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Abstract 11 

Coastal environments host plant taxa adapted to a wide range of salinity conditions. Salinity, along 12 

with other abiotic variables, constrains the distribution of coastal plants in predictable ways, with 13 

relatively few taxa adapted to the most saline conditions. However, few attempts have been made to 14 

quantify these relationships to create niche models for coastal plants. Quantification of the effects of 15 

salinity, and other abiotic variables, on coastal plants is essential to predict the responses of coastal 16 

ecosystems to external drivers such as sea level rise. We constructed niche models for 132 coastal 17 

plant taxa in Great Britain based on eight abiotic variables. Paired measurements of vegetation 18 

composition and abiotic variables are rare in coastal habitats so four of the variables were defined 19 

using community mean values for Ellenberg indicators, i.e. scores assigned according to the typical 20 

alkalinity, fertility, moisture availability and salinity of sites where a species occurs. The remaining 21 

variables were the canopy height, annual precipitation, and maximum and minimum temperatures. 22 

Salinity and moisture indicator scores were significant terms in over 80% of models, suggesting the 23 

distributions of most coastal species are at least partly determined by these variables. When the 24 

models were used to predict species occurrence against an independent dataset 64% of models gave 25 

moderate to good predictions of species occurrence. This indicates that most models had successfully 26 

captured the key determinants of the niche. The models could potentially be applied to predict 27 

changes to habitats and species-dependent ecosystem services in response to rising sea levels. 28 
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 33 

Introduction 34 

A quantitative understanding of the habitat requirements of plant species is necessary if effects of 35 

environmental change on species occurrence and composition are to be predicted. Coastal habitats 36 

have high nature conservation value supporting many rare species, and coastal plant species provide 37 

important functions such as stabilising substrates, providing suitable habitat structure for bird feeding 38 

or nesting and sequestering carbon (Ranwell, 1972; Jones et al., 2011a; Malpas et al., 2013; 39 

Beaumont et al., 2014). The development of realised niche models (Latour & Reiling, 1993; Smart et 40 

al., 2010b) has provided capacity to predict change in species occurrence and species composition 41 

resulting from environmental change (de Vries et al., 2010), but few such models exist for coastal 42 

plant species and none have been constructed for British taxa (Batriu et al., 2011; Zhu et al., 2013; 43 

Mendoza-González et al., 2013). In the current study we describe the development of niche models 44 

that take into account the salinity requirements of species, among other influences, and that could be 45 

used to explore the effects of sea-level rise and other environmental changes on coastal habitats.  46 

 47 

The distribution of coastal species is thought to be strongly constrained by the degree of exposure 48 

to seawater or salt spray and consequent substrate salinity (Ranwell, 1972), and therefore salinity 49 

would be expected to be important in determining the niches of coastal plants.  Salt marsh vegetation 50 

is exposed to saline conditions through inundation while plants further inland are affected by salt 51 

input from coastal spray, which may penetrate up to a kilometre inland (Lowe et al., 1996). Saline 52 

intrusion into groundwater and occasional inundation of low-lying land by sea water during storm 53 

surges can also increase soil salinity in coastal habitats. Variation in exposure to salinity between the 54 

intertidal and upper zones of the coastal ecosystem leads to clear shifts in the composition of 55 

vegetation (Emery et al., 2001). However, the distribution of coastal plants may also be influenced 56 

by other variables such as the substrate water content, nutrient status and climate. Quantifying the 57 

relative impacts of drivers of coastal plant distributions, and any interactions between drivers, is 58 

important to predict the response of coastal plants to environmental change. 59 

 60 

Quantifying the role of variables such as salinity in defining plant niches is best achieved by 61 

relating species occurrence to physico-chemical measurements of the environment. However, 62 

measurement of these variables is expensive and time-consuming, and in most floristic datasets the 63 

amount of environmental information associated with each stand or relevé is very limited. In 64 
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particular, measures of salinity such as electrical conductivity are rarely taken in conjunction with 65 

floristic data. However, information is available directly from the plant community assemblage in the 66 

form of indicator scores used to describe the environmental requirements of each plant species 67 

(Ellenberg, 1991). Ellenberg scores were developed to assess variation in species optima along a 68 

number of ecological axes including pH, fertility and salinity (Ellenberg, 1991). For each axis 69 

species are given a score which reflects their preference, for example salinity is measured on a scale 70 

from 0 to 9 with species intolerant of salinity assigned a score of 0 and those occurring in highly 71 

saline conditions, e.g. Salicornia europea agg., assigned 9. The scores originally defined by 72 

Ellenberg were refined for the British flora by re-prediction using a two-way averaging method (Hill 73 

et al., 2000, 2004). Although a single score on each environmental axis does not describe the niche 74 

breadth, the type of relationship with the variable (e.g. monotonal or unimodal) or how suitability is 75 

affected by interactions with other environmental factors, the mean indicator score for all species at a 76 

site has been demonstrated to give a robust indication of site conditions (Diekmann, 2003). 77 

Modelling species occurrence as a function of community mean scores for multiple Ellenberg indices 78 

can provide a useful description of the niche space occupied by a species (Smart et al., 2010b). 79 

 80 

The community mean Ellenberg score has also been shown to be strongly related to physico-81 

chemical measurements by simple equations (Smart et al., 2010b; Rowe et al., 2011) and there may 82 

be several advantages to using mean indicator scores beyond the scarcity of information associated 83 

with floristic datasets. In some cases mean indicator scores may better represent biophysical 84 

properties of a site than physico-chemical measurements which are typically sampled at a single or 85 

few locations and may not capture heterogeneity within a site (Wagner et al., 2007). Direct 86 

measurements are also subject to measurement error and variation in measurement techniques which 87 

are circumvented by the use of indicator scores. This is particularly true of highly dynamic properties 88 

such as soluble nutrient element concentrations, and properties for which a variety of measurement 89 

methods exists such as plant-available nitrogen. Finally, mean indicator scores do not suffer from the 90 

difficulty of ensuring that environmental measurements are from the same location as the floristic 91 

records, which is important when considering small-scale variation. 92 

 93 

Plant niche models based on Ellenberg indicator values and climatic axes have already been 94 

developed for 1,130 British plant species and have been shown to produce accurate predictions of 95 

species occurrence (Smart et al., 2010b). In these models Ellenberg values corresponding to pH, 96 
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fertility and moisture were used as predictor variables in generalised linear models along with 97 

canopy height and climatic variables. However, these authors excluded coastal species as they did 98 

not consider salinity which was expected to be a key driver of coastal plant niches. The current study 99 

extends this modelling approach to 132 coastal plant species by including mean Ellenberg salinity 100 

score as an additional explanatory variable to examine whether the occurrence of coastal plant 101 

species can be predicted on the basis of environmental gradients.102 
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Methods 103 

Data sources 104 

Data used to construct the models were collated from several independent vegetation surveys 105 

covering the entire range of British habitats. The National Vegetation Classification, Countryside 106 

Survey, Broadleaved Woodland Survey and Key Habitat surveys are described in detail in (Smart et 107 

al., 2010b). In addition, 138 quadrats from the Countryside Survey were added which were excluded 108 

from the previous modelling work due to their coastal location. Further coastal training quadrats 109 

were provided by a range of smaller surveys including the Threatened Plants Project, and ten 110 

national and local surveys of sand dunes and dune slacks (Jones et al., 2004, 2011b; Plassmann et al., 111 

2009; Ford et al., 2012; Curreli et al., 2013; Rhymes et al., 2014) to bring the total of quadrats used 112 

to train the model to 33,865. The vegetation composition of each quadrat was used to calculate the 113 

Ellenberg indices used as model variables. The Ellenberg indicators used were Ellenberg R (related 114 

to pH), Ellenberg N (related to fertility), Ellenberg F (related to moisture) and Ellenberg S (related to 115 

salinity). Scores recalculated for the British flora were used in place of the original values (Hill et al., 116 

2000, 2004). For each species, the mean community Ellenberg scores were calculated based on the 117 

associated species only to avoid circularity, i.e. removing the species in question from the 118 

calculation. In addition, an indicator of relative light availability in each plot was calculated by 119 

taking the mean height class (Grime & Hodgson, 1988), weighted by percentage cover of each 120 

species. Ellenberg indicators were not weighted by cover as unweighted values have been shown to 121 

be better correlated with environmental measures (Carpenter & Goodenough, 2014). Data on mean 122 

annual rainfall, average January temperature minimum and average July temperature maximum at 5 123 

km resolution were obtained from the Met Office long-term average data (available at 124 

http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/). The vegetation surveys 125 

comprising the training dataset were conducted over several decades and therefore the period chosen 126 

to reflect average climate was variable between datasets. The bulk of the data was collected prior to 127 

1990 so the 1961-1990 period was chosen, but for some of the more recent surveys the 1981-2010 128 

period was used to cover the time of the survey. The eight explanatory variables included in the 129 

models are consistent with those chosen to model the niches of 1,130 species of higher and lower 130 

plants in Britain (Smart et al., 2010b), with the addition of Ellenberg S to facilitate modelling of 131 

coastal taxa. 132 

133 
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Model fitting and visualisation 134 

Models were fitted for all plant species present in the training data which had an Ellenberg S score 135 

of one or more, taken to indicate the ability to occur in coastal environments. Models were fitted for 136 

132 species in total (see Online Resource 2 for species list). Binary logistic generalised linear models 137 

(GLMs) were used to model occurrence of each species in relation to the eight explanatory variables 138 

(three climate variables, four Ellenberg indicators and cover-weighted canopy height) described 139 

above. Each explanatory variable was included as both linear and quadratic terms, and all two-way 140 

interactions of linear terms were also included, giving 44 potential model coefficients. Although 141 

simple, GLMs have been shown to outperform alternative niche modelling techniques such as 142 

classification trees and are easier to fit and interpret for large numbers of species than more complex 143 

models (Elith et al., 2006; Meynard & Quinn, 2007; Smart et al., 2010b). Use of GLMs as opposed 144 

to additive models also reduces the likelihood of overfitting models to the training data (Randin et 145 

al., 2006; Smart et al., 2010a). Full models containing all terms were fitted and two steps of model 146 

selection performed. Initially only significant terms with a critical threshold of P < 0.05 were 147 

selected from the full model, then stepwise backward selection based on the Akaike Information 148 

Criterion (AIC) was run on the shrunken model. The final model contained all terms that passed 149 

through both selection steps. As an additional test of the importance of the salinity term all GLM 150 

models were fitted without Ellenberg S, repeating the model fitting in Smart et al. (2010b) except for 151 

the addition of extra training data. 152 

 153 

To provide a graphical representation of the modelled niche for a subset of four representative 154 

species, each model was used to predict the probability of species occurrence in relation to individual 155 

model terms, holding other parameters constant at median values. The probabilities of occurrence 156 

returned by model predictions are a function of both the explanatory variables and the prevalence of 157 

the species in the training data. Rare species will always have a low probability of occurrence, even 158 

where abiotic conditions are optimal. To facilitate the visualisation of differences in modelled niche 159 

space between species a scaling function was applied to the probability of occurrence (Real et al., 160 

2006). The scaling function adjusts the probability of occurrence using the prevalence of the species 161 

in the training data to produce an index of habitat suitability (HS) ranging from 0 to 1 as follows: 162 

 163 
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 164 

where P is the probability of occurrence from the GLM and n1 and n0 are the numbers of presences 165 

and absences in the dataset (Real et al., 2006). The graphical representation of each niche was 166 

compared to species descriptions in Preston et al. (2002) and Stace (2010) as a qualitative evaluation 167 

of model performance. 168 

 169 

Model evaluation 170 

To quantitatively assess whether the models could accurately predict species occurrence they were 171 

tested against an independent set of 5,308 coastal vegetation plots collected by the Environment 172 

Agency between 2007 and 2012 as part of the Water Framework Directive marine angiosperm 173 

monitoring tool (Environment Agency 2013; available at http://www.geostore.com/environment-174 

agency/WebStore?xml=environment-agency/xml/ogcDataDownload.xml). Community mean 175 

Ellenberg scores were calculated for each species in each plot, and climate data were collated from 176 

the 1981-2010 period which covers the time period of the surveys. The models were used to predict 177 

the presence or absence of taxa in the test dataset and the performance of the models was assessed by 178 

plotting receiver-operator characteristic plots (ROC plots) and assessing the area under the curve 179 

statistic (AUC) using the ROC-R package (Sing et al., 2005). The ROC plot is constructed by 180 

plotting the number of true positives (where a species is predicted to be present and observed to be 181 

present) against the number of false positives (where a species is predicted to be present but is 182 

actually absent) for a range of probability thresholds. For a good model the number of true positives 183 

will increase faster than the number of false positives when the threshold used to convert the 184 

probability of occurrence to presence decreases and therefore the AUC will be large. For models 185 

with no ability to predict presences the true positive rate will increase at the same rate as the false 186 

positive rate (AUC will be 0.5).  187 

 188 

Interpretation of AUC statistics without the ROC plots has been criticised (Jiménez-Valverde, 189 

2012) and therefore all ROC plots were assessed visually (Online Resource 1). In addition, all test 190 

plots are from coastal areas to avoid artificially increasing AUC statistics by including areas unlikely 191 

to contain the modelled species (Lobo et al., 2008). Only models for species occurring in both 192 
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training and test datasets, a total of 45 taxa, could be tested. All model fitting and analysis was 193 

conducted in R v. 3.0.2 (R Foundation for Statistical Computing, 2013).194 
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Results 195 

In total, 132 coastal plant species were modelled using the training dataset. Of the fitted models 196 

for these species, 85% contained either a linear or quadratic Ellenberg S term, indicating that salinity 197 

was important in determining niche space for these species (Table 1, Online Resource 2). Ellenberg F 198 

terms, relating to moisture, were also included in over 80% of the models, whereas climate variables 199 

were only included in approximately half of all models. On average models contained 18 out of 44 200 

possible terms, with a mean of eight two-way interactions included in each model.  201 

 202 

Modelled responses to Ellenberg S for four representative taxa were investigated in detail by 203 

predicting habitat suitability for the full range of Ellenberg S values (0 to 9), holding all other 204 

indicator and climatic variables constant at the median values for that species (Figure 1). 205 

Relationships were shown to be variable between species in terms of the Ellenberg S optimum and 206 

the modelled niche breadth of the salinity axis. Large variation in modelled niche space in relation to 207 

Ellenberg S was observed between species with the same Ellenberg S score. This indicates that the 208 

range of suitable salinity conditions is variable between species. To visualise potential interactions 209 

between explanatory variables, three dimensional plots were produced by varying the two most 210 

common model terms (Ellenberg S and Ellenberg F; Figure 2). Three dimensional plots 211 

demonstrated that both salinity and moisture were important characteristics of niche space for the 212 

plant species shown, and that the modelled niches corresponded well to habitat descriptions in 213 

standard floras such as Stace (2010) and Preston et al. (2002). 214 

 215 

 Model evaluation was performed for the 45 niche models where the species was present in both 216 

training and test datasets (Figure 3, Table 2). The majority of models (64%) had AUC values above 217 

the threshold of 0.7 suggested to indicate useful performance (Swets, 1988; Manel et al., 2001). 218 

Comparison with AUC values from GLM model fits without salinity terms (Table 2) showed that 219 

addition of Ellenberg S as an explanatory variable increased AUC by an average of 0.05. Removing 220 

the salinity term for Trifolium fragiferum decreased model predictive ability from good (0.80) to 221 

having no predictive power (0.39). Most models showed moderate declines in performance after 222 

removing the salinity term although models for three species (Atriplex littoralis, Crithmum 223 

maritimum and Parapholis strigosa) had substantially higher (over 20%) AUC values without the 224 

salinity term. 225 
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Discussion 226 

The distributions of the coastal plant species examined here were shown to be primarily driven by 227 

variation in salinity and moisture, although fertility, pH, canopy height and climate were also found 228 

to be important for many species. Ellenberg indicator scores for salinity and moisture (Ellenberg S 229 

and F) were the most frequent explanatory variables, both occurring in over 80% of models. This 230 

result supports the finding that exposure to salinity and moisture availability are key controls on 231 

coastal plant niches (Batriu et al., 2011; Yuan et al., 2012). Models fitted with only the seven 232 

variables defined in Smart et al. (2010) and excluding Ellenberg S showed, on average, lower 233 

predictive power against an independent dataset than models fitted with the salinity term. Whilst the 234 

finding that salinity is an important component of coastal plant niches is not surprising, given that 235 

many coastal plants have specific adaptations to high salt concentrations, salinity has rarely been 236 

included in previous niche models of coastal plants due to the lack of measurements associated with 237 

vegetation surveys. Here, responses to salinity have been quantified for both taxa characteristic of 238 

intertidal saltmarsh e.g. Aster tripolium and for taxa that occur further inland and are influenced by 239 

factors such as salt spray e.g. Trifolium fragiferum.  240 

 241 

The general paucity of available environmental data to inform species niche modelling efforts 242 

makes the use of proxies such as Ellenberg indicators as explanatory variables an attractive 243 

alternative. For environments such as coastal habitats, where there is little environmental data 244 

collection to complement floristic surveys, Ellenberg indicators allow the inclusion of relevant 245 

explanatory variables to niche modelling efforts. In the models presented here, the use of mean 246 

community Ellenberg scores allowed niche models to be constructed for a large floristic dataset 247 

where direct environmental measurements were not available. Comparison of modelled niche space 248 

to existing floristic descriptions for four representative taxa indicated a generally good 249 

correspondence. Schoenoplectus tabernaemontani is described as growing in “brackish water” 250 

(Preston et al., 2002) and the modelled niche represented in Figure 2 showed the highest habitat 251 

suitability in the wettest conditions. The model for Carex arenaria, a “dominant of fixed dunes, 252 

dune-slacks, sandy flats and tracksides” (Preston et al., 2002), showed high habitat suitability over a 253 

wide range of moisture conditions but low suitability in highly saline conditions, suggesting salinity 254 

may limit its distribution in coastal areas. The model for Euphorbia paralias showed less salt-255 

tolerance than was implied by the relatively large Ellenberg Salinity score of 3, but species given a 256 
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score of 3 clearly vary in their salt-tolerance, and the model shows that this score may be an 257 

overestimate for this species. 258 

 259 

The use of Ellenberg indicators to model species occurrence has been criticised on the basis of the 260 

circularity inherent in predicting the occurrence of species based on values derived from the 261 

community of species present. In particular, relating Ellenberg scores to other variables derived from 262 

the species composition such as richness has been shown to exaggerate the importance of indicator 263 

scores as predictors compared to abiotic measurements (Zelený & Schaffers, 2012). However, by 264 

modelling only single species and removing the species in question from the dataset before 265 

calculation of the mean community Ellenberg score (Smart et al., 2010b), the main potential cause of 266 

circularity has been avoided in this study. Some degree of circularity may remain given that 267 

Ellenberg values for plant taxa were initially defined partly based on co-occurring species, but the 268 

use of algorithmically refined scores (Hill et al., 2000) reduces this circularity. Although accurate 269 

measurements of abiotic conditions at the site of floristic data collection will always be preferred in 270 

niche modelling exercises, the use of Ellenberg indicators enables useful models to be constructed 271 

where such data are not available. To enable models to be built on measured abiotic variables in 272 

place of Ellenberg indicators there is an urgent need for more collection of environmental data co-273 

located with vegetation relevés. Measurements indicating salinity (e.g. electrical conductivity in a 10 274 

g soil / 25 ml water slurry; or sodium concentration) would be particularly useful for establishing 275 

niches of coastal plants.  276 

 277 

Not all models performed well against test data, suggesting the main drivers for these taxa were 278 

not sufficiently represented in the models. For example, our models did not take into account 279 

substrate mobility which is important in determining niche space for some dune species (Maun & 280 

Perumal, 1999). However, dune mobility and salt exposure in sea spray are to a large extent co-281 

correlated and dune plants living closest to the shoreline in the most mobile conditions have higher 282 

Ellenberg Salinity scores. For example the strandline and mobile dune species Cakile maritima and 283 

Ammophila arenaria both have scores of 3, compared with Festuca rubra with a score of 2, which 284 

although salt tolerant is typically found behind the leading dune. Salinity scores are therefore likely 285 

to capture much of this influence, but we recognise that they will not perform so well for species 286 

occupying blow-out conditions further inland. Further work focusing on dune species could test 287 

additional variables. Limiting the set of input variables allows all species to be modelled with the 288 
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same predictors but increases the likelihood that the niches of some species are not captured by the 289 

input variables. 290 

 291 

Methodological issues may also have affected performance for some models. For example, 292 

models for the genus Atriplex were particularly poor and might reflect inconsistency in identification 293 

of species between surveys. In addition, despite the large number of quadrats in the training dataset a 294 

relatively small proportion occurred in coastal habitats. The test dataset was restricted to coastal 295 

habitats and so some species had higher numbers of occurrences in the test dataset than the training 296 

dataset, a potential cause of poor performance if the entire species range was not captured in the 297 

training dataset. Therefore, despite the large dataset used for model building, the sampling effort in 298 

coastal regions was not high enough to create good models for all taxa. Increased survey effort in 299 

coastal regions will be required to address this, preferably including co-located environmental 300 

measurements. 301 

 302 

Nonetheless, model evaluation showed that 64% of models tested were classed as good to 303 

excellent when compared against an independent test dataset (Swets, 1988; Manel et al., 2001). 304 

Species occurrence can therefore be satisfactorily predicted for a majority of species with only eight 305 

explanatory variables. This indicates that the variables included capture the main drivers of coastal 306 

plant distributions. Although salinity and moisture were the dominant variables, multiple drivers 307 

were implicated in determining the distributions of the majority of species and most models 308 

contained multiple interaction terms, suggesting that species distributions are determined by a 309 

complex function of abiotic and biotic conditions. The results indicate that it will be necessary to 310 

consider the impacts of multiple drivers when considering how coastal plants may be affected by 311 

environmental change. 312 

 313 

Coastal vegetation is threatened by rising sea levels which are likely to lead to increased 314 

submersion of lower saltmarshes (Boorman, 1992; Donnelly & Bertness, 2001). Vegetation further 315 

inland may also be affected by rising groundwater levels (Curreli et al., 2013), and the potential 316 

habitat extent available will be reduced by coastal squeeze (Jones et al., 2011a). The models 317 

developed here allow habitat suitability in relation to moisture and salinity to be described for a large 318 

proportion of British coastal plant species, and have potential applications in predicting likely habitat 319 

composition under future inundation regimes. Sufficient co-located floristic and environmental data 320 
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are not currently available for deriving niche models directly with respect to abiotic conditions, but 321 

fewer data are necessary to derive relationships between mean indicator scores and the abiotic 322 

environment (e.g. Smart et al., 2010b; Rowe et al., 2011). If relationships can be established between 323 

mean Salinity score and aspects of the abiotic environment such as soil electrical conductivity or 324 

inundation depth and frequency, it will be possible to simulate the effects of sea-level rise on 325 

individual coastal species and species-assemblages.  More immediately, current mean Ellenberg 326 

scores provide an indication of suitability for colonisation by other taxa, and therefore the likely 327 

success of vegetation restoration in managed re-alignment projects. 328 

  329 

 330 

Conclusions 331 

The models presented here demonstrate that the distributions of British coastal plants are driven 332 

by multiple interacting drivers, with salinity and moisture being the most important variables. By 333 

using relevant Ellenberg indicators as explanatory variables it was possible to describe responses to 334 

variables for which direct measurements are rarely associated with floristic datasets. There is now the 335 

possibility to use these models to predict impacts of environmental change on British coastal plant 336 

species. 337 
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 437 

Figure captions 438 

 439 

Fig. 1 Modelled habitat suitability in relation to Ellenberg S score for four representative coastal 440 

plant taxa; thrift (Armeria maritima), sea spurge (Euphorbia paralias), grey club-rush 441 

(Schoenoplectus tabernaemontani) and sand sedge (Carex arenaria) (Hill et al., 2004). Vertical 442 

dotted lines indicate the Ellenberg S score. Figure created in R version 3.0.2 443 

 444 

Fig. 2 Modelled habitat suitability in relation to Ellenberg S and F scores for four coastal taxa: 445 

Armeria maritima, found predominantly in saltmarshes and on sea cliffs; Euphorbia paralias, often 446 

found on mobile or semi-stable sand-dunes; Schoenoplectus tabernaemontani, frequent in wet areas 447 

near the sea e.g. tidal channels and dune-slacks; and Carex arenaria, a dominant plant of fixed dunes 448 

and grassy maritime areas (Preston et al., 2002; Stace, 2010). Figure created in R version 3.0.2 449 

 450 

Fig. 3 Histogram of AUC values obtained from model testing of 45 coastal plant species niche 451 

models against an independent dataset. Fill represents the AUC thresholds of <0.7 being indicative of 452 

poor model predictive ability (white), 0.7-0.9 suggesting moderate performance (grey) and over 0.9 453 

suggesting good model performance (black) (Swets, 1988; Manel et al., 2001). Figure created in R 454 

version 3.0.2455 
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 456 

Table 1. Number of coastal plant species niche models containing the eight explanatory variables 457 

included in the analysis (out of 132 models in total). Variables were entered as both linear and 458 

quadratic terms and all two way linear interactions were also included (see Online Resource 2 for 459 

model coefficients).  460 

Model term Number of models containing term 

Ellenberg S Linear 56 

Quadratic 110 

Ellenberg F Linear 83 

Quadratic 108 

Ellenberg R Linear 69 

Quadratic 89 

Ellenberg N Linear 47 

Quadratic 97 

Canopy height Linear 52 

Quadratic 97 

Max. July 

temperature 

Linear 74 

Quadratic 82 

Min. January 

temperature 

Linear 57 

Quadratic 77 

Annual 

precipitation 

Linear 55 

Quadratic 58 

 461 

462 
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Table 2. Table of AUC values obtained from testing 45 coastal plant species niche models against an 463 

independent dataset.  464 
Species name Number of 

occurrences 

in training 

data 

Number of 

occurrences 

in test data 

AUC 

from full 

model 

AUC without 

Ellenberg S 

score 

Difference (AUC from  

full model - AUC  

without  

Ellenberg S score) 

Agrostis stolonifera 5585 1028 0.86 0.76 0.10 

Alopecurus geniculatus 389 3 0.96 0.96 0.00 

Apium graveolens 24 30 0.54 0.54 0.00 

Armeria maritima 1621 484 0.93 0.90 0.03 

Aster tripolium 903 2820 0.69 0.68 0.01 

Atriplex littoralis 35 146 0.38 0.61 -0.23 

Atriplex patula 60 9 0.43 0.49 -0.06 

Atriplex portulacoides 764 1500 0.68 0.67 0.01 

Beta vulgaris 59 144 0.71 0.56 0.14 

Bolboschoenus maritimus 86 423 0.65 0.46 0.19 

Carex arenaria 1481 5 0.92 0.92 0.00 

Carex distans 141 15 0.98 0.84 0.14 

Carex extensa 116 39 0.81 0.70 0.11 

Carex otrubae 110 10 0.97 0.65 0.32 

Cochlearia anglica 185 575 0.61 0.57 0.04 

Crithmum maritimum 108 4 0.69 0.84 -0.16 

Elytrigia atherica 498 1058 0.65 0.51 0.14 

Elytrigia repens 951 90 0.71 0.81 -0.10 

Festuca rubra agg. 8033 1503 0.81 0.80 0.01 

Glaux maritima 902 1241 0.85 0.80 0.05 

Honckenya peploides 128 7 0.76 0.86 -0.10 

Hordeum marinum 30 8 0.62 0.62 0.00 

Inula crithmoides 66 23 0.9 0.79 0.11 

Juncus gerardii 617 545 0.82 0.70 0.12 

Juncus maritimus 274 234 0.49 0.50 -0.01 

Limonium humile 31 166 0.78 0.76 0.02 

Limonium vulgare 411 378 0.83 0.81 0.02 

Oenanthe lachenalii 244 90 0.83 0.48 0.36 

Parapholis strigosa 67 102 0.5 0.71 -0.20 

Phragmites australis 888 218 0.68 0.50 0.18 

Plantago coronopus 737 52 0.92 0.86 0.06 

Plantago maritima 2068 1513 0.88 0.84 0.04 

Puccinellia maritima 1138 2446 0.76 0.72 0.03 

Salicornia europaea agg. 472 388 0.55 0.62 -0.06 

Sarcocornia perennis 251 98 0.92 0.91 0.01 

Schoenoplectus 

tabernaemontani 

19 17 

0.66 0.39 0.27 

Scorzoneroides 

autumnalis 

1576 58 

0.93 0.88 0.05 

Sedum anglicum 324 3 1 0.95 0.04 

Sonchus arvensis 325 29 0.93 0.79 0.13 

Spergularia marina 166 232 0.77 0.77 0.00 

Spergularia media 385 794 0.81 0.75 0.06 

Suaeda maritima 649 1608 0.81 0.75 0.06 

Suaeda vera 214 42 0.68 0.70 -0.02 

Trifolium fragiferum 50 9 0.8 0.39 0.41 

Triglochin maritima 776 1582 0.78 0.79 -0.01 

 465 
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Supplementary Material 466 

 467 

Online Resource 1. Receiver operator characteristic plots for all coastal plant niche models a) with 468 

the full model b) without the salinity term. 469 

 470 

Online Resource 2. Table of model coefficients for 132 niche models of coastal plant species 471 
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