

OPEN ACCESS

Citation: Chang Y, Deng C, Dore AJ, Zhuang G (2015) Human Excreta as a Stable and Important Source of Atmospheric Ammonia in the Megacity of Shanghai. PLoS ONE 10(12): e0144661. doi:10.1371/journal.pone.0144661

Editor: Ben Bond-Lamberty, DOE Pacific Northwest National Laboratory, UNITED STATES

Received: July 22, 2015

Accepted: November 20, 2015

Published: December 14, 2015

Copyright: © 2015 Chang et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported financially by National Natural Science Foundation of China (Grant Nos. 21377029, 21277030 and 41405115) (<u>http://</u> <u>www.nsfc.gov.cn/</u>). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Human Excreta as a Stable and Important Source of Atmospheric Ammonia in the Megacity of Shanghai

Yunhua Chang¹, Congrui Deng^{1,2}*, Anthony J. Dore³, Guoshun Zhuang¹*

 Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China, 2 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China, 3 Centre for Ecology and Hydrology, Penicuik, Midlothian, United Kingdom

* congruideng@fudan.edu.cn (CD); gzhuang@fudan.edu.cn (GZ)

Abstract

Although human excreta as a NH₃ source has been recognized globally, this source has never been quantitatively determined in cities, hampering efforts to fully assess the causes of urban air pollution. In the present study, the exhausts of 15 ceiling ducts from collecting septic tanks in 13 buildings with 6 function types were selected to quantify NH₃ emission rates in the megacity of Shanghai. As a comparison, the ambient NH₃ concentrations across Shanghai were also measured at 13 atmospheric monitoring sites. The concentrations of NH₃ in the ceiling ducts $(2809^{+5803}_{-2661} \,\mu\text{g m}^{-3})$ outweigh those of the open air (~10 µg m⁻³) by 2–3 orders of magnitude, and there is no significant difference between different seasons. δ¹⁵N values of NH₃ emitted from two ceiling ducts are also seasonally consistent, suggesting that human excreta may be a stable source of NH₃ in urban areas. The NH₃ concentration levels were variable and dependent on the different building types and the level of human activity. NH₃ emission rates of the six residential buildings (RB_{NH3}) were in agreement with each other. Taking occupation time into account, we confined the range of the average NH₃ emission factor for human excreta to be 2-4 times (with the best estimate of 3 times) of the averaged RB_{NH3} of 66.0±58.9 g NH₃ capita⁻¹ yr⁻¹. With this emission factor, the population of ~21 million people living in the urban areas of Shanghai annually emitted approximately 1386 Mg NH₃, which corresponds to over 11.4% of the total NH₃ emissions in the Shanghai urban areas. The spatial distribution of NH₃ emissions from human excreta based on population data was calculated for the city of Shanghai at a high-resolution (100×100 m). Our results demonstrate that human excreta should be included in official ammonia emission inventories.

Introduction

Ammonia (NH₃) is the principal alkaline gas capable of neutralizing the acid species (e.g., H_2SO_4 , HNO₃) produced by the oxidation of SO₂ and NO₂ in the atmosphere, to form

ammonium nitrate (NH₄NO₃) and ammonium sulfates (NH₄HSO₄ and [NH₄]₂SO₄) [1]. These soluble ammonium aerosol salts are important components of airborne fine particulate matter (PM_{2.5}) that, as stressors, can significantly contribute to regional haze [2, 3] and subsequently affect human health [3, 4]. The importance of NH₃ as an environmental stressor in China is expected to increase because most of the regulatory efforts have been directed towards SO₂ and NO_x reductions [4–6]. However, following the lead of the European Union, China introduced the central government's first-ever technical guideline for an NH₃ emission inventory in August 2014 [7]. This will help quantify the contribution of major national emissions sources contribution to high levels of particulate matter formation.

Over recent decades, the release of NH₃ into the atmosphere in many regions has been substantially modified by human activities [8–11]. Of the many natural and anthropogenic sources, emissions from the microbial breakdown of urea and uric acid in animal excreta make the largest contribution globally and regionally [12–14]. The amount of NH₃ volatilized from bacterial decomposition is dependent on many factors, including in decreasing order of importance: litter pH, temperature, and moisture content. In the "bottom-up" methodology, NH₃ emissions are calculated as a product of the emission coefficients and activity level (e.g., livestock population, fertilizer consumption and production). Improved estimates of NH₃ emission factors (EF) are therefore central to reducing the uncertainties.

As a normal metabolic process, the release of NH_3 from human, respiration and excrement has also been documented [11, 15, 16]. However, most emission inventories involving human excreta have merely focused on pit latrines in rural areas of developing and middle-income countries [17, 18]. The traditional view maintains that emissions in urban areas can be omitted since excrement of N from humans immediately enters the sewage system by virtue of flush toilets [18]. This may be true that in the EU and US, where human excreta along with wastewater are directly transported through sewage pipes to sewage treatment plants [19], and the whole process will not lead to any considerable losses of NH_3 to the atmosphere [20].

While in urban China, human excreta are typically stored in a three-grille septic tank under the building at first. After a series of anaerobic decomposition processes, a substantial amount of odors (including NH₃) will be generated and emitted through a ceiling duct. The liquid supernatant will then flow away from the third grille to the municipal sewage system. Municipal sanitation workers will routinely dredge the tank typically once a year. As China's urbanization is expanding rapidly, the contribution of on-site septic systems to NH₃ might be highly significant at a local scale (e.g., urban areas). More background information regarding human excreta in China and Shanghai is available in the supporting information (<u>S1 Text</u>).

After a critical evaluation of existing literature, we noticed that in contrast to the detailed information available on NH₃ EFs for animal manure and fertilizer application, data on the source strength of human emissions has not been quantitatively determined. For human sweat, Healy et al. [21] gave an emission coefficient of 260 g NH₃-N capita⁻¹ yr⁻¹ by assuming 5% of total N excretion (30 g day⁻¹ capita⁻¹) occurring through sweat were completely hydrolyzed and volatilized. Similarly, Buijsman et al. [22] introduced an ammonia EF for human respiration as 300 g NH₃ capita⁻¹ yr⁻¹ without detailed explanation. As to human excrement, it is surprising to find the earliest and only EF suggested for humans excreta (1300 g NH₃-N capita⁻¹ yr⁻¹, including excrement, sweat and respiration) is that of Möller and Schieferdecker [23], who gave an N production of around 5000 g N capita⁻¹ yr⁻¹; simply assuming a NH₃ loss of 25%. Based on those parameters, various NH₃ EFs associated with humans were proposed and then applied to the estimate of NH₃ emission inventories. To some extent, existing theoretical EFs can be accepted in rural areas of developing and middle-income countries, where there is a lack of basic sanitation. Experimentally, however, study of the EF of NH₃ from human excreta in urban areas has been missing.

The primary objective of this study is to quantify the EF and emission inventory of NH₃ emissions from human excreta in urban Shanghai, proving that human excreta is a missing source of NH₃. Intensive field monitoring campaigns were performed involving measurement both in and out of ceiling ducts to obtain first-hand information about the concentration level, emission rate, and isotopic composition of NH₃ emitted from human excreta across Shanghai.

Materials and Methods

1. Building selection

Thirteen buildings with six functions (six residential buildings, one hotel, two office buildings, one teaching building, two student apartments, and one community culture center) were chosen for sampling either because they are common in Shanghai (e.g., residential building) or could be implemented as improved treatment technologies for human excreta (e.g., office building). All the sampling work in the current study was conducted with the permission of these building owners (S1 Table), without any endangered species involved. Human excreta produced in each building were flushed into a septic tank beneath the building. The last dredge removal of all septic tanks was at least six months previously, and all excess gaseous NH₃ generated from the septic tanks must be emitted to the open atmosphere via PVC (polyvinyl chloride) pipes. These buildings are scattered over seven major urban districts of Shanghai to represent the entire city. S1 Table details the information of the buildings and the socio-economic status of the occupants.

Each building unit has one septic tank, most of which have a 12-m³ standard volume (except for the septic tanks of office buildings with 60-m³ volume) and are connected to the atmosphere with one ceiling duct. It should be noted that the teaching building has two ceiling ducts for male and female toilets, respectively. Although there were four ceiling ducts in the rooftop of the Yandang Hotel, two of them were surrounded by solar panels for water heating, and the property service of the hotel refused our request of sampling in these two ceiling ducts. These four ceiling ducts shared the same septic tank. Therefore, there are 13 buildings, 13 septic tanks and 15 ceiling ducts in the current study. For demonstration purposes, each building (ceiling duct) is denoted by a code (Roman numeral) (Fig 1). Specifically, the codes of the six residential buildings (residential buildings' six ceiling ducts) are RB-1 (I), RB-2 (II), RB-3 (III), RB-4 (IV), RB-5 (V), and RB-6 (VI), respectively. The code of the hotel (hotel's two ceiling ducts) is HT (are VII and VIII). The codes of the two office buildings (office building' two ceiling ducts) are OB-1 and OB HT (IX and X). The code of the teaching building (teaching building's two ceiling ducts) is HT (are XI-female and XII-male). The codes of the two student apartments (student apartments' two ceiling ducts) are SA-1 and SA-2 (XIII and XIV). The code of the community culture center (community culture center's ceiling duct) is CC (XV).

It is worth noting that to obtain the exact number of the occupants in a specific building was not a simple calculation. It was also very difficult to know the time they spend in their home. However, this information was easier to ascertain for residential buildings and student apartments since those data can be provided by the property services. Given its overwhelming dominance and relatively sound data availability, the NH₃ EFs of human excreta in the current work were based on the emission rates of the six residential buildings.

2. Sampling and NH₃ concentration determination

Ambient NH_3 measurements in the current study were collected using Ogawa Passive Sampling Devices (Ogawa & Co., Inc., Pompano Beach, Florida), a cost-effective tool that has been widely used to determine the time-averaged NH_3 concentrations [24, 25]. The Ogawa PSD is composed of a solid cylindrical polymeric body with two reactive glass-filters on each side

doi:10.1371/journal.pone.0144661.g001

impregnated with citric acid. The filters were purchased from the manufacturer. The NH₃-containing air mass originating from human excreta was conducive to measure in a building equipped with a septic tank, where sampling devices can be located in the interior of the ceiling duct, the only opening to the atmosphere. To prevent potential perturbation of the outdoor environment, measurements were taken approximately 1.5 m from the exhaust end of the ceiling duct. Duplicate 24-h samples (normally from 12:00 to 12:00 of the next day) of NH₃ concentrations were non-consecutively collected from the interior ceiling duct of the selected buildings in Shanghai urban areas, during the period from July to August of 2014, and December 2014 to March 2015. Sampling in wintertime was performed at the teaching building (ceiling duct of XI-female and XII-male), two students apartments (ceiling duct of XIII and XIV), and a residential building (building code of RB-5, ceiling duct of V). Interior temperature and wind speed were simultaneously detected by a probe linked to the wind data logger (WFWZY-1, Tianjian Huavi, Beijing, China), which was next to the sampler and recorded every three seconds or one minute during sampling. Additionally, two field blank samples for each site were also collected and analyzed to determine if contamination occurred during the sampler loading, transport, or analysis. All field blanks were well below sample concentrations, mostly were zero. The wind speed and NH₃ concentrations in the air at the point of measurement, two key parameters to estimate emission rate, were assumed to be the same as at the end of the exhaust. A schematic of the sampling is shown in S1 Fig.

Weekly concentrations of NH_3 at thirteen atmospheric monitoring sites that covers various locations including rural (Dianshanhu), remote island (Huaniao), urban (Fudan, Hongkou, Yangpu, Huangpu, Putuo, Jing'an, Xuhui, Luwan, Pudong), and suburban (Chuansha and Zhangjiang) areas were also measured by the Ogawa PSD, in which all ten state controlling sites in Shanghai were involved. In addition, hourly concentrations of NH_3 at the Pudong air

PLOS ONE

quality research supersite in the center of Shanghai ($121.54^{0}E$, $31.23^{0}N$) were also measured in parallel by a Monitor for AeRosols and GAses system (MARGA, ADI 2080 1S, Metrohm AG, the Netherlands) [26] for inter-comparison with the passive sampler from June to December 2014. S2 Fig illustrates a significant correlation (N = 31, R² = 0.63, slope = 0.79, P<0.001) between the two measurement methods, verifying the validity and reliability of the Ogawa passive sampler we used. The sampling, operation and internal calibration of the MARGA were in strict accordance with the instructions provided by the manufacturer.

Filter samples were sealed and stored in the refrigerator (4°C) before analysis. In the laboratory, samples were analyzed following the manufacturer's protocols (http://www.ogawausa.com), firstly soaked with ultra-pure water (18.2 M Ω .cm) for 30 min, shaking occasionally. Concentrations of NH₄⁺ were then analyzed using an ion chromatographic system (883 Basic IC plus, Metrohm Co., Switzerland) equipped with a Metrosept C4/4.0 cation column. The eluent was 1.0 mM HNO₃ + 0.5 mM PDA. The detection limit for NH₄⁺ was 2.8 µg L⁻¹. The analytical errors in the measurements of NH₄⁺ during duplicate analyses of laboratory standards were within 5%. The concentrations (in µg m⁻³) reported here were corrected for the corresponding field blanks and converted to dry standard conditions (21.1°C and 101.3 kPa).

3. Estimation of NH_3 emission factor, emission inventory and its spatial allocation

An emission rate is an expression of mass emitted per unit time, typically in units of 'g day⁻¹'. In our study, the ceiling duct can be viewed as a one-way outflow channel of NH₃ emission (from the septic tank to the open atmosphere through a PVC pipe). Therefore, a flow-based method of emission rate calculation is used in the current study. Specifically, the NH₃ emission rate of human excreta from a septic tank for a selected building is the function of air flux (wind speed), sampling time, and NH₃ concentrations in its ceiling duct:

$$\operatorname{ER}_{i \bullet j} = \pi \times r^2 \times (86400 \times W_{i \bullet j}) (C_{i \bullet j} / 1000000)$$
(1)

Where ER is the emission rate (g day⁻¹); *i*·*j* is ceiling duct *i* in building *j*; r is the radius of ceiling duct (0.11 m); 86400 is the number of seconds in a day; W is the daily average wind speed (m s⁻¹); and C is the measured daily concentration of NH₃ (μ g m⁻³); and 1000000 is the coefficient of mass concentration unit conversion from μ g to g. The distribution of NH₃ emission from human excreta in urban Shanghai was spatially allocated to population density, which was depicted by the mapping software of a geographic information system (GIS) (ArcGIS 10.2, ESRI, Redlands, California). In our work, the MODIS global map of urban distribution with a spatial resolution of 250×250 m was utilized to separate a newly released high-resolution (100 m² per cell) population map (http://www.worldpop.org.uk/). The roads network, administrative boundaries with a scale of 1:250 000 were extracted from the National Geometrics Center of China (http://ngcc.sbsm.gov.cn/).

4. Isotopic Analysis

Recently, a novel and robust chemical method for δ^{15} N-NH₄⁺ at natural abundance has been developed and used in the current study. The detailed analytical procedures are given elsewhere [27]. Briefly, this method is based on the isotopic analysis of nitrous oxide (N₂O), which is much less abundant in the atmosphere than N₂ and thus causes minimal atmospheric contamination. Eight samples collected in summer and winter were chosen for isotopic analysis, four of them were collected from the ceiling duct of XII (13 July, 5 August of 2014; 7 January, 14

January of 2015) and the other four were collected from the ceiling duct of V (16 July, 7 August of 2014; 9 January, 12 January of 2015). After measurement by IC as stated above, NH_4^+ in the aqueous sample was initially oxidized to nitrite (NO_2^-) by hypobromite (BrO^-) in a vial. NO_2^- was then quantitatively converted into N_2O by hydroxylamine (NH_2OH) under strongly acid conditions. The produced N_2O was analyzed by a purge and cryogenic trap system (Gilson GX-271, IsoPrime Ltd., Cheadle Hulme, UK) coupled to an IRMS (PT-IRMS) (IsoPrime 100, IsoPrime Ltd., Cheadle Hulme, UK) at the Stable Isotope Ecology Laboratory of Institute of Applied Ecology, Chinese Academy of Sciences.

Isotope ratio values are reported in parts per thousand relative to atmospheric N₂ as follows:

$$\delta^{15}N(\) = \frac{({}^{15}\text{N}/{}^{14}\text{N})_{\text{sample}} - ({}^{15}\text{N}/{}^{14}\text{N})_{\text{N}_2}}{({}^{15}\text{N}/{}^{14}\text{N})_{\text{N}_2}} \times 1000$$
(2)

Three international NH₄⁺ standards (IAEA N1, USGS 25, and USGS26 with δ^{15} N values of +0.4‰, -30.4‰ and +53.7‰, respectively) were used to correct for the reagent blank and drift during isotope analysis of the produced N₂O. The standard deviation of δ^{15} N measurements is less than 0.3‰ [27].

Results

In total 170 samples collected from the 15 ceiling ducts in summertime were analyzed. The overall concentrations of NH_3 were highly variable and ranged from 148–8612 µg m⁻³, with an average value (±standard deviation) and median value of 2809 (±2032) and 2078 µg m⁻³, respectively (Fig 1). One thing which should be noted is that the minimum value was found at ceiling duct XI when the teaching building was closed due to the summer vacation (Fig 1).

Specifically, NH₃ concentrations in the ceiling ducts of the teaching building (XI-female and XII-male), the office buildings (IX and X) and the community culture center (XV) were among the highest, in agreement with our direct observation that those places were always fully occupied by people. The hotel we chose is of a typical middle-size (5 floors with 35 rooms in total) with two more ceiling ducts apart from VII ($905\pm222 \ \mu g \ m^{-3}$) and VIII $(738\pm448 \,\mu\text{g m}^{-3})$; therefore, the NH₃ emissions of the entire building could be much greater than the current estimate. For the teaching building, two ceiling ducts (XI-female and XII-male) share one septic tank. The samples collected during summer vacation $(337\pm184 \,\mu\text{g m}^{-3} \text{ for XI-female, and } 1128\pm404 \,\mu\text{g m}^{-3} \text{ for XII-male})$ were significantly lower (P<0.001) than during a normal teaching semester (4988 \pm 351 µg m⁻³ for XI-female, and $5937\pm982 \ \mu g \ m^{-3}$ for XII-male). The higher NH₃ concentrations in XII-male than that of XI-female could be explained by the intense renovation work by male workers during the 2014 summer vacation. Weekend samples of NH₃ for the two office buildings $(1585\pm11 \ \mu g \ m^{-3}$ for IX, and $1286\pm393 \ \mu g \ m^{-3}$ for X), similarly, were lower than the samples collected during weekdays (5395±1322 µg m⁻³ for IX, and 3884±971 µg m⁻³ for X) but with moderate declining rates. This is because many language training programs were arranged at weekends in the two buildings, while the residential buildings and student apartments have no obvious weekend effect. We can conclude that NH₃ emitted from the ceiling ducts of various buildings are ubiquitous in Shanghai, and their concentration levels are closely related to the strength of human activity.

In <u>Table 1</u>, the NH₃ concentrations emitted from the ceiling ducts of V, VII, VIII and XIV in winter are close to summer, suggesting that there is no seasonal effect on the NH₃ emissions from urban *in situ* septic tank system.

Building		Summer			Winter		
	Ceiling duct	n	T (°C)	NH₃ (µg m⁻³)	n	T (°C)	NH ₃ (μg m ⁻³)
RB-5	V	12	28.3 mg	2662 mg d	4	7.82 mg	3126 mg d
тв	XII	4 ^a	27.7 mg	5937 mg	4 ^a	7.67 mg	5554 mg d
SA-1	XIII	4	27.9 mg	3116 mg d	4	9.16 mg	2980 mg d
SA-2	XIV	4	27.8 mg	3397 mg d	4	9.57 mg	3174 mg d
Building	Ceiling duct	n	T (°C)	δ ¹⁵ N (‰)	n	T (°C)	δ ¹⁵ N (‰)
RB-5	V	2	28.8))g	-39.3, -38.1	2	7.9.3,	-37.9, -39.2
ТВ	XII	2	28.39, -	-37.3, -39.0	2	7.5.3,	-37.4, -39.6

Table 1. Seasonal comparison of NH₃ concentrations and δ^{15} N-NH₃ values collected from different buildings.

a: samples collected during weekdays

doi:10.1371/journal.pone.0144661.t001

Discussion

1. Unexpectedly high NH₃ concentrations from human excreta

This study is the first attempt to quantify the concentrations of NH₃ emitted from human excreta in ceiling ducts; consequently no other comparable published data is available at present [28]. The ambient levels of atmospheric NH₃ over Shanghai, in stark contrast to the ceiling ducts, were several orders of magnitude lower, with concentrations ranging from $<10 \ \mu g \ m^{-3}$ in coastal (Huaniao Island) and suburban sites (Chuansha and Zhangjiang) to $10-15 \ \mu g \ m^{-3}$ in urban (Huangpu, Luwan *et al.*) and rural sites (Dianshanhu). It is worth noting that during our study period, the weekly average concentrations of NH₃ at two of the eight urban sites (Huangpu and Luwan) with high population density were constantly greater than that of the rural site (i.e., Dianshanhu) (discussed in the later section). Given the short atmospheric lifetime and short-range transportation of NH₃, our monitoring results differ from previous emission inventories in highlighting the strong emissions of non-agricultural NH₃ sources from local human activities (including human excreta) in urban areas. In conclusion, our results clearly show that human excreta is an important source of NH₃ in Shanghai that deserves more attention.

Spanning 21 floors with nearly 24000 m² of office space, each of the twin office buildings we chose can accommodate 2400 people for work. Unexpectedly, the NH₃ concentrations of IX and X were not proportionally higher than other buildings with fewer occupants. This could be attributed to the application of activated carbon adsorption (ACD) system deployed in the septic tank. The ACD system was designed for new office buildings in Shanghai to remove odors, not specifically for NH₃. Nevertheless, it has been shown in our study that such a system is highly efficient in term of NH₃ sequestration. Gathering evidence supports our observation that an activated carbon modified by acid has greater potential for NH₃ absorption [29, 30]. However, the application of the ACD system is still extremely rare in Shanghai at present (personal communication with the office building manager in charge of heating ventilation/air conditioning).

2. Human excreta as a stable NH₃ source in Shanghai

Here the δ^{15} N values of NH₃ emitted from two ceiling ducts are also seasonally consistent (<u>Table 1</u>), suggesting that human excreta may be a stable source of NH₃ in urban areas. Various NH₃ sources have been reported to have distinctly different N isotopic compositions [<u>31</u>]. As the first attempt to determine the δ^{15} N signature of NH₃ emitted from human excreta, our

results are much lower than that of fossil fuel combustion processes, like vehicles (-4.6‰ and -2.2‰) and coal combustion (-14.6‰ and -11.3‰), but are close to that of volatilization process, like cow waste (-27.1‰ and -23.1‰) [<u>31</u>]. Therefore, our results provide strong evidence that NH_3 emitted from ceiling ducts are derived from human excreta.

3. Human excreta as an important NH₃ source in Shanghai

Calculating from an emission rate, an EF is expressed in terms of mass per production unit. In this study, the production unit obviously refers to the number of occupants, and the NH₃ EF from human excreta for a specific building is defined as annual total NH₃ emitted per capita (g capita⁻¹ yr⁻¹). The six residential buildings and two student apartments are discussed together to estimate the NH₃ EF because they have reliable information and similar building structures, allowing the possibility of mutual calibration. The measured NH₃ concentrations and wind speeds from all residential buildings and student apartments are significantly correlated (R² = 0.52, P<0.001), which confirms that wind speed in the ceiling duct is a good indicator of NH₃ emission rate (Fig 2A).

In our study, an assumption is implicit in the definition of EF: all residents in their own apartment share the same EF regardless of gender, age or any other kind of socioeconomic status. Although the production cycle for NH₃ emissions from human excreta is of roughly one day, the whole production process is far from being an all-in all-out production system since humans frequently move from one building to another. Therefore, a time factor must be assigned to the EFs of residential buildings, which are the most typical and common building type in practice. Based on our visits and interviews with the occupants, we summarized an average time of people stayed in their apartment was 12-h a day, of which at least 6-h. were spent for sleep. Therefore, a reasonable NH₃ emission for one person across a whole day could be 2 to 4 times of emissions in his/her apartment. There are 79 samples collected from the six residential buildings (RB-1 to RB-6) and two student apartments (SA-1 and SA-2). This represents 79 individual EFs. In our work, RB-1 and RB-2, RB-3 and RB-4, RB-5 and RB-6, SA-1 and SA-2 have the same number of occupants. Therefore, the 79 EFs can be divided into four groups based on the number of the occupants, i.e., 56 (RB-1 and RB-2), 35 (RB-3 and RB-4), 24 (RB-5 and RB-6), and 21 (SA-1 and SA-2). In Fig 3B, a linear analysis is conducted to examine if different groups have the same average EF. It is clear that the EFs among different groups

Fig 2. (a) Correlation between the NH_3 concentration and the wind speed (air outflow velocity from septic tank to the open atmosphere through ceiling duct) for the 79 samples collected from the six residential buildings and two student apartments; (b) the 79 individual EFs are divided into four groups based on the number of occupants (x axis). A linear analysis is conducted to examine if different groups (the number of residents) have the same average EF.

doi:10.1371/journal.pone.0144661.g002

Fig 3. Spatial distribution of NH_3 emissions from human excreta in Shanghai urban areas (areas in green represent the rural areas of Shanghai, which are out of consideration in the current work) (a). A close look at the distribution of nine urban sites (Fudan, Huangpu, Yangpu, Hongkou, Jing'an, Putuo, Xuhui, Luwan, and Pudong) and three suburban sites (Zhangjiang and Chuansha) and their NH_3 monitoring results (depicted by the size of the circle) (b). Correlation analysis is conducted between the population density of each site (excluding Dianshanhu site and Huaniao site, marked in red) and their ambient NH_3 concentration (c).

doi:10.1371/journal.pone.0144661.g003

present a slight downward trend (slope = -0.14), indicating that the averaged EFs of each group are in good agreement with each other and can be extrapolated to other residential buildings.

Based on the methodology and discussion above, the annual average EF of NH₃ from human excreta (mean $\pm 1\sigma$) for the six residential buildings and two student apartments is estimated as 22.0 ± 19.4 g capita⁻¹ yr⁻¹ (RB_{NH3}) and 21.5 ± 7.4 g capita⁻¹ yr⁻¹ (SA_{NH3}), respectively (see S2 Table for details). From a day-cycle perspective as discussed above, the NH₃ EF for human excreta (HM_{NH3}) should be 2×RB_{NH3} to 4×RB_{NH3}, with a best estimate of 3×RB_{NH3}, namely 66.0 \pm 58.9 g capita⁻¹ yr⁻¹. Sutton et al. [<u>32</u>] suggested a value of 13.7 (2.8–63.2) g NH₃-N capita⁻¹ yr⁻¹ as the EF for an infant. However, there appears to be no HM_{NH3} in the literature that is determined by experiment. Here we call for a greater scientific effort to be allocated to this area of research. Based on the EF we calculated, the population of an estimated 21 million people living in Shanghai urban areas emitted approximately 1386±1222 Mg NH₃ a year. According to Huang et al. [14] and Fu et al. [33], the total NH₃ emissions over Shanghai were estimated as 42600 Mg (-36% to 77% uncertainty at the 95% confidence interval, similarly hereinafter) in 2007 and 64500 Mg (±112.8%) in 2010, which both made a significant underestimation of the NH₃ emissions from urban areas. When compared with the NH₃ emissions from Shanghai city area (10742 Mg) [34], the average contribution of our estimate can reach 11.4%. Moreover, model results have shown that over half of agricultural NH₃ emissions would be deposited downwind of its source within 10 km depending on local meteorological conditions [35]. Therefore, the relative contribution of NH₃ emissions from human excreta to urban PM pollution could be higher than the share of its mass contribution.

4. Spatial pattern of $\ensuremath{\mathsf{NH}}_3$ emissions from human excreta across Shanghai urban areas

Based on the population distribution [36] and the HM_{NH3} we developed, a panoramic view of NH₃ emissions from human excreta in urban Shanghai is illustrated in Fig 3A. The emission intensity ranged from 132 kg km⁻² to 2390 kg km⁻², with an average value in the major urban areas of 1110 kg km⁻². Those densely-distributed urban and suburban sites and their atmospheric NH₃ monitoring results are clearly visible in Fig 3B. In Fig 3C, the NH₃ mixing ratios from monitoring data at urban and suburban sites are shown to be significantly correlated with population density. The levels of NH₃ concentrations at Huangpu (13.6 ppb) and Luwan (12.9 ppb) are the highest because they are located in regions of high population density. However, this principle cannot be applied to the rural site (Dianshanhu) and the coastal island site (Huaniao) in our study (Fig 3C). Huaniao Island can be regarded as a background site due to its sparse population. However, its ambient NH_3 mixing ratio (7.3±1.7 ppb) is still higher than some big cities, like Houston $(3.0\pm2.5 \text{ ppb})$ [37]. Riddick et al. [38] found that the excreta of seabirds at their breeding colonies might act as a notable source of NH₃ emissions to the coastal atmosphere. For Dianshanhu, a good explanation for its high NH₃ concentration might be the prevalence of agricultural activity, in particular urban agricultural production with high nitrogen fertilizer application. Agriculture is widely accepted to make the dominant contribution to atmospheric concentrations of NH₃ However our measurements show that the ambient levels of NH₃ concentration in Shanghai urban areas were comparable with, or even higher than those from Dianshanhu. Our current study on NH₃ emissions from human excreta suggests that a wider discussion on the important role of non-agricultural NH₃ emissions at a city scale is needed.

Conclusions

Taking Shanghai as an example, the results of this study clearly reveal that human excreta is a stable and important NH_3 source which should not be neglected in Shanghai urban areas. Shanghai is however by no means unusual in today's China: Emerging from an economy dominated by agriculture, by the end of 2012, China has 656 cities and a total urban population of 712 million (52.6% of the total population), up from 69 in 1947 and 223 in 1980 [39]. Substantial changes in the size and spatial distribution of population are also expected in many other parts of the world this century. Therefore, the contribution of human excreta to ambient NH_3 levels in cities is expected to increase steadily.

It is well known that China is now experiencing the world's worst air quality in terms of $PM_{2.5}$ pollution [3, 40]. As one of the key precursors of PM, the implications of limiting NH_3 emissions to curb China's deteriorating air quality would be enormous. The observation of unexpectedly lower NH_3 emissions from the septic tank equipped with active carbon system suggests that these strong NH_3 emissions from human excreta in urban areas could be effectively controlled by introducing a suitable sewage management policy. We expect our current work could inspire further research to develop a cost-effective way of reducing NH_3 emissions from septic tanks in the future.

Supporting Information

S1 Fig. A schematic of the sampling in the exhaust of ceiling duct. (DOCX)

S2 Fig. Comparison of NH_3 concentration results obtained with the Ogawa passive sampler device and an active monitor (MARGA) at Pudong supersite from June to December, 2014. (DOCX)

S1 Table. Information about the thirteen buildings with six function types. (DOCX)

S2 Table. The NH₃ concentrations, wind speed and emission factors of the six residential buildings and two student apartments. (DOCX)

S1 Text. The background information of the production and storage of human excreta in Shanghai and China.

(DOCX)

Acknowledgments

We thank Prof. Yunting Fang and Dr. Ying Tu for their insightful comments and lab instruction. Yunhua Chang thanks the support of Gao Tingyao.

Author Contributions

Conceived and designed the experiments: CD GZ YC. Performed the experiments: YC CD. Analyzed the data: YC CD GZ AJD. Contributed reagents/materials/analysis tools: CD GZ. Wrote the paper: YC CD GZ AJD.

References

- 1. Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: From air pollution to climate change: John Wiley & Sons, Inc.: New York, 2012.
- 2. Ye X, Ma Z, Zhang J, Du H, Chen J, Chen H, et al. Important role of ammonia on haze formation in Shanghai. Environ Res Lett. 2011; 6:024019. doi: 10.1088/1748-9326/6/2/024019
- Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014 Oct 9; 514(7521):218–222. doi: <u>10.</u> <u>1038/nature13774</u> PMID: <u>25231863</u>
- Pope CA III, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009; 360:376–386. PMID: <u>19164188</u> doi: <u>10.1056/NEJMsa0805646</u>
- Wang SX, Xing J, Jang CR, Zhu Y, Fu JS, Hao JM. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ Sci Techn. 2011; 45:9293–9300. PMID: <u>ISI:000296212700027</u>
- Wang Y, Zhang QQ, He K, Zhang Q, Chai L. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys. 2013; 13:2635–2652. doi: <u>10.5194/acp-13-2635-2013</u>
- Kong L. Coming to grips with ammonia in China's haze: Caixin; 2014. Available: <u>http://english.caixin.com/2014-09-12/100728128.html</u>.
- Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 2008; 320:889–892. doi: <u>10.</u> <u>1126/science.1136674</u> PMID: <u>ISI:000255868300031</u>
- Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W. Too much of a good thing. Nature. 2011; 472:159–161. PMID: <u>ISI:000289469100016</u>. English. doi: <u>10.1038/472159a</u>
- Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, et al. Enhanced nitrogen deposition over China. Nature. 2013 Feb 28; 494(7438):459–462. doi: 10.1038/nature11917 PMID: 23426264
- Li K, Liu X, Song W, Chang Y, Hu Y, Tian C. Atmospheric nitrogen deposition at two sites in an arid environment of central Asia. Plos One. 2013; 8:e67018. doi: <u>10.1371/journal.pone.0067018</u> PMID: <u>23840576</u>
- Reis S, Pinder RW, Zhang M, Lijie G, Sutton MA. Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys. 2009; 9:7657–777. PMID: <u>ISI:000270779700026</u>.
- Cui S, Shi Y, Groffman PM, Schlesinger WH, Zhu YG. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc Natl Acad Sci U S A. 2013; 110:2052–2057. doi: 10.1073/pnas.1221638110 PMID: 23341613

- Huang C, Chen CH, Li L, Cheng Z, Wang HL, Huang HY, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmos. Chem. Phys. 2011; 11 (9):4105–4120. doi: <u>10.5194/acp-11-4105-2011</u>
- Smith D, Wang T, Pysanenko A, Spanel P. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun Mass Sp. 2008; 22:783– 789. doi: 10.1002/rcm.3434 PMID: 18275096.
- Roe SM, Spivey MD, Lindquist HC, Thesing KB, Strait RP. Estimating ammonia emissions from anthropogenic nonagricultural sources-Draft final report. Emission Inventory Improvement Program, US Environmental Protection Agency. 2004.
- Olivier J, Bouwman A, Van der Hoek K, Berdowski J. Global air emission inventories for anthropogenic sources of NO_x, NH₃ and N₂O in 1990. Environ Pollut. 1998; 102:135–148.
- Huang X, Song Y, Li MM, Li JF, Huo Q, Cai XH, et al. A high-resolution ammonia emission inventory in China. Global Biogeochem Cy. 2012; 26. doi: <u>10.1029/2011GB004161</u> PMID: <u>ISI:000301940800002</u>
- Williams PT. Waste treatment and disposal: John Wiley & Sons; 2005.
- Driscoll CT, Whitall D, Aber J, Boyer E, Castro M, Cronan C, et al. Nitrogen pollution in the northeastern United States: Sources, effects, and management options. Biosci. 2003; 53(4):357–374. doi: <u>10.1641/</u> <u>0006-3568(2003)053[0357:NPITNU]2.0.CO;2</u>
- Healy T, McKay H, Pilbeam A, Scargill D. Ammonia and ammonium sulfate in the troposphere over the United Kingdom. J Geophys Res. 1970; 75:2317–2321.
- Buijsman E, Maas HFM, Asman WAH. Anthropogenic NH₃ Emissions in Europe. Atmospheric Environment. 1987; 21:1009–22. PMID: WOS:A1987H547800001
- Möller D, Schieferdecker H. Zur Rolle des atmosphärischen Ammoniaks im biogeochemischen Stickstoff-Zyklus. Z ges Hyg. 1982; 28:797–802.
- Meng ZY, Lin WL, Jiang XM, Yan P, Wang Y, Zhang YM, et al. Characteristics of atmospheric ammonia over Beijing, China. Atmos Chem Phys. 2011; 11:6139–6151. PMID: ISI:000292183400012
- Yao XH, Zhang L. Analysis of passive-sampler monitored atmospheric ammonia at 74 sites across southern Ontario, Canada. Biogeosci. 2013; 10:7913–7925. doi: 10.5194/bgd-10-12773-2013
- Rumsey IC, Cowen KA, Walker JT, Kelly TJ, Hanft EA, Mishoe K, et al. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds. Atmos Chem Phys. 2014; 14:5639–5658. doi: <u>10.5194/acp-14-5639-2014</u>
- Liu D, Fang Y, Tu Y, Pan Y. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Anal Chem. 2014 Apr 15; 86(8):3787–3792. PMID: <u>24654992</u> doi: <u>10.1021/ac403756u</u>
- Xu W, Zheng K, Liu X, Meng L, Huaitalla RM, Shen J, et al. Atmospheric NH₃ dynamics at a typical pig farm in China and their implications. Atmos Pollut Res. 2014; 5(3):455–463.
- Tsutomu I, Takashi A, Kuniaki K, Kikuo O. Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon. Journal of health science. 2004; 50:148–153.
- Asada T, Ohkubo T, Kawata K, Oikawa K. Ammonia adsorption on bamboo charcoal with acid treatment. J Health Sci. 2006; 52:585–589.
- Felix JD, Elliott EM, Gish TJ, McConnell LL, Shaw SL. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Sp. 2013; 27:2239–2246. doi: 10.1002/rcm.6679 PMID: 24019189
- Sutton MA, Dragosits U, Tang YS, Fowler D. Ammonia emissions from non-agricultural sources in the UK. Atmos Environ. 2000; 34:855–869. PMID: <u>ISI:000084883000002</u>
- Fu X, Wang S, Zhao B, Xing J, Cheng Z, Liu H, et al. Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmos Environ. 2013; 70:39–50. doi: 10.1016/j.atmosenv.2012.12.034
- Chang YH. Non-agricultural ammonia emissions in urban China. Atmos Chem Phys Discussions. 2014; 14:8495–8531. doi: 10.5194/acpd-14-8495-2014
- Asman WAH, Sutton MA, Schjorring JK. Ammonia: emission, atmospheric transport and deposition. New Phytol. 1998; 139(1):27–48. PMID: ISI:000074202000005
- Schneider A, Mertes CM. Expansion and growth in Chinese cities, 1978–2010. Environ Res Lett. 2014; 9:024008. doi: <u>10.1088/1748-9326/9/2/024008</u>
- Gong L, Lewicki R, Griffin RJ, Tittel FK, Lonsdale CR, Stevens RG, et al. Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos Environ. 2013; 77:893–900.
- Riddick SN, Dragosits U, Blackall TD, Daunt F, Wanless S, Sutton MA. The global distribution of ammonia emissions from seabird colonies. Atmos Environ. 2012; 55:319–527. doi: <u>10.1016/j.atmosenv.2012</u>. 02.052

- Yi K, Tani H, Li Q, Zhang J, Guo M, Bao Y, Zhao X, Li J. Mapping and evaluating the urbanization process in northeast China using DMSP/OLS nighttime light data. Sensors. 2011; 14:3207–3226. org/ 10.3390/s140203207.
- 40. Chang YH, Liu XJ, Dore AJ, Li K. Stemming PM_{2.5} pollution in China: Re-evaluating the role of ammonia, aviation and non-exhaust road traffic emissions. Environ Sci Technol. 2012; 46:13035–13036. PMID: <u>23211001</u> doi: <u>10.1021/es304806k</u>