1991; Forslund & Part 1995; Froy et al. 2013; Nussey et 

al. 2013; Hayward et al. 2014; Oro et al. 2014; Rabon 2014). Recent research in birds suggests 

that exposure to stressors, such as increased competition for limited parental resources or 

increased disturbance, accelerates telomere loss in nestlings (Nettle et al. 2013; Boonekamp et al. 

2014; Herborn et al. 2014). Therefore, if the quality of resources or care for offspring changes 

with parental age, this might influence the rate of offspring telomere attrition. 

Here we investigated the influence of parental age on offspring telomere dynamics in a 

free-living population of a long-lived seabird, the European shag (Phalacrocorax aristotelis). We 

sampled offspring produced by known-aged adults (ranging in age from 2-22 years old) at 

hatching and again close to fledging, enabling us to examine whether any parental age effects 

were confined to the offspring rearing period, or whether they were already present when the 

offspring hatched.   
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Materials and methods 

(a) Study subjects 

 Research was conducted between May and July 2010 and 2011, on a free-living population of 

European shags (Phalacrocorax aristotelis) that breed on the Isle of May National Nature 

Reserve in the Firth of Forth, Scotland (56° 11′ 9″ N, 2° 33′ 27″ W). This population of shags has 

been studied for over 30 years and the chicks are ringed annually. Two-year old birds can also be 

accurately aged based on plumage characteristics (Potts 1971). Consequently, the ages of many of 

the adults that breed on the island are known. European shags are relatively long-lived (the oldest 

bird recorded in this population was 22 years old), socially monogamous seabirds that provide 

extensive care for their offspring (Wanless 1997). Here we focused on nests in which the age of 

least one of the parents was known. The ages of the parents are highly correlated in this species 

(see below) and thus we could not conclusively separate maternal and paternal age effects. 

Female shags lay clutches that range from 1-5 eggs; the modal clutch size for this population is 3 

eggs (Daunt et al. 1999). Both parents incubate the eggs and the altricial chicks hatch 

asynchronously after approximately 35 days (Potts, Coulson & Deans 1980). Both parents then 

brood and feed the chicks and the chicks leave the nest approximately 50 days post-hatching 

(Daunt et al. 1999).  

 

(b) Sampling 

To measure offspring telomere length, small blood samples were collected from the chicks’ tarsal 

veins with a needle and syringe within 2 days of hatching (n = 311 chicks from n = 134 nests 

where the age of at least one parent was known). Chicks were individually marked with coloured 

tape until they were large enough to be given permanent metal rings. To measure growth, chicks 

were weighed at hatching, and at the start and peak of the linear growth phase, approximately at 

days 10 and 30 respectively (Daunt et al. 2001). To measure telomere loss, a second blood 

sample was collected at the last growth measurement (between age 25-35 days). Telomere length 

based on the first blood sample is referred to as ‘hatching telomere length’, and the actual ages at 

which both blood samples were collected are included in the analyses. Blood samples were stored 

on ice in the field for less than 6 hours, centrifuged at 2000 rpm for 10 minutes, separated into 

plasma and red blood cell fractions, and stored at -20°C for less than two months before being 

transferred on dry ice to a -80 °C freezer.  
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(c) Telomere measurements 

Telomere length was measured in red blood cells (RBC). RBCs are nucleated in birds, and 

represent a highly proliferative tissue that is well suited to telomere analysis (Nussey et al. 2014). 

The DNA was extracted from 4 μl RBC samples in 196 μl of phosphate buffered saline solution 

using Macherey-Nagle Whole Blood Kits (Macherey-Nagel, Bethlehem, PA, USA) and following 

the manufacturer’s instructions. We measured the quantity of the extracted DNA with a nanodrop 

8000 spectrophotometer (Thermo Scientific) and samples that had 260/280 ratios of 1.7 or below 

and/or 260/230 ratios of 1.8 or below were re-extracted. DNA integrity was assessed by 

electrophoresis on a 2% agarose gel. 

Telomere length was measured using quantitative PCR (qPCR) on an Mx3005P 

(Stratagene). This method provides a relative measure of telomere length that is suitable for 

comparisons both within and among individuals of the same species. Telomere length was 

calculated as the ratio (T/S) of telomere repeat copy number (T) to control, single gene copy 

number (S) of the focal sample relative to a reference sample. We followed the methods of 

Cawthon 2002 adapted for European shags (Herborn et al. 2014). We used Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as the control, single copy gene and verified its suitability 

via a melt curve analysis, which demonstrated that the dissociation curve had a single peak. The 

melting temperature (Tm) is the temperature at which 50% of the DNA strands hybridise. This is 

sequence specific, and in this case the Tm is 79.7°C and indicated a single amplification product. 

To further verify that the amplification was a single product, we also ran a random selection of 

the amplified PCR products on a 2% agarose gel. All showed a single band at the expected size of 

77bp.  

Telomere and GAPDH reactions were carried out on separate plates. Each reaction was 

measured in triplicate and used 5 ng of DNA. The following primers were used to amplify the 

telomere and GAPDH sequences: Telomere forward tel1b  (5’-

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’) and reverse tel2b (5’-

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’); Cormorant specific GAPDH 

forward (GACTGTAGCCTTCTCCTTCCCTTA) and reverse 

(TTCCCATCCACTTCCAGTAAAGA). The primer concentrations were: forward tel1b/ reverse 

tel2b 200 nM /200 nM and forward GAPDH/ reverse GAPDH 200 nM/ 200 nM. Primers were 

mixed with 12.5 μl of absolute blue SYBR green QPCR Master Mix (Stratagene) for a total 

volume of 25 μl. The conditions for the qPCR reactions were: telomeres 15 minutes at 95ºC, 
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followed by 27 cycles of 15 seconds at 95ºC, 30 seconds at 58ºC, and 30 seconds at 72ºC; 

GAPDH 15 minutes at 95ºC, followed by 40 cycles of 15 seconds at 95ºC, 30 seconds at 60ºC, 

and 30 seconds at 72ºC. In both reactions, the number of PCR cycles (Ct) necessary to 

accumulate sufficient fluorescent signal to cross a threshold was measured. Individuals with 

relatively long telomeres were characterized by shorter reaction times.  

Each plate also contained a shag chick RBC reference sample that was serially diluted to 

produce a standard curve (10, 5, 2.5, 1.25, 0.75, and 0.375 ng) and to measure reaction 

efficiencies. All of the samples fell within the range of the standard curve. The average reaction 

efficiencies for the GAPDH (mean ± 1 SEM: 101.93% ± 0.90) and telomere plates (mean ± 1 

SEM: 100.17% ± 1.37) were very close to 100%, and therefore we did not have to correct for 

efficiency differences when calculating telomere length. A 5 ng dilution of the reference sample 

was used to set the Ct thresholds for the reactions and to calculate the intra- and inter- plate 

variation.  

To calculate the relative T/S ratios, we used the average Ct values for each sample 

according to the following formula: 2ΔΔCt, where ΔΔ Ct = (Ct 
telomere – Ct 

GAPDH) reference - (Ct 
telomere – Ct 

GAPDH) focal (Stratagene 2007). Average intra- and inter-plate variation of the Ct values 

was 1.02% and 1.13% for the telomere reactions and 0.70% and 0.73% for the GAPDH reactions. 

The inter-plate variation for the relative T/S ratio was 9.7%. 

 

(c) Statistical analyses 

 We used linear mixed effects (LME) models to examine the potential influence of parental age 

on offspring initial telomere length  (telomere length collected within the first two days of 

hatching) and the change in telomere length between sampling points (calculated as: the second 

telomere sample collected at the end of the linear growth period – the initial telomere sample). 

Variance structures were estimated using restricted maximum likelihood (REML) and all of the 

models had normal error structures.  

We examined the potential effects of maternal and paternal age in different models as the 

age of the mother (age range = 2-19 years) was known in n = 81 nests for telomere length at 

hatching and n = 64 nests for the change in telomere length and the age of the father (age range = 

2-22 years) was known in n = 99 nests for telomere length at hatching and n = 80 nests for the 

change in telomere length. In nests where the ages of both parents were known (n = 129 chicks 
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from n = 56 nests for telomere length at hatching and n = 96 chicks from n = 45 nests for the 

change in telomere length), the ages of the mother and father were highly correlated with one 

another (hatching: r = 0.71, p < 0.001, change in telomere length: r = 0.73, p < 0.001).  

Models also included maternal and paternal identity as random factors to account for the 

non-independence of chicks produced in the same nest or by the same parent in different years 

(14 females and 24 males produced offspring in 2010 and again in 2011). In addition, we 

included year and sex as factors and clutch size, hatching order within the brood and hatch date 

(adjusted to the median for a given year) as covariates as these variables have been reported to 

influence offspring telomere dynamics in other studies (Hall et al. 2004; Foote et al. 2011; Nettle 

et al. 2013; Boonekamp et al. 2014).  

In models of initial telomere length, we also included the actual ages of the chicks (all 

chicks were sampled within 2 days of hatching) and their mass at the time of sampling as this 

might be expected to influence telomere length. In models of the change in telomere length, we 

also included the linear growth rate (calculated as the slope of the regression of mass on age) as 

this has been reported to influence telomere loss in other studies (Geiger et al. 2012) and the 

number of days between the two sampling points. Telomere loss has been found to be greater in 

longer telomeres in some studies (Verhulst et al. 2013). However, after correcting for the 

regression to the mean (see Supporting Information) we did not find any relationship between 

initial telomere length and the change in telomere length.  

We also examined whether maternal and paternal ages were correlated with clutch size, 

offspring mass at hatching, and offspring growth rate. Telomere length was natural log 

transformed to improve normality. Final models were determined using a backward elimination 

process and log-likelihood ratio tests. All statistical analyses were performed in IBM SPSS 

Statistics 19.  

 

Results 

There were no significant effects of maternal or paternal age on offspring initial telomere length 

(Table 1). In both maternal and paternal age models, chicks from larger clutches (Table 1, Fig. 1a 

and b), as well as chicks that were older and smaller had significantly shorter telomeres at the 

initial sampling point (Table 1). There were no significant effects of any of the other independent 

variables on initial telomere length (Table 1).  
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 Chick telomere length significantly decreased between the initial sample collected within 

2 days of hatching and the end of the linear growth period in both maternal (F 1, 129.72 = 8.669, p = 

0.004; initial telomere length: mean ± 1 SEM: 0.95 = ± 0.033, telomere length at the end of the 

linear growth period: mean ± 1 SEM: 0.86 = ± 0.030) and paternal age models (F 1, 159.02 = 11.695, 

p = 0.001; initial telomere length: mean ± 1 SEM: 0.97 = ± 0.029, telomere length at the end of 

the linear growth period: mean ± 1 SEM: 0.88 = ± 0.027).  

Importantly, in both maternal and paternal age models, there was a significant effect of 

the age of the parent on the change in offspring telomere length (Table 1). Chicks produced by 

older mothers and fathers experienced significantly greater telomere loss than chicks produced by 

younger parents (Table 1, Fig. 2a and 2b). None of the other independent variables were 

significantly related to the change in telomere length in either maternal or paternal age models 

(Table 1).  

While telomere loss significantly decreased with parental age, the amount of loss was 

small relative to the amount of variation among chicks in the initial telomere length, and thus 

there was no significant effect of maternal (F 1, 60.53 = 0.172, p = 0.680) or paternal age (F 1, 59.75 = 

0.012, p = 0.912) on chick telomere length at the end of the linear growth period.  

There were no significant correlations between maternal or paternal age and clutch size (r 

= -0.065, p = 0.440; r = 0.100, p = 0.202), offspring mass at hatching (r = 0.008, p = 0.921; r = -

0.086, p = 0.272), or offspring growth rate (r = 0.088, p = 0.294; r = 0.116, p = 0.139). 

 

Discussion 

In many organisms, parental age at conception has been shown to influence offspring 

lifespan and offspring telomere dynamics could be an important mechanism underlying this 

effect. In support of this, in European shags, although we found no effect of parental age on 

offspring telomere length collected within two days of hatching, we did find that chicks produced 

by older mothers and fathers had greater post-hatching telomere loss than those produced by 

younger parents.  Because the ages of the parents were highly positively correlated, we did not 

have the statistical power to separate the relative influences of female and male age on offspring 

telomere dynamics and the ages of both pair members could have contributed to our results. 

However, our results seem to indicate that the maternal age effect is stronger than the paternal age 

effect.  
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This study also provides novel evidence that at least in this species, these effects are most 

likely the result of loss that occurred during the post-natal period rather than initial differences in 

telomere length. It is possible that there were also some carry-over effects of gamete or egg 

quality that were not manifested until the post-natal period. Recent data from bustard chicks 

produced by artificial insemination and reared without parental involvement suggest that gamete 

quality of older males and females is reduced, with the mother’s age affecting chick mass at 

hatching, and the fathers age affecting growth soon after hatching (Preston et al. 2015).  Teasing 

apart such effects with respect to telomere length would require artificial insemination and a 

cross-fostering design that was not possible in our study (Tissier, Williams & Criscuolo 2014; 

Preston et al. 2015).  We did not however, find any correlation between parental age and hatching 

mass or chick growth in our study. 

In birds, there is evidence that individuals with shorter telomeres (Heidinger et al. 2012) 

and faster rates of telomere loss (Boonekamp et al. 2014) during early life have reduced lifespans. 

Hence, our findings are consistent with the idea that parental age influences offspring longevity in 

part through its effects on offspring telomere loss. Although offspring produced by older parents 

experienced greater telomere loss between hatching and approximately 30 days post-hatching, the 

amount of loss was small relative to the variation in initial length, thus the effect of parental age 

on offspring telomere length at 30 days was not significant. However, parents continue to care for 

chicks until they are at least 50 days old and it is possible that by the time the chicks reached 

independence this effect would have been significant. The relative influence of telomere length 

versus loss rate on longevity is still poorly understood (Monaghan 2010). Telomere length might 

be more important if once telomeres become critically shortened, tissue function is directly 

impaired. Alternatively, telomere loss might have a larger effect if telomere shortening reflects an 

individual’s susceptibility to stress and/or ability to repair stress-induced damage.  

In shags, parental age might have influenced offspring post-natal telomere loss through 

many potential routes (Herborn et al. 2015). For example, older parents might produce offspring 

that are more sensitive to stressors or are less able to repair stress-induced damage. In this 

population of shags, we have previously found that chicks exposed to higher levels of stress 

during post-natal development are more stress responsive and experience greater telomere loss 

(Herborn et al. 2014). Chicks produced by older parents might experience a more stressful rearing 

environment if older parents are less able to provide care than younger parents. Alternatively, 

because this is a cross-sectional study, these effects could be due to differential parental 

investment strategies that are linked to parental longevity. For example, parents that live longer 
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might invest less in offspring. Identifying the mechanisms by which parental age influences 

offspring post-natal telomere loss is an important area of future research. 

In addition, we found that telomere length at hatching was influenced by clutch size; 

chicks that hatched from larger clutches, had shorter telomeres at hatching. We did not measure 

egg parameters in our study, but this effect could have occurred because females that lay larger 

clutches produce smaller or lower quality eggs. In striped plateau lizards (Sceloporus virgatus) 

yolk antioxidant levels decrease with clutch size (Weiss et al. 2011). Telomere loss is accelerated 

by exposure to oxidative stress (von Zglinicki 2002) and embryos that develop in eggs with lower 

antioxidant levels may be at higher risk. A recent study in jackdaws (Corvus monedula) found 

that chicks that were reared in experimentally enlarged clutches experienced greater post-natal 

telomere loss than those reared in experimentally reduced clutches (Boonekamp et al. 2014). 

However, we did not find any effect of clutch size on the rate of post-natal telomere loss in shags. 

In conclusion, there was no effect of parental age on offspring telomere length at 

hatching, suggesting that a pre-natal effect was unlikely to have occurred. However, chicks 

produced by older parents experienced significantly greater post-natal telomere loss than chicks 

produced by younger parents. These results are consistent with the idea that telomere dynamics 

might be an important mechanism underlying the commonly observed relationship between 

parental age and offspring lifespan. In species that provide extended post-natal care, effects 

occurring during the post-natal period might be particularly salient.  
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Figure and table captions 

 Table 1. The effects of maternal and paternal age on offspring telomere dynamics (initial telomere length collected within the first two days of hatching and change in telomere length). Backward elimination and likelihood ratio tests were used to produce final models. Significant variables with p < 0.05 are indicated in bold. Final models were determined using a 

backward elimination process and log-likelihood ratio tests. Variables in italics were not included in the final models and in these cases P-values were obtained just prior to removal.  Fig. 1 The relationship between clutch size and natural log-transformed offspring initial telomere length (collected within the first two days of hatching) (T/S ratio) (mean ± s.e.m.) in European shag chicks for maternal (a) and paternal (b) age models.  
 Fig. 2 The relationship between the age of the mother (a) or father (b) and the change in the telomere length of their chicks during post-natal development (measurements collected approximately at hatching and 30 days post-hatching) in European shags. Greater loss is characterized by a more negative change in telomere length value. 
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Maternal age: (range 2-19 years)  

Initial telomere length: n = 170 chicks from n = 81 nests 

Variance Fixed effects F Estimate (s.e.) P value Mother/residual Clutch size 19.407 -2.968 (0.068) <0.001 0.025/0.096 Chick age 4.568 -0.112 (0.052) 0.034 Father/ residual Mass 4.071 0.009 (0.004) 0.045 0.008/0.096 Sex 1.063 0.055 (0.053) 0.304  Year 0.817 0.060 (0.066) 0.368  Hatch date 2.584 0.005 ((0.003) 0.111  Hatch order 0.133 0.011 (0.030) 0.716  Maternal age 0.006 0.007 (0.009) 0.939 
Change in telomere length: n = 124 chicks from n = 64 nests 

Variance Fixed effects F Estimate (s.e.) P value Mother/residual Maternal age 4.829 -0.017 (0.008) 0.032 0.004/0.060 Clutch size 2.054 0.096 (0.0673) 0.155 Father/residual Hatch order 1.919 -0.037 (0.028) 0.198 0.020/0.060 Sex 1.568 0.0618 (0.049) 0.213  Year 2.896 -0.106 (0.062) 0.094  Days between 0.001 <-0.001 (0.017) 0.971  Growth rate <0.001 <-0.001 (0.004) 0.990  Hatch date 1.131 -0.003 (0.003) 0.292 
Paternal age: (range 2-22 years) 

Initial telomere length: n = 204 chicks from n = 99 nests 

Variance Fixed effects F Estimate (s.e.) P value Mother/residual Clutch size 15.801 -0.229 (0.058) <0.001 
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0.0196/0.1051 Chick age 8.379 -0.143 (0.050) 0.004 Father/residual Mass 8.396 0.011 (0.004) 0.004 <0.001/0.1051 Hatch order 3.223 0.051 (0.029) 0.074  Sex 2.890 0.083 (0.049) 0.091  Year 1.247 0.066 (0.059) 0.266  Hatch date 0.228 0.001 (0.003) 0.635  Paternal age 0.621 0.005 (0.058) 0.432 
Change in telomere length: n = 153 chicks from n = 80 nests 

Variance Fixed effects F Estimate (s.e.) P value Mother/residual Paternal age 4.758 -0.012 (0.006) 0.031 <0.001/0.092 Clutch size 2.083 0.078 (0.054) 0.151 Father/residual Year 1.390 -0.058 (0.049) 0.240 <0.001/0.092 Days between 0.526 -0.011 (0.016) 0.469  Growth rate 0.009 < 0.001 (0.004) 0.926  Hatch date 0.051 < 0.001 (0.003) 0.822  Hatch order 1.225 -0.034 (0.031) 0.270  Sex 0.311 -0.028 (0.049) 0.578  
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 Fig. 1a.  

 Fig. 1b. 
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 Fig. 2a. 

 Fig. 2b. 
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