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Key points: 25 

- Lithofacies are mapped as basis for 3D hydraulic conductivity distribution.   26 

- Non-Fickian transport behavior emerges naturally from lithofacies distribution.  27 

- Verifiable explanations are developed for the plume behavior at the MADE site. 28 

 29 

Abstract. Stochastic realizations of lithofacies assemblage based on lithological data 30 

from a relatively small number of boreholes were used to simulate solute transport at the 31 

well-known Macrodispersion Experiment (MADE) site in Mississippi (USA). With sharp 32 

vertical contrasts and lateral connectivity explicitly accounted for in the corresponding 33 

hydraulic conductivity fields, experimental results from a large-scale tracer experiment 34 

were adequately reproduced with a relatively simple model based on advection and local 35 

dispersion. The geologically based model of physical heterogeneity shows that one well 36 

interconnected lithofacies, with a significantly higher hydraulic conductivity and 37 

accounting for 12% of the total aquifer volume, may be responsible for the observed non-38 

Fickian  transport behavior indicated by the asymmetric shape of the plumes and by 39 

variations of the dispersion rate in both space and time. This analysis provides a 40 

lithological basis to the hypothesis that transport at MADE site is controlled by a network 41 

of high-conductivity sediments embedded in a less permeable matrix. It also explains the 42 

calibrated value of the ratio of mobile to total porosities used in previous modelling 43 

studies based on the dual-domain mass transfer approach. The results of this study 44 

underscore the importance of geologically plausible conceptualizations of the subsurface 45 

for making accurate predictions of the fate and transport of contaminants in highly 46 

heterogeneous aquifers. These conceptualizations may be developed through integration 47 

of raw geological data with expert knowledge, interpretation and appropriate geostatistical 48 

methods. 49 
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1 Introduction and background 53 

Despite significant theoretical, experimental and computational advances, modelling 54 

of contaminant transport in heterogeneous aquifers is still challenging and subject of 55 

continuing debate in the scientific community [e.g., Hadley and Newell, 2014; Neuman, 56 

2014; Molz, 2015]. Yet, accurate simulations of the fate of contaminants are needed to 57 

address an ever growing demand for clean groundwater resources and an increasing 58 

interest in the use of the subsurface for the storage of nuclear waste, CO2, and heat. 59 

Transport of nonreactive solutes through porous media is traditionally modelled with 60 

the advection–dispersion equation (ADE): 61 

( ) ( )
C

C C
t


     


D v      (1) 62 

where C is concentration, v is the macroscopic advective velocity, and D is the 63 

hydrodynamic dispersion coefficient tensor. The latter is a function of the molecular 64 

diffusion coefficient, v, and fixed longitudinal ( L ), horizontal transverse ( TH ) and 65 

vertical transverse ( TV ) dispersivities. Because the first term on the right hand side of 66 

Equation (1) is analogous to Fick’s law of molecular diffusion, solute transport described 67 

by the ADE is referred to as Fickian. However, tracer experiments at different scales very 68 

often show “anomalous” or non-Fickian features indicated by non-Gaussian asymmetric 69 

plumes, apparent loss of mass due to sequestration in relatively immobile zones, variations 70 

of mean transport velocity, and increases in the dispersion rates (i.e., dispersivity) with 71 

mean travel distance or in time [e.g., Silliman et al., 1987; Adams and Gelhar, 1992; 72 
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Haggerty et al., 2001; Levy and Berkowitz, 2003; Cortis and Berkowitz, 2004; Bromly and 73 

Hinz, 2004; Bianchi et al., 2011a; Cherubini et al., 2013]. 74 

For nonreactive tracers, non-Fickian transport is observed in aquifers characterized by 75 

sharp contrasts in hydraulic conductivity (K) and by connectivity of high-K regions 76 

[Zheng and Gorelick, 2003; Klise et al., 2009; Bianchi et al., 2011b; Zhang et al., 2013], 77 

which are commonly found in alluvial aquifers [e.g., Fogg, 1986; Webb and Anderson, 78 

1996; Fogg et al., 2000; Labolle and Fogg, 2001; Baratelli et al., 2011; Dell’Arciprete et 79 

al., 2014]. The inability of the Fickian approach to describe transport in such 80 

environments is explained by the fact that the travel distance required to reach asymptotic 81 

or scale-independent conditions for macroscopic Fickian dispersion is larger than the 82 

actual scale of the observed plumes [Eggleston and Rojstacer, 2000; Berkowitz et al., 83 

2006; Neuman and Tartakovsky, 2009; Srinivasan et al., 2010; Molz, 2015]. In fact, a 84 

scale-dependent (i.e., pre-asymptotic) behavior is observed for dispersivity, which is in 85 

contrast with the fixed macroscopic dispersivity derived from the central spatial moments 86 

of the plumes [e.g., Adams and Gelhar, 1992].  87 

Field data collected at the research site in Columbus (Mississippi, USA), known as 88 

the Macrodispersion Experiment (MADE) site, have been used over the last three decades 89 

to investigate solute transport processes in alluvial aquifers. In particular, three large-scale 90 

natural gradient tracer experiments were conducted at this site in the mid ‘80s and in the 91 

‘90s to test the applicability of the macrodispersion theory to explain solute transport in 92 

heterogeneous porous media [Boggs et al.,1992; Boggs et al., 1993; Boggs et al., 1995]. A 93 

comprehensive list of references of the numerous studies concerning the geological and 94 

hydrogeological characterization of the MADE site, as well as the results, interpretation, 95 

and modelling of the tracer experiments, is given in the review paper by Zheng et al. 96 

[2011]. Although the physical heterogeneity of the aquifer was initially characterized by 97 
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more than 2500 flowmeter K measurements [Rehfeldt et al., 1992], the application of the 98 

macroscopic ADE failed to explain transport behavior observed during the three large-99 

scale experiments [Adams and Gelhar, 1992;  Eggleston and Rojstaczer 1998a, 1998b; 100 

Harvey and Gorelick, 2000; Feehley et al., 2000; Julian et al., 2001].  101 

The failure of the macroscopic ADE to accurately describe the experimental data at 102 

the MADE site has been the motivation for the application of alternative modelling 103 

methods based on two approaches. The first approach is represented by non-Fickian 104 

transport models including the dual domain mass transfer model [Harvey and Gorelick, 105 

2000; Feehley et al., 2000; Guan et al., 2008; Llopis-Albert and Capilla, 2009], the 106 

fractional advective-dispersive equation [Benson et al. 2001; Zhang and Benson, 2008], 107 

and the continuous-time random walk [Berkowitz and Scher, 1998; Berkovitz et al., 2006]. 108 

These models were able to provide a reasonable interpretation of the anomalous features 109 

of the observed plumes without an explicit representation of local-scale heterogeneity and 110 

connectivity, although their effect on transport is taken into account through mathematical 111 

formulations describing non-Fickian transport in time and space. A second approach, 112 

namely the local-ADE approach [e.g., Fiori et al., 2013], considers an explicit 113 

representation of small-scale heterogeneities based on the notion that if the velocity field 114 

is sufficiently characterized, then transport can be effectively described by Equation (1) 115 

considering advection, molecular diffusion, and local dispersion [e.g., Zheng and 116 

Gorelick, 2003; Salamon et al., 2007; Zheng et al., 2011; Fiori et al., 2013].  117 

A recent application of the local-ADE  approach at the MADE site is the study by 118 

Dogan et al. [2014], in which flowmeter measurements and additional high-resolution K 119 

data, collected with the direct-push injection logger [DPIL; Liu et al., 2009; Bohling et al., 120 

2012], were used to generate extremely detailed representations of the K field 121 

[Meerschaert et al., 2013] in a sector of the MADE site aquifer. This sector is about 1/6 of 122 
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the total extension of the domain investigated by the three large-scale tracer experiments. 123 

Transport simulations based on nine stochastic realizations of the K field showed a good 124 

agreement with experimental data collected during the first tracer test (MADE-1). Results 125 

from this work are significant because they provide strong confirmation that the local 126 

ADE approach can predict solute transport in very heterogeneous porous media such as 127 

the MADE site aquifer. However, the computational effort (on a grid of 0.25 m × 0.25 m 128 

×0.05 m, which amounts to approximately 111 million nodes for the entire MADE site 129 

domain of 120 m ×290 m × 10 m)  and the amount of data used for generating the K field 130 

realizations (more than 5,500 measurements) were very substantial and not usually 131 

attainable.  132 

Thus, in this work we test the hypothesis that we can explain the characteristics of the 133 

observed transport behavior at the MADE site with a much simpler local ADE-based 134 

model, without relying on exceedingly fine grid spacing or thousands of K data points. 135 

Differently from all the previous studies at the MADE site, we considered lithological data 136 

rather than K measurements (either from flowmeter or DPIL) to generate geologically 137 

consistent realizations of the spatial assemblage of five lithofacies, identified from a 138 

relatively small set of aquifer samples. These realizations were then used as basis for the K 139 

fields in transport simulations of the MADE-2 experiment. The agreement between 140 

simulated and experimental data provides an unprecedented lithological explanation for 141 

the observed non-Fickian transport behavior at the MADE site, while also demonstrating 142 

that this behavior can be adequately simulated by a local ADE-based model without an 143 

extraordinarily high-resolution  characterization of the K field. 144 

   145 

 146 
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2 Data   147 

Lithological data consist of 411 aquifer samples collected from 38 boreholes covering 148 

the total thickness of the aquifer (about 11 m on average). Location of these boreholes is 149 

shown in Figure 1, while lithological descriptions and the results of grain-size analyses 150 

performed on a subset of 214 soil samples from 29 boreholes are presented in a 151 

preliminary hydrogeological characterization study of the MADE site [Boggs et al., 1990]. 152 

Aquifer sampling was conducted using a hollow stem auger and split core barrel samplers 153 

[Boggs et al., 1990; 1992] and samples were generally collected at 1.5 meter intervals. 154 

The majority of the boreholes are located in the southern sector of the site, with only 6 155 

boreholes located within the boundary of the network of multilevel sampling wells used to 156 

monitor concentrations during the tracer experiments. 157 

Grain size data consist of percentages of gravel (diameter of soil grains greater than 158 

4.76 mm), sand (diameter between 0.074 mm and 4.76 mm) and fines (diameter smaller 159 

than 0.074 mm). Values of the 10th (d10), 25th (d25), and 60th (d60) percentiles of the 160 

cumulative grain size distribution are also available. Most of the aquifer at the MADE site 161 

consists of bimodal mixtures of gravel and sand with a low percentage of fines (less than 162 

5% on average). In general, mixtures of gravel, sand and fines are more predominant in 163 

the most superficial part of the aquifer (up to 4 m of depth). Gravel content decreases with 164 

depth (less than 25% on average), and it is particularly low toward the bottom boundary of 165 

the aquifer represented by low-permeable marine deposits of the Eutaw formation. This 166 

deeper portion of the aquifer consists mostly of well sorted sand with fines content 167 

ranging from 1% up to 22%. Additional details on the vertical variability of gravel, sand, 168 

and fines content are provided by Boggs et al. [1990, 1992].  169 

 170 
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3 Methods 171 

3.1 Lithofacies identification 172 

Aquifer samples were classified into five lithofacies on the basis of the relative 173 

content of gravel (G), sand (S) and fines (f), as well as of values of d10, d25 and of the 174 

uniformity coefficient ( 60 10/U d d ). The criteria used for the identification of these 175 

lithofacies and key parameters are summarized in Table 1.  176 

Lithofacies HCG (“highly conductive gravel”) and GS (“gravel with sand”), which 177 

represent the 12% and the 18% of the samples respectively, consist of poorly sorted sandy 178 

gravels (gravel content > 50%) with minor fines (< 5%). The two lithofacies are 179 

distinguishable on the basis of the d10 (> 0.25 mm for HCG) and d25 values (> 1.0 mm for 180 

HCG). The two threshold values of 0.25 mm and 1.0 mm were chosen to be corresponding 181 

to the smallest grain sizes to define “medium sands” and “very coarse sands” according to 182 

the widely used soil classification by Krumbein [1934]. Grain size in HCG is also 183 

relatively more uniform than in GS (U = 30 vs. 41). In particular, HCG represents coarse 184 

gravelly sediments, as shown by the values of the d60 with values ranging between 6.4 mm 185 

and 19.7 mm. Lithofacies SGf (“sand, gravel and fines”) consists of mixtures of gravel, 186 

sand and fines in various proportions. In general, sand content is higher than that of 187 

gravel, although some samples have gravel content up to 70%. The content of fines is 188 

higher than 5% in all samples. This lithofacies is the most represented in the aquifer 189 

samples (35%). Lithofacies SG (“sand and gravel”) consists of moderately sorted gravelly 190 

sands and represents the 14% of the samples. On average, SG has moderately high sand 191 

content (about 65%), minimal fines (< 3% average), and d10 values similar to those in GS, 192 

albeit with more uniformity in the grain-size distribution (U=16). Lithofacies S (“sand”) 193 

consists of well sorted sand (sand content > 85%; average U = 2.6) with an average d10 194 

values similar to that in SGf (0.14 mm and 0.12 mm, respectively). 195 
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  196 

3.2 Stochastic simulation of lithofacies assemblage  197 

Spatial continuity of the identified lithofacies was initially assessed along cross-198 

sections intercepting the boreholes to identify transition trends and estimate lateral and 199 

vertical extensions.  In a second stage, transition probabilities between lithofacies were 200 

calculated and modelled with a three-dimensional Markov chain in a conditional 201 

simulation framework [Carle, 1999]. The transition probability approach introduced by 202 

Carle and Fogg [1996, 1997] has been used to produce geologically consistent 203 

representations of subsurface heterogeneity by preserving the connectivity of lithofacies 204 

and juxtapositional tendencies [e.g., Carle et al., 1998; Weissmann and Fogg, 1999; Ritzi, 205 

2000; Ritzi et al., 2004; Lee et al., 2007; Dai et al., 2007; Ye and Khaleel, 2008; Bianchi et 206 

al., 2011b]. Differently from traditional variogram-based geostatistical methods, with this 207 

approach the spatial structure of the data is represented by transition probabilities, which 208 

are defined in terms of the following conditional probability: 209 

 , ( ) Pr ( ) | ( )i kt k i h x h x              (2) 210 

where ti,k is the transition probability from lithofacies i to lithofacies k, and x and h are the 211 

spatial location and lag distance vectors. Because, from Equation (2), the occurrence of 212 

lithofacies k at location x + h is only dependent on the occurrence of lithofacies i at 213 

location x, three-dimensional continuous-lag Markov Chain models can be developed to 214 

model discrete transition probabilities observed in the data. In this work, the fitting of a 215 

3D Markov chain to the transition probabilities measured in the borehole data was 216 

performed by adjusting embedded transition probabilities and mean length and thickness 217 

values of lithofacies (Figure 2). Because of the relatively small number of boreholes, the 218 

estimation of mean length values from the plots of auto-transition probabilities in the 219 

horizontal direction is characterized by a certain degree of uncertainty. Therefore, in order 220 
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to apply a more objective criterion for the estimation of the spatial correlation of the 221 

lithofacies in the horizontal direction, we have chosen to apply an early lag data approach 222 

[Carle and Fogg, 1997] in which the lag-one transition probability was used to compute 223 

the Markov chain model. This fit also produces probabilistic estimates of the mean length 224 

for each lithofacies (Figure 2a). We also tested the sensitivity of the transport modelling 225 

results with respect to this choice, especially regarding variations of the mean length of 226 

lithofacies HCG. The results of this sensitivity analysis will be discussed later. The 227 

calibrated Markov chain model also assumes isotropic behavior in the horizontal plane 228 

and lithofacies SGf as the background category. Volumetric proportions of the lithofacies, 229 

represented by the sill of the transiograms in the model, are also assumed equal to the 230 

proportions exhibited by the borehole data. Modeled transition probabilities and values of 231 

mean length and thickness for each lithofacies (Table 1) are reasonable and consistent 232 

with the spatial continuity assessed in the cross-sections. The mean lengths of the 233 

lithofacies inferred from the transition probability analysis is of the order of tens of 234 

meters, while thicknesses are in the order of a meter indicating higher variability along the 235 

vertical direction as in shown by previous investigations [e.g., Rehfeldt et al., 1992; 236 

Bohling et al., 2012]  237 

 238 

3.3 Flow and transport simulations  239 

A three-dimensional stochastic flow and transport model was implemented to 240 

simulate the second large scale tracer experiment (MADE-2; Boggs et al., 1993). The 241 

block-centered numerical grid, with a total size of 120 m × 290 m × 10 m (Figure 1), has a 242 

resolution of 2 m in the horizontal plane and 0.5 m in the vertical direction. The total 243 

number of cells of the numerical grid is about 1.82×104, which is about 18 times less than 244 
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the number of cells in the model by Dogan et al. [2014], even though the latter considers a 245 

smaller domain.    246 

The K fields in the numerical simulations are directly linked to the spatial 247 

distribution of the identified lithofacies. These were generated according to the following 248 

procedure. In a first step, K values for each sample were estimated with the Kozeny-249 

Carman empirical formula [e.g., Riva et al., 2010]:  250 

3
3 2

2
8.3 10

(1 ) e

g
K d


 

 


     (3) 251 

where g is gravity (9.81 m2/s), υ is the kinematic coefficient of viscosity of water (1.002 252 

m2/s at 20 ºC), de is a representative grain diameter, and θ is porosity. Porosity was 253 

estimated according to the empirical formula of Vucovic and Soro (1992) : 254 

 0.255 1 0.83U        (4) 255 

Porosity values for each lithofacies (Table 1) and the average of all the samples (0.307) 256 

are similar to measurements in collected aquifer samples (Boggs et al., 1990; Boggs et al., 257 

1992). Although there are different interpretations for de in the literature [e.g., Koltermann 258 

and Gorelick, 1995], here it was assumed to be corresponding to d10 for lithofacies GS, 259 

SG, SGf and S. There is in fact experimental evidence showing the reliability of this 260 

assumption in medium to coarse gravelly sands [Odong, 2007] and in well to moderately 261 

sorted sand/gravel mixtures [e.g., Barahona-Palomo et al., 2011]. The average between 262 

d10 and d25 was chosen instead for lithofacies HCG because of lower sand content and 263 

significantly coarser grain size (Table 1). With this choice, estimated K values for the 264 

HCG samples are also more comparable with previous K estimates [Boggs et al., 1990; 265 

Eggleston and Rojstaczer, 1998b] based on a different empirical formula, which was 266 

developed specifically for gravel and sand mixtures [Seiler, 1973]. In the subsequent 267 

discussion, we will test the effect of this assumption on simulated transport behavior. In a 268 
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second step, descriptive statistics of the log transformed K estimates were computed for 269 

the five lithofacies (Table 1). As expected given the coarsest grain size, statistical analysis 270 

of the estimated K values for each lithofacies (Figure 3) indicates that HCG is 271 

significantly the most conductive lithofacies, with a mean K value that is about 1.5 to 2 272 

orders of magnitude higher than the mean values of the other lithofacies. Next, three-273 

dimensional conditional realizations of the spatial assemblage of lithofacies were 274 

generated according to the calculated transition probabilities and fitted Markov chain 275 

model [Carle et al., 1998; Carle, 1999]. In the transport model domain the realizations are 276 

conditioned to the lithofacies identified in the samples from 6 boreholes (Figure 1). In the 277 

final step, an appropriate K value was assigned to each cell of the numerical grid of 278 

transport simulations according to the simulated distribution of lithofacies. This value was 279 

randomly generated from the truncated lognormal distribution, with mean and standard 280 

deviation equal to the corresponding values for each lithofacies. One standard deviation 281 

below and above the mean were considered as truncation thresholds to avoid excessive 282 

overlapping among different lithofacies and preserve the lithological structure on the 283 

generated K fields.  284 

Groundwater flow was simulated in three stress periods of the duration of 2, 158 and 285 

168 days using MODFLOW-2005 [Harbaugh, 2005]. The duration of the first stress 286 

period was chosen to represent the tritium injection. During the MADE-2 experiment, a 287 

total of 9.3 m3 of a solution containing tritium was injected for approximately 48 hours 288 

through a linear array of five injection wells, spaced 1 m apart, and centered on the origin 289 

of the Cartesian coordinates system in Figure 1 (Boggs et al. 1993). The injection wells 290 

were screened at a depth interval between 57.5 m and 58.1 m a.s.l. The injection procedure 291 

in the model was simplified such that only two cells of the numerical grid were considered 292 

for the injection. However, the location of these cells and the total injected tritium mass 293 
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(0.5387 Ci) are consistent with the experimental conditions. The remaining stress periods 294 

were chosen to represent two distinct climatic periods observed over the 328 days of the 295 

experiment, which are clearly shown by significant water table fluctuations registered by 296 

the groundwater level monitoring network [Boggs et al., 1993; Stauffer et al., 1994; Guan 297 

et al., 2008]. Accordingly, average values of groundwater levels measured at different 298 

wells during these two climatic periods were used to define specified-head boundary 299 

conditions at Y = -20 mand Y = 270 m , while no-flow boundary conditions were 300 

imposed at X = -50 m, X = 70 m and Z = 52 m . Despite the possible importance of 301 

transient flow conditions on transport at the MADE site [Llopis-Albert and Capilla, 2009], 302 

flow was assumed steady state in all stress periods. The ratio between vertical and 303 

horizontal K assumed in the model (0.13) is based on the results of a pumping test 304 

conducted at the MADE site [Boggs et al., 1990]. 305 

Transport simulations based on Equation (1) were performed with MT3DMS 306 

[Zheng, 2010] with the advection component solved with the total-variation-diminishing 307 

(TVD) scheme to minimize numerical dispersion given the relative coarseness of the grid 308 

and avoid mass balance inconsistencies. A Courant number of 0.75 was used for all 309 

transport simulations. Porosity values were assigned to the grid according to the 310 

lithofacies distribution. These correspond to the average of the values estimated with 311 

Equation 4 for each lithofacies (Table 1). Other input parameters include a molecular 312 

diffusion coefficient for tritium of 1.16×10-9 m2/s [Salomon et al., 2007], L equal to 1 m 313 

[Feehley et al., 2000; Llopis-Albert and Capilla, 2009], and values of TH and V of one 314 

and two orders of magnitude lower than L .  315 

The accuracy of the implemented model was tested by comparing simulated and 316 

observed 1-D longitudinal mass distributions at 27, 132, 224, and 328 days after the 317 
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injection. These times correspond to the first four “snapshots” of the MADE-2 experiment 318 

[Boggs et al., 1993]. For the calculation of experimental mass distributions, the mass 319 

along each monitoring well was integrated vertically and then interpolated in 2-D over the 320 

same grid used for flow and transport simulations. Observed and simulated mass 321 

distributions for each snapshot were then obtained by integrating the fraction of total 322 

recovered mass in 30 equally spaced zones of 10 m width along the general flow direction 323 

(y axis).  324 

The mean longitudinal displacement ( y ) and the longitudinal variance of the 325 

observed and simulated 1-D mass profiles ( 2
YY ) were also calculated on the basis of the 326 

central spatial moments according to the following equations (e.g., Adams and Gelhar, 327 

1992): 328 

1 0/y M M        (5)    329 

and  330 

2 2
2 0 1 0/ /YY M M M M        (6) 331 

The generic spatial moment Mi for the observed and simulated longitudinal mass profiles 332 

was calculated with the following equation: 333 

1

N
i

i p
p

M m y


        (7) 334 

where mp is the fraction of recovered mass at the point p of coordinates y, and N is the total 335 

number of points. Note that since tritium mass was normalized with the total recovered 336 

mass, the zero-th moment M0 is equal to 1 for both observed and simulated mass profiles. 337 

  338 
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4 Results and discussion 339 

The ensemble mean and median of 1-D longitudinal mass distributions from 500 340 

Monte Carlo realizations of the model are shown in Figure 4a-d. The interquartile range is 341 

also reported to provide a description of the variability of the simulated results. In general, 342 

the model is accurate in reproducing the mass accumulation near the injection site and the 343 

spreading to the far field. The model tends to overestimate the position of the edge of the 344 

plume in the first two snapshots, even though the mismatch is limited to fractions of 345 

recovered mass below 0.01. At later times (224 and 328 days), the model does not match 346 

the relative peak of mass observed between 160 m and 200 m from the injection site. This 347 

peak is most probably the effect of transient variations in the flow field during the 348 

experiment as suggested by fluctuations in the water table of up to 30% of the saturated 349 

thickness, which were observed during later stages of the MADE-2 test [Stauffer et al., 350 

1994; Llopis-Albert and Capilla, 2009]. These variations were not considered in the 351 

presented model. A better match between observed and simulated mass profiles could also 352 

be probably achieved with calibration of some of the model input parameters (e.g., 353 

porosity and K values of the lithofacies, boundary conditions). However, a calibration 354 

procedure not only is beyond the scope of the present work, but also would reduce the 355 

predictability of our lithofacies approach and compromise the insight about its 356 

transferability to other sites. Notwithstanding these simplifications, the implemented 357 

transport model is able to capture the overall characteristics of the MADE-2 plume with 358 

reasonable accuracy, especially considering the limited number of hard conditioning 359 

points used in the stochastic realizations of subsurface heterogeneity.  360 

Reasonable accuracy is further confirmed by comparisons between observed and 361 

simulated central moments (Figure 5a-c). The percentage error between the observed 362 

longitudinal displacement and the ensemble mean of the simulated values is between 11% 363 



16 
 

and 51%. The highest discrepancy is calculated for the displacement at 132 days, because 364 

simulated plumes tend to advance too rapidly (9.2 m vs. 13.9 m). The error between 365 

observed and simulated displacement at 224 and 328 is around 25%, but this discrepancy 366 

is strongly influenced by the relative peak of mass observed at later times and by the 367 

extremely rapid movement of the center of mass observed between 132 and 224 days. One 368 

important aspect regarding the proposed model shown in Figures 5b and 5c is that the 369 

second central moment representing the longitudinal variance of the plume grows at 370 

different rates in both time and space. This characteristic and the asymmetric shape of the 371 

simulated mass distributions are indicative of non-Fickian transport behavior. 372 

From the comparison between the spatial distributions of the identified lithofacies 373 

(Figure 6a), the corresponding K fields (Figure 6b), and the location of the plume front at 374 

different times (Figure 6c), it is evident that the asymmetric shape of the plume and the 375 

rapid movement of the edge are controlled by the location and the lateral continuity of the 376 

highly conductive lithofacies HCG. Given the dimension of the simulated domain in the 377 

longitudinal direction (145 cells) and its mean length (30 m = 15 cells), the percolation 378 

threshold for lithofacies HCG is expected to be around 0.14, according to Harter [2005]. 379 

Because the percolation threshold corresponds to the critical volumetric fraction for which 380 

there is occurrence of one cluster of cells spanning the entire domain, the estimated 381 

volumetric fraction of 0.12 for lithofacies HCG indicates that this lithofacies defines an 382 

interconnected network of high-K values that almost fully percolate the MADE site 383 

aquifer. This result provides a further confirmation of the hypothesis advanced by several 384 

previous studies [e.g., Fogg, 1986; Fogg et al., 2000; Labolle and Fogg, 2001; Zheng and 385 

Gorelick, 2003; Zheng et al., 2011; Moltz, 2015] that the “anomalous” transport behavior 386 

observed in heterogeneous alluvial aquifers is mostly the effect of connectivity of high-K 387 

sediments. This connectivity enhances fast advective transport of a fraction of mass along 388 



17 
 

preferential flow-paths, while a larger fraction travels in a relatively less permeable 389 

matrix. In the matrix, the role of diffusive transport is more significant especially in 390 

directions perpendicular to the main flow. When high-K zones connectivity is taken into 391 

account, faster than expected breakthrough times and late-time tailing of contaminants 392 

concentrations, which are commonly observed in contaminated aquifer sites, can be 393 

successfully predicted [Labolle and Fogg, 2001].   394 

The influence of lithofacies HCG on the velocity field and consequently on advective 395 

transport is also shown by the analysis of the frequency distributions of the generated K 396 

fields (Figure 7). These are clearly bimodal, with the majority of the log10(K) values 397 

clustered around a value of about 0.75 m/d, and a smaller set of values around the average 398 

value for lithofacies HCG (Table 1). Comparisons between the distribution for the 399 

generated K fields and the distributions of K data previously collected at the MADE site 400 

with two different methods [Rehfeldt et al., 1992; Bohling et al., 2012] indicate similarity 401 

between the modal value of the K estimates for lithofacies GS, SGf, SG and S and average 402 

value of the flowmeter measurements. The K estimates for lithofacies HCG are also 403 

comparable to the upper tails of the distributions of both the flowmeter and the DPIL data. 404 

However, the three K data sets differ in terms of sample variances, and the correlation 405 

between corresponding values at different depths in boreholes located within a 3.5 m 406 

radius is generally poor. A discussion of the possible causes for the mismatch between the 407 

flowmeter data and the DPIL data is presented by Bohling et al. [2012], while mismatches 408 

between the K estimates based on grain-size analysis and flowmeter data have been also 409 

observed in other alluvial aquifers [Barahona-Palomo et al., 2011; Guting et al., 2015]. 410 

As for these other aquifers, the lack of correlation between types of K data for the MADE 411 

site aquifer is most likely explained by the difference in the support scale associated with 412 
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each method, which ranges from a few centimeters for DPIL, to about 1.5 decimeters for 413 

the flowmeter measurements, up to several  decimeters for the grain-size estimates.  414 

Our interpretation may also provide a geological explanation for the success of the 415 

dual-domain mass transfer rate approach (DDM) in reproducing the experimental data at 416 

this site [Harvey and Gorelick, 2000; Feehley et al., 2000; Guan et al., 2008; Bianchi et 417 

al., 2011a]. This approach simulates transport in two distinct but overlapping mobile and 418 

immobile domains, each characterized by a certain porosity value, and the total porosity of 419 

the system is given by the sum of the mobile and immobile porosities. A mass transfer rate 420 

coefficient controls the exchange of solute mass between the two domains. According to 421 

the dual-domain conceptualization, pore space in the mobile domain is filled with water 422 

that can actually move through the porous structure and solute transport is mainly due to 423 

advection. On the other hand, pores in the immobile domain are filled with stagnant water 424 

and molecular diffusion is the main transport process. This separation into two mobile and 425 

immobile domains is therefore particularly suitable for reproducing transport when 426 

interconnected high-K sediments (i.e., the mobile domain) are embedded in a relatively 427 

lower permeable matrix (i.e., the immobile domain).  428 

Because our results suggest that the lithofacies HCG can be considered the mobile 429 

domain through which fast advective transport occurs, it is very noteworthy that the 430 

volumetric fraction estimated from the borehole data (0.12) corresponds to the calibrated 431 

value of the ratio between mobile and total porosities (1/8 = 0.125) of dual-domain 432 

models, which were able to fit the observed plume spreading at the MADE site [Zheng et 433 

al., 2011 and references therein]. As a confirmation, we implemented a DDM model 434 

(single-rate) based on a homogenous field with K equal to the ensemble mean of the 435 

equivalent K values for a subset of realizations of the K field. For each realization, the 436 

equivalent K was estimated by applying Darcy’s law between the two specified-head 437 
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boundaries of the simulated domain in Figure 1, and by assuming a preservation of the 438 

total discharge. This approach is similar to that used by Liu et al. [2007] to test the 439 

applicability of the DDM to represent transport in binary K fields characterized by 440 

decimeter-scale highly conductive channels. The model also assumes a mobile to total 441 

porosity ratio equal to the volumetric fraction of HCG. Comparisons between observed 442 

and simulated plumes show that we can match the observed the transport behavior with 443 

adequate accuracy by a simple calibration of the mass transfer rate coefficient (Figure 8 444 

and Figure 5d). As in the model proposed by Guan et al. [2008], calibrated values for this 445 

parameter indicate that the single-rate mass transfer coefficient is scale-dependent and 446 

decreases with time. 447 

Results shown in Figure 4a-d are based on the input parameters of Table 1. Because 448 

of the uncertainty associated with some of these parameters and the dominant influence of 449 

lithofacies HCG on the simulated transport behavior, we also analyzed the sensitivity of 450 

the results with respect to changes of K and mean length for this lithofacies. The results 451 

for the snapshot at 328 days are shown in Figure 4e. When lithofacies HCG is ignored in 452 

the generation of the K fields and its K value is assumed equal to that of lithofacies GS, 453 

the mass distribution showed very limited spreading and a symmetric shape. A similar 454 

result was obtained in a scenario in which the K of lithofacies HCG is estimated by 455 

considering the d10 as the value for de in Equation 2. The model is also sensitive with 456 

respect to changes of the mean length of lithofacies HCG. However, even when the mean 457 

length is assumed to be one half of the value in Table 1, we still observe a significantly 458 

asymmetric mass distribution although the leading edge of the plume is about 40 m 459 

shorter. This result indicates that even if a small range of mean length values would fit the 460 

estimated auto-transition probabilities equally well for lithofacies HCG (Figure 2a), the 461 

main conclusion regarding its role on controlling non-Fickian transport is still valid. 462 
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  463 

5 Conclusions 464 

Site-scale transport behavior observed during one of the MADE site experiments 465 

(MADE-2) was effectively reproduced with a relatively simple, local ADE-based model. 466 

The physical aquifer heterogeneity in the transport model was conceptualized and 467 

represented by 3-D realizations of the spatial distribution of lithofacies identified from 468 

aquifer samples collected from  39 boreholes, mostly located outside the domain used for 469 

transport simulations. The lithofacies approach appears to have provided an unprecedented 470 

explanation to “anomalous” plume-scale behavior at the MADE site that has motivated a 471 

long line of studies over the past 30 years.  Furthermore, results suggest that such behavior 472 

can be reproduced with a model based on a much smaller set of aquifer property data than 473 

previously thought possible. 474 

In particular, this analysis shows that some of the non-Fickian features of the 475 

observed plume can be explained by a highly permeable lithofacies with limited (less than 476 

1 m) vertical extent and moderate (>10 m) horizontal correlation. The presence of a 477 

network of well interconnected highly permeable sediments embedded in a less permeable 478 

matrix has been previously suggested for the MADE site [Harvey and Gorelick, 2000; 479 

Zheng and Gorelick, 2003] and tested in small sectors of the investigated domain [Liu et 480 

al., 2010; Ronayne et al., 2011; Bianchi et al., 2011a, 2011b], but never assessed at the 481 

scale of the large scale tracer experiments. In the context of about three decades of 482 

research work at the MADE site, the identification of the most conductive lithofacies 483 

(HCG) from borehole lithological data is a significant result providing a previously 484 

elusive, simple explanation for the observed non-Fickian transport behavior from a 485 

geological perspective.  486 
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The proposed model of physical heterogeneity for the MADE site aquifer seems also 487 

to provide a lithological basis for the success of dual-domain mass transfer rate approach 488 

in reproducing non-Fickian transport behavior at this site [Zheng et al., 2011]. In this 489 

respect, this work can also be seen as a first successful attempt to infer the ratio between 490 

mobile to total porosities, which is at the basis of dual-domain conceptualization, from 491 

grain-size analysis data and volumetric fractions of lithofacies. 492 

Even though this study is focused on a particular alluvial aquifer, the impact of the 493 

results is broader because they show that if the geological structure – here represented by 494 

the spatial distribution of the lithofacies – is properly represented in the 3-D  hydraulic 495 

conductivity field, then solute transport in heterogeneous aquifers can be accurately 496 

simulated with local ADE-based models without relying on exceedingly fine grid spacing 497 

or high-resolution K data. The incorporation of the geological structure in the physical 498 

model of heterogeneity also provides verifiable explanations for the observed plume 499 

behavior. Therefore, this work underscores the importance of geologically based 500 

representations of the subsurface, which can be developed through integration of raw 501 

geological data (e.g., borehole logs, aquifer analog descriptions, geophysical surveys) with 502 

expert knowledge, interpretation and appropriate geostatistical methods. 503 
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Table1. Criteria used for lithofacies identification and representative parameters.    734 

 

Highly 
conductive 

gravel  
(HCG) 

Gravel with 
sand 
(GS) 

Sand gravel 
and fines 

(SGf) 

Sand and 
gravel 
(SG) 

Well sorted 
sand 
(S) 

Identification criteria  

G > 50% 
f < 5% 

d10 > 0.25 mm 
d25 > 1 mm 

G > 50% 
f < 5% 

f > 5% 
S>50% 
f<5% 

S > 85% 
U < 3  

G* [%] 64.6 56.2 40.8 32.2 3.1 

S* [%] 32.0 40.7 51.7 64.9 90.2 

f* [%] 3.4 3.1 7.5 2.9 6.7 

d10
* [mm] 0.62 0.22 0.14 0.21 0.12 

d25
* [mm] 2.7 0.72 0.45 0.36 0.16 

d60
* [mm] 12.4 8.73 5.56 3.3 0.28 

U* 30.4 41.0 38.3 15.6 2.6 

Proportions [%] 12 18 35 14 21 

Mean length [m] 30 31 39 25 35 

Mean thickness [m] 1.0 0.5 0.9 0.4 1.7 

Mean Log10(K) [m/d] 2.482 0.830 0.402 0.889 0.752 

Variance Log10(K)  0.589 0.210 0.343 0.228 0.165 

Mean θ 0.265 0.257 0.259 0.298 0.415 

 735 

G: gravel content;  736 

S: sand content;  737 

f: fines content  738 

*average value 739 

  740 
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 744 

Figure 1. Map of boreholes used for lithological characterization of the MADE site. Black 745 

circles indicate boreholes with grain size data in Appendix A in Boggs et al. [1990]. 746 

Boreholes with only lithological description are indicated by open circles. The grey 747 

shaded area indicates the extension of the domain used for flow and transport modelling. 748 

The red dashed line indicates the boundary of the network of multilevel sampling wells 749 

used during the large-scale tracer tests.   750 
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 751 

Figure 2. Lateral (a) and vertical (b) transition probabilities and fitted Markov chain 752 

model.  753 
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 754 

 755 

Figure 3. Box plots of the estimated log-transformed hydraulic conductivity (K) values for 756 

each lithofacies showing median, interquartile range and extreme values (crosses). Red 757 

dashed lines indicate mean values.   758 
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 759 

 760 

Figure 4. (a-d) Observed and simulated longitudinal mass distributions of the tritium 761 

plume. Simulated distributions were obtained with input parameters in Table 1. (e) Mass 762 

distribution at 328 days for simulations considering different mean K and mean length for 763 

lithofacies HCG. The scenario assuming a mean K value for HGC equal to that for 764 
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lithofacies GS is shown red. The scenario assuming de as d10 for K estimations is shown in 765 

blue. The scenario assuming a mean length ( L ) of 15 m is shown in green.  766 

  767 
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 768 

 769 

Figure 5. First and second central spatial moments evolution for the observed (in red) and 770 

simulated (in black) plumes. Simulated points in a-c represent mean values of the Monte 771 

Carlo realizations. (a) Values indicate the estimated mean plume velocity. (b) Values 772 

indicate one half of the growth rate of the longitudinal variance with time (c) Values 773 

indicate one half of growth rate of the longitudinal variance with the mean travel distance. 774 

Under the assumption of a uniform flow field these values correspond to the macroscopic 775 

longitudinal dispersivity.  (d) Longitudinal displacement of a dual-domain single rate mass 776 

transfer model (DDM) in which the ratio of mobile to total porosity is equal to the 777 

volumetric fraction of HCG. Values indicate calibrated values for the mass transfer rate 778 

coefficient (see text for explanation).  779 
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 781 

Figure 6. (a) One equally probable realization of the simulated spatial distribution of 782 

lithofacies shown in a cross section oriented parallel to the main flow direction and 783 

crossing through the injection site and three boreholes. Location of borehole SS07 is 784 

projected. (b) Corresponding log10(K) field [m/d]. (c) Evolution of the simulated plume 785 

front (C = 2pCi/ml) with time.  786 
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 787 

Figure 7. Example of frequency distribution of the generated K fields. The distributions of 788 

the K measurements using the impeller flowmeter (Flm) and direct-push injection logger 789 

(DPIL) are also shown. The vertical dash-dot lines indicate the mean of the two 790 

distributions. Flowmeter measurements data from Rehfeldt et al. [1992]. The DPIL data 791 

distribution was estimated by assuming a lognormal distribution with a geometric mean of 792 

8.9×10-6 m/s and a variance of natural log-transformed K values of 6.6 [Table 1in Bowling  793 

et al., 2012]. The upper limit of the DPIL instrument is about 60 m/d [Bowling  et al., 794 

2012; Dogan et al., 2014].   795 
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 797 

Figure 8. Observed and simulated longitudinal mass distributions of the tritium plume. 798 

Simulated profiles were calculated with a dual-domain single rate mass transfer model in 799 

which the ratio of mobile to total porosity is equal to the volumetric fraction of HCG. 800 

Values for the mass transfer rate coefficient (see Figure 5d) were estimated by calibration 801 

with a trial-and-error approach.    802 


