Early Holocene palaeoseasonality inferred from the stable isotope composition of *Unio* shells from Çatalhöyük, Turkey

Jonathan P. Lewis, Melanie J. Leng, Jonathan R. Dean, Arkadiusz Marciniak, Daniella E. Bar Yosef Mayer, Xiaohong Wu

1 Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Leicestershire, UK, LE11 3TU.
2 NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham, UK, NG12 5GG.
3 Centre for Environmental Geochemistry, University of Nottingham, Nottingham, UK, NG7 2RD.
4 Institute of Prehistory, Adam Mickiewicz University of Poznań, św, Marcin 78, 61-809 Poznań, Poland.
5 The Steinhardt Museum of Natural History and Institute of Archaeology, Tel Aviv University, Tel Aviv 69978, Israel.
6 Peabody Museum, Harvard University, Cambridge, MA 02138, USA.
7 School of Archaeology and Museology, Peking University, Beijing, 100871, China

Abstract

Seasonal δ^{13}C and δ^{18}O data are presented from 14 *Unio* subfossil shells unearthed at the archaeological site of Çatalhöyük in central Turkey, spanning the occupation period ca. 9,150-8,000 cal. yrs BP. The shells likely lived in the small lakes/wetlands around the site before being gathered and taken to Çatalhöyük. Wet-dry seasonal cycles are clearly apparent in the δ^{18}O$_{\text{shell}}$ profiles with low winter values reflecting winter precipitation and high δ^{18}O in the summer resulting from evaporation. The most striking trend in the δ^{18}O data is the drop in maximum summer δ^{18}O ca. 8,300 yrs BP, which we infer as indicating lower summer evaporation and hence a reduction in seasonality. Previous palaeoclimate records from the area have suggested cooler and more arid conditions, with reduced precipitation, around this time. While the drop in summer δ^{18}O values could be due to reduced summer

*Corresponding author, J.P.Lewis@lboro.ac.uk
temperatures reducing summer evaporation, but there was little change in winter $\delta^{18}O$, perhaps suggesting winter growth cessation or reduced influence of winter climate change on $\delta^{18}O$. This shift in seasonal climate could be linked to solar-forced climate change beginning ca. 8,600 yrs BP, and enhanced by the regional expression of the 8.2k event. Changing water balance over the occupation period is likely an important contributory factor behind observed cultural changes at Çatalhöyük in the Late Neolithic/Early Chalcolithic period. Our results might be considered to support the fission-fusion farming hypothesis as we provide additional evidence for wet winter/early spring conditions during the Early Holocene which likely caused flooding of the Çarşamba Fan. The changing water balance after ca. 8,300 yrs BP (i.e. reduced seasonality and potentially reduced local summer evaporation) is also coincidental with the proposed end of this farming system due to multi-decadal drought.

Key words: Çatalhöyük, Konya, Unio, seasonal, palaeoclimate, stable isotopes, Neolithic, Holocene

Introduction

The world famous early Holocene settlement of Çatalhöyük in the western Konya basin of south central Turkey is one of the oldest and best studied Neolithic sites in the world, having been first excavated in the 1960s, an operation which resumed in 1993 and continues until present day (e.g. Mellaart, 1962; Hodder, 2006, 2007, 2013). It is also one of the largest Early Neolithic sites, with an area of ~34 acres and an estimated population of up to 8,000 people at its peak (Cessford, 2005) and one of the most complex sites in terms of art and symbolic expression (i.e. many wall paintings, wall reliefs, sculptures and installations; e.g. Hodder, 1999, 2006 and references therein). Archaeological evidence suggests that humans settled at Çatalhöyük for over 1000 years between 9,150-7,950 cal. yrs BP, occupying the eastern mound for the majority of this period, prior to abandonment around 8,200 cal. yrs BP (Cessford et al., 2005; Marciniai and Czerniak, 2007; Bayliss et al., 2015; Marciniai et al., 2015), and subsequent settling of the western mound, ca. 150 m away. The reasons behind this abandonment remain uncertain, but have been hypothesised to be a response to seasonal climate variations, which might have altered the local landscape, for example river avulsion and changing erosion/deposition centres (e.g. Marciniai and Czerniak, 2007; Biehl and Rosenstock, 2009; Roberts and Rosen, 2009). The abandonment broadly coincides with the widespread 8.2k event (Alley et al., 1997; Rohling and Pälike, 2005; Thomas et al., 2007), which manifests itself as a short-term cold, dry event in the Eastern Mediterranean (Rossignol-Strick, 1995; Bar-Matthews et al., 1999; Ariztégui et al., 2000; Rohling et al., 2002; Wenninger et al., 2006; Pross et al., 2009; Göktürk et al., 2011).

Climate records from the Konya Basin and surrounding area (south central Turkey) suggest that early Holocene climate was wetter than at present (Leng et al., 1999; Roberts et al., 1999; Roberts et al., 2001; Jones et al., 2002; Eastwood et al., 2007; Jones et al., 2007; Roberts et al., 2008; Göktürk et al., 2011; Dean et al., 2015), with a shift to long-term drier conditions occurring much later, somewhere between 6,500 cal. yrs BP (Roberts et al., 2001) and 4,000 cal. yrs BP (Pustovoytov et al., 2007). Estimations of palaeo-precipitation via an isotope mass balance model from the maar lake Eski Acıgöl suggest ~20% higher levels of rainfall in the early Holocene than in recent millennia (Jones et al., 2007), with a Mediterranean-type climate operating throughout (i.e. the majority of rain falling in the winter/spring, followed by dry summers; e.g. Wick et al., 2003; Jones et al., 2006; Kotthoff et
al., 2008a; Peyron et al., 2011; Orland et al., 2012; Dean et al., 2015). However, super-
imposed over this general millennial-scale trend are wet-dry centennial-scale oscillations
(e.g. Eastwood et al., 2007; Orland et al., 2012; Dean et al., 2015) and related seasonal
climate variations, which might have altered the local landscape and forced change in early
societies living in the Konya Basin.

At the societal level, seasonal variations in climate might have as great, or even greater
impact as large scale shifts in climate (e.g. Buckland et al., 1996; Jones and Kennett, 1999;
deMenocal, 2001; Cook et al., 2004; Patterson et al., 2010; Büntgen et al., 2011; Wang et al.,
2011). It has been proposed that the inhabitants of Çatalhöyük adopted a fission-fusion
farming model based around the seasonal climate cycle of the region (Roberts and Rosen,
2009). During the wet season (winter and early spring), parts of the land immediately
surrounding Çatalhöyük were likely flooded by tributaries of the Çarşamba and May Rivers
and subsequently any crops sown in autumn around the site would have been damaged
(Roberts and Rosen, 2009). Therefore, Roberts and Rosen (2009) infer that most cereal
Crops would have been grown on the dryland soils, away from the main site (perhaps up to
13 km distant) carried out by “task groups”, thus creating a pattern of nucleated settlement
during spring/early summer. Later in the year, after the alluvial and marl plain had dried out
(in the dry season) and the Çarşamba River had returned to its main channel (to the west of
Çatalhöyük) these task groups would have returned to the main site. It has been
hypothesised that the phase of nucleated settlement ended when river flooding ceased due
to drier conditions and multi decadal drought between 8,300 to 8,100 cal. yrs BP (Roberts
and Rosen, 2009) associated with the 8.2k event (occurring between 8,247-8,086 yrs BP;
Alley and Ágústdóttir, 2005; Thomas et al., 2007), after which the larger ‘east mound’
appears to have been abandoned.

Evidence for seasonal flooding is based on sedimentary evidence and regional climate data.
The sediments from this time are of lower alluvial “backswamp clays and silts” covering
much the Çarşamba alluvial fan, followed by a transition to buff and reddish coloured
oxidised sediments indicative of drier conditions (Roberts et al., 1999). As indicated above,
regional climate data suggests substantially wetter conditions in the early Holocene (e.g.
Leng et al., 1999; Roberts et al., 1999; Roberts et al., 2001; Jones et al., 2002; Eastwood et
al., 2007; Jones et al., 2007; Roberts et al., 2008; Göktürk et al., 2011; Dean et al., 2015),
whilst settlement patterns indicate the presence of only a single large site during the Early
Pottery Neolithic to Late Neolithic. This is compared to several smaller sites existing in the
preceding Aceramic Neolithic and succeeding Chalcolithic periods. However, the theory of
flooding has been widely contested. An alternative is that the temporal and spatial
distribution of backswamp silt/clay is exaggerated and that the buff-red oxidised sediments
occur earlier (i.e. during the Neolithic) and are more widespread in other localities near to the
site (Doherty, 2013) than suggested by the sites incorporated in the Konya Basin
Palaeoenvironmental Research Program (KOPAL, Roberts et al., 1999). Bogaard et al.
(2013) also contest this proposition and Asouti (2009) rejects climate change as a cause of
the abandonment. Asouti (2009) highlights the lack of unambiguous evidence for detrimental
societal impacts associated with the 8.2k event and suggests there was continuity of
practices between inhabitants of both settlements. In addition, Marciniak et al. (2015) have
observed that the occupation of the mound around that time was cut short and followed by a
 crisis that manifested in the demise of solid dwelling structures which were replaced by light
shelters and open space.
To date, climate change remains poorly understood over the settlement phase at Çatalhöyük. Previous studies either lack the temporal resolution (e.g. Eski Acıgöl; Roberts et al., 2001; Jones et al., 2007) to study seasonal-scale climate variation and short-term wet-dry oscillations (such as the 8.2k event), or alternatively suffer from a sedimentary hiatus during the early Holocene (i.e. between 9,500-6,500 BP; Leng et al., 1999; Roberts et al., 1999). Following on from a pilot study by Bar-Yosef Mayer et al. (2012), this study attempts to address this paucity of data by analysing seasonal variations in $\delta^{13}C$ and $\delta^{18}O$ in subfossil *Unio mancus eucirrus* (a species of freshwater mussels) shells from Çatalhöyük, spanning the entire occupation phase of the site (9,150-8,000 cal. yrs BP). The pilot dataset is extended here (from 4 to 14 shells) in order to build up a more comprehensive record of seasonal climate variation over the study period. In semi-arid environments, $\delta^{18}O$ in freshwater mollusc shells tend to record local climate changes, particularly precipitation, evaporation and/or temperature of the ambient water, whilst $\delta^{15}C$ reflects the source of carbon utilised in shell growth (i.e. direct uptake from ambient water and from dietary intake) (e.g. Keith et al., 1964; Fritz and Poplawski, 1974; Grossman and Ku, 1986; Tanaka et al., 1986; Dettman et al., 1999; McConnaughey and Gillikin, 2008; Leng and Lewis, in press and references therein). Preliminary analyses have already demonstrated that strong seasonal variation is apparent in *Unio* shells from Çatalhöyük (Bar-Yosef Mayer et al., 2012), with low $\delta^{18}O$ in the winter months and increased $\delta^{18}O$ during the summer months, reflecting greater evaporation. The extended isotope dataset presented here is discussed in relation to existing regional climate data (including precipitation, evaporation, wind/storminess and temperature) and archaeological change.

Study site

The Neolithic site of Çatalhöyük (Hodder, 2007) is situated in the western Konya Basin, south central Turkey (Figure 1) on the gentle slopes of the alluvial and marl fan delta of the proto-Çarşamba and May Rivers (Doherty, 2013; Roberts, 2015). The Konya Basin was formerly covered by a large lake (Erol, 1978; Roberts et al., 1979) due to wetter climate conditions in the late Pleistocene (e.g. Roberts et al., 2008). Major shrinkage occurred before 18,000 yrs BP (Cohen, 1970; Roberts, 1982) and essentially dried up before the start of the Holocene (except for rivers and small, shallow lakes or wetlands in some depressions during the first half of the Holocene; Roberts et al., 1999; Doherty, 2013). By the time of first settlement, palaeoenvironmental records suggest that an oak-conifer forest dominated the uplands. Higher precipitation and subsequent increased drainage caused the development of seasonal wetlands around the site of Çatalhöyük and build-up of the alluvial fan of the Çarşamba River (e.g. Rosen and Roberts, 2006). However, despite its close proximity to the Çarşamba river, Çatalhöyük itself was never directly situated along a riverbank or lake shoreline (Gümüş and Bar-Yosef Mayer, 2013). Therefore, the molluscan fauna present must have originated from local freshwater sites and been taken to Çatalhöyük by humans. As a result, seasonal climate inferences must be considered as local to regional rather than strictly site-specific.

Çatalhöyük lies ~1000 m above sea level on Late Quaternary alluvium deposits, with lake marl deposits to the north and east (Roberts et al., 1996). The basin is encircled by uplands with the Taurus Mountains to the south and west, providing a barrier for precipitation and leading to a strong precipitation gradient from >800 mm per year along the southern coast of Turkey to <400 mm in the Konya basin (Türkeş, 2003). The modern climate of the area is defined as continental Mediterranean with cool, wet springs and winters, and dry, hot
summers (Türkeş, 1996; Kutiel and Türkeş, 2005). Annual precipitation in Konya averaged 324 mm between 1960-2012; December and May are the wettest months, while July to September see only 7% of the total annual precipitation (TSMS, 2013). The hottest months are July and August when temperatures average +23.3°C, while December to February temperatures average +0.9°C (TSMS, 2013) (Figure 2). The strong seasonality in precipitation is caused by the alternating influence of subtropical high pressure in the summer and westerly depressions originating mainly from the Atlantic and Mediterranean in the rest of the year (Türkeş et al., 2009). This strong seasonality is also reflected by precipitation δ¹⁸O data from Ankara (1963-2009), with a range from an average of −3.72‰ in July to −11.18‰ in January (IAEA/WMO, 2013).

Methods and materials

The Unio mancus eucirrus (Bourguignat, 1857) shells (Henk K. Mienis, personal communication) analysed in this study were collected during excavation (1993 to 2011), either being handpicked or found in the sieved sediments. Unio shells are abundant in middens and other archaeological contexts from Çatalhöyük (Bar-Yosef Mayer, 2013), and their suitability as palaeo-environmental indicators of seasonal scale change has already been demonstrated by Bar-Yosef Mayer et al. (2012), though limited to some degree by the availability of whole valves (see below). Unio species have a life span of several years and exhibit seasonal growth patterns, with maximum growth usually occurring in the warmest months (April to September in specimens observed in the UK; Bar-Yosef Mayer et al., 2012) and is dependent on temperature, food supply, water current and water chemistry (Pennak, 1989; Aldridge, 1999; Dettman et al., 1999). Unio growth ceases below certain temperature thresholds (e.g. Negus, 1966; Goewert et al., 2007), meaning that hiatuses often occur during winter (e.g. Versteegh et al., 2011; Bar-Yosef Mayer et al., 2012). The specific temperature at which growth ceases is species dependent. However, due to the lack of understanding of the distribution, habitat and growth preferences for Unio mancus eucirrus, the temperature at which growth ceases remains unknown (e.g. Graf and Cummings, 2007).

Unio species burrow into substrate with their posterior margins exposed. Consistent with many other aquatic bivalves, Unionidae obtain oxygen by exchange with ambient water pumped through their incurrent aperture and carbon (food) through filtering (e.g. Wilbur and Yonge, 1964; Vaughn and Hakenkamp, 2001). Utilisation of oxygen and carbon by Unio molluscs from the ambient water and organic carbon for shell synthesis means geochemical information (including δ¹⁸O and δ¹³C) is preserved within their shells (e.g. Dettman et al., 1999; Goewert et al., 2007). This information can be used to infer palaeo-diet, carbon source and past climatic/environmental change from the local area (e.g. Aldridge and Horne, 1998; Versteegh et al., 2011; Bar-Yosef Mayer et al., 2012; Çakırlar and Şeşen, 2013). For a more detailed review of the growth and ecology of Unio species, see Aldridge (1999), Dettman et al. (1999), Bar-Yosef Mayer et al. (2012) and references therein.

Because the shells used in this study were collected by the inhabitants of Çatalhöyük and found in archaeological remains, rather than as samples from the places that they originally lived, we cannot be sure of the original habitat. However, since it is known that there were no large lakes left around Çatalhöyük by the early Holocene (Roberts et al., 1999; Doherty, 2013), we suggest the shells lived in local small lakes/wetlands, and were collected and taken to Çatalhöyük for both dietary and production purposes (i.e. used to make ornaments, artefacts and as a component in wall plaster; Matthews, 2005; Bar-Yosef Mayer, 2013).
Unfortunately, breakage and dissolution of *Unio* shells, likely due to both cultural usage and post-depositional processes, has meant that collection of whole shells for analysis has been problematic. As material was limited, all shells deemed suitable for drilling and isotopic analysis were included. *Unio* shells were deemed suitable if their (outer carbonate) exposed layer was intact and there was continuous shell from the umbo to the ventral margin. All selected shells matched this criteria, except one (shell 5, Table 1), which was fragmented and missing part of its upper surface.

Drilling and analytical methods remain consistent with Bar-Yosef Mayer et al. (2012). Briefly, after brushing under deionised water to remove any extraneous matter, each shell was dried before being sampled with a microdrill along its exterior from the umbo to the ventral margin (~0.5 mm sampling resolution, deemed a sufficient resolution to capture interannual trends, following previous *Unio* analyses (Versteegh et al., 2011; Bar-Yosef Mayer et al., 2012; Çakırlar and Şeşen, 2013)). Approximately 100 μg of material (as a shell powder) was analysed using a GV IsoPrime mass spectrometer with multiprep system at the NERC Isotope Geosciences Facilities. Precision was within 0.1‰ for both carbon (\(\delta^{13}C\)) and oxygen (\(\delta^{18}O\)) ratios.

Results

Details of the shells used in this study are provided in Table 1, including estimated age (archaeological \(^{14}C\) dates), stratigraphic origin, archaeological context and related cultural period (discussed below), together with measurements and analysis statistics (i.e. shell height, number of samples analysed, estimated number of annual cycles and \(\delta^{13}C\) vs. \(\delta^{18}O\) regression statistics). \(\delta^{13}C\) and \(\delta^{18}O\) profiles for each shell are provided in Figure 3 (in chronological order), with associated shell-isotope metrics (i.e. range and average, \(\delta^{13}C\) vs. \(\delta^{18}O\)) displayed in Figure 4. With the exception of *Unio* shell 17037, all shells offer at least two annual cycles, with several containing three cycles (Table 1; Figure 3).

Chronological control of the Çatalhöyük shell sequence

Chronological control is based on the sequence stratigraphy developed over time (via multiple \(^{14}C\) ages from articulated bones and charred plant remains) for the archaeological deposits and levels excavated at Çatalhöyük (Cessford et al., 2005; Bayliss et al., 2007; Bronk Ramsey et al., 2009; Bayliss et al., 2015; Marciniak et al., 2015; Table 1). Further chronological details for the Çatalhöyük site are available in annual research reports available from http://www.Catalhoyuk.com/archive_reports/. Eight of the *Unio* shells analysed in this study were also directly \(^{14}C\) dated (see supplementary data), but were not used for chronological control due to the unrealistic ages generated.

\(\delta^{13}C\) values in the sub-fossil Unio shells

Consistent with the previous findings (Bar-Yosef Mayer et al., 2012) almost all \(\delta^{13}C\) in the extended fossil dataset fall between −12‰ to −5‰. For most shells the \(\delta^{13}C\) data manifests as weakly sinusoidal cycles, often at a similar wavelength to the \(\delta^{18}O\) data. Individual cycles likely represent a single year, but the magnitude of change suggests very little seasonal/annual variation in carbon source.

\(\delta^{18}O\) values in the sub-fossil Unio shells
In the extended fossil dataset, $\delta^{18}O$ range from ~-9.7% to $+7.4\%$. The $\delta^{18}O$ data generally exhibit a classic saw tooth pattern, marked by gradual increasing $\delta^{18}O$, followed by an abrupt decrease to lower values and likely represent an annual cycle. These cycles are distinctly more pronounced in the older shells (shells 1-7, Figure 3; ca. 9,150-8,300 cal. yrs BP). Cycles become less sinusoidal in the shells in the Late Neolithic (after shell 7), with lower magnitude shifts between maximum and minimum values. Additionally, only a few shells exhibit any distinct sharp decline from maximum to low $\delta^{18}O$ (e.g. 17809; 17208; Figure 3) in the late Neolithic and early Chalcolithic (shells 8 to 14; Figure 3). As all analysed shells are likely a similar age (2/3 years old according to the isotope data; Figure 3) and generally a similar size (Table 1), we deem physiological differences (e.g. Schöne, 2008) alone unlikely to account for the changing patterns evident in the isotope data between specimens (Figure 3 and 4).

This reduction in contrast between maximum and minimum $\delta^{18}O$ in the latest part of the Neolithic period is clearly demonstrated by the shell-isotope metrics (Figure 4). Particularly, the difference in range of maximum and minimum $\delta^{18}O$ (average range = $11\%_o$) during the Early Pottery Neolithic and first part of the Late Neolithic (shells 1-7; Table 1, Figure 4), compared to an average of $4.3\%_o$ (shells 8-12) in the Late Neolithic. Minimum $\delta^{18}O$ are relatively stable over the study period, generally falling between $-6\%_o$ to $-8.5\%_o$ (Figure 4), though perhaps with a very minor increase in minimum values ($\delta^{18}O$ of ~$-1.2\%_o$) in the Late Neolithic (shells 8-12). Maximum $\delta^{18}O$ range from ~$-2\%_o$ to $+7.5\%_o$ (average $+3.4\%_o$) in shells 1-7 (Table 1, Figure 4), compared to a range of ~$-4.6\%_o$ to $+0.4\%_o$ (average $-3.0\%_o$) in the second part of the Late Neolithic (shell 8-12). Only two shells exist from the Early Chalcolithic period. The older Unio shell (17208) suggests a large contrast between minimum and maximum $\delta^{18}O$ (range of $12.8\%_o$) similar in magnitude to the earlier shells (i.e. shells 1-7; Table 1, Figure 4). The later shell exhibits a narrower range (4.1\%), more like the Late Neolithic (shells 8-12) in the TP area of the East mound.

$\delta^{13}C$ vs. $\delta^{18}O$

$\delta^{13}C$ vs. $\delta^{18}O$ were compared for each shell and evaluated using regression analysis (Table 1 and Figure 4). Several individual shells appear to exhibit some covariation between $\delta^{13}C$ vs. $\delta^{18}O$ (e.g. 5291, 1563, 12318, 17208; Figure 3), though the regression analyses largely suggest that in most cases only very weak relationships exist between $\delta^{13}C$ and $\delta^{18}O$ ($r\leq0.5$, Table 1), often below the level of significance ($p<0.01$; Figure 4). However, this might be partly explained by variable $\delta^{13}C/\delta^{18}O$ correlation along single shell profiles (i.e. some shells exhibit both synchronous and anti-phase sections along a single profile; Figure 4).

Discussion

When dealing with shells from archaeological material for palaeoenvironmental reconstruction, there is inevitable concern as to how these shells were deposited and subsequently whether their palaeoenvironmental record incorporated is directly related to the archaeological phase or site from which they were excavated. This is exaggerated at a site like Çatalhöyük, where shells (including *Unio mancus-eucirrus*) were both consumed (collected live) and used in both ornamentation and construction, therefore potentially being incorporated into the sequence by other means. This might include collection of empty dead shells from the banks of waterbodies or even traded into the site from other communities, and therefore the palaeoenvironmental record might be unrelated to their archaeological
deposit. Whilst we acknowledge it is difficult to entirely overcome these concerns, we argue
that the shells used in this study are related to the archaeological deposits from which they
originate. In the lowermost levels of the site, a shell midden appears to exist containing a
very high abundance of shells. In these layers we can be more confident that the shells
(including the analysed specimens shells 1-3; Table 1) were collected live, as a food source,
and afterwards the shells discarded in a common place.

In the upper levels shell abundance drops considerably. This might be due to the fact that
shellfish were first consumed, then their shells were used secondarily for the production of
artefacts and for use in construction material or for making plaster (Bar-Yosef Mayer 2013).
There is no way of ascertaining either live or dead collection in this section and assessment
of the taphonomy of the shells cannot provide any further information here as all breakages
date from individual shells to determine when they alive/dead, due to the likely hard water
effects causing erroneous reservoir offsets (see Supplementary Data, Table 1). Large
reservoir offsets from aquatic shell material are likely in carbonate catchments such as
Çatalhöyük (soft limestone/marl, overlay by alluvial deposits; Roberts, 1982; Boyer et al.,
2006), due to the incorporation of ancient carbon from the catchment and/or groundwater.
Reservoir offsets can be extremely large (commonly over >1,000 yrs; e.g. Geyh et al., 1998;
Lanting and van der Plicht, 1998; Culleton, 2006; Keaveney and Reimer, 2012) and can also
exhibit substantial local variation (e.g. Barnekow et al., 1998; Keaveney and Reimer, 2012;
Lougheed et al., 2013; Philippson and Heinemeier, 2013). Unfortunately, the ‘hard water
effect’ has not been studied in Konya basin water systems to date, meaning no reliable
correction factor can be applied. Therefore, for the upper levels we can only assume that
Unio likely remained a food source and therefore, that live specimens must have been
collected. We also argue that if the analysed shells were completely randomly collected for
ornamentation and construction, then the results might be expected to be more random,
whereas we actually see a systematic change in δ¹⁸O patterns over the occupation phase
(see Figure 3 and 4).

Greater analysis and understanding of the microstructural layers and drilling at much finer
resolution might have provided us with more detailed annual cycles and perhaps in some
cases enabled us to better assess whether there was an actual growth stop, or just where
very slow growth occurred. However, we are confident that drilling at ~0.5mm resolution is
sufficient to capture much of the annual variation (over multiple cycles) with individuals and
that the shifts in seasonality between shells are also detectable at this sampling resolution
(as demonstrated by the isotope profiles in Figure 3 and shell isotope metric data in Figure
4).

Interpretation of the extended isotope dataset:

The present study builds on the pilot study of from Bay-Yosef Mayer et al. (2012) by
markedly expanding the dataset and placing more focus on the latter stages of occupation
on the East Mound, in order produce a detailed temporal record of changes in seasonal
water balance over the Çatalhöyük occupation phase (9,150-8,000 yrs BP). The shell- δ¹⁸O
data records changes in water balances (discussed below) over the life span of the
specimens, thus making isotope-growth records of sub-fossil Unio shells an important (and
likely, the only) proxy for establishing seasonal climate records from this important
archaeological site. However, in the pilot only 4 sub-fossil shells were analysed (indicated in
Figure 3), meaning that the dataset could only provide spot estimates of seasonality and was insufficient to reconstruct temporal changes in seasonality over the occupation period. The addition of eight more shells from various archaeological layers, spread out over the entire occupation phase, has enabled us to explore the evolution of seasonal climate and the timing for comparison with regional palaeoclimate records and the Çatalhöyük archaeological record. Subsequently we have been able to infer possible links between the archaeological record and local to regional climate change (i.e. millennial scale cooling and the 8.2k event) at Çatalhöyük.

As the Unio mancus eucirrus specimens analysed in this study were likely collected from nearby freshwater sources including rivers and small lakes, then the δ¹⁸O signal is likely local to regional. We cannot determine specifically where these shells come from (i.e. lake or river), as Unio mancus eucirrus can live in both environments. However, during this period of active river avulsion and seasonal flooding (e.g. Roberts and Rosen, 2009), small lakes and river channels within the region were likely continuously evolving. These local waterbodies would have been largely fed by water from the Çarşamba River as it floods across the alluvial fan delta during winter/spring. This is then followed by a season of evaporation during the summer months as these local water bodies gradually retract and the river flow returns to the main river channel. As the Çatalhöyük site was never situated directly on the banks of a river or lake (Gümüş and Bar-Yosef Mayer, 2013), then it is likely that shellfish were collected from a variety of water bodies across the plain (perhaps even including the main channel of Çarşamba River itself), all fed by same hydrological system, thus recording a local to regional climate signal. From a number of the analysed specimens the isotope data appear to suggest autumn collection (Figure 3; Bar-Yosef Mayer et al., 2012), though the data presented here are too limited to make any firm conclusions. An accurate determination of time of collection (or season of death) would require sequential analyses of the last few weeks/months of many Unio specimens (i.e. n=>12), each with an intact ventral margin (e.g. Shackleton, 1973; Mannino et al., 2003; Hallmann et al., 2013).

δ¹³C

The range in δ¹³C (between −12‰ to −5‰) is interpreted as the Unio shells utilising a mixed carbon pool of both dissolved inorganic carbon, directly from the ambient water and dietary organic carbon (Fritz and Poplawski, 1974), primarily particulate algae and plant debris (Bar-Yosef Mayer et al., 2012). Ingestion of the inorganic dissolved carbon (yielding high δ¹³C of between −3 to +3‰; Leng and Marshall, 2004) is inferred by the relatively high δ¹³C exhibited by all shells, which are above the values expected if carbon was utilised only from the dietary particulate algae and plant debris, as both of these components exhibit low δ¹³C (between −10‰ to −30‰; Meyers and Teranes, 2001). Similar δ¹³C of all fossil shells suggest that source carbon (i.e. diet) has not changed dramatically over the study period (Bar-Yosef Mayer et al., 2012). There is also little change in seasonal contrast of δ¹³C between shells (Figure 4), suggesting that summer to winter carbon source and utilisation has remained relatively consistent over the study period. However, slight fluctuations in absolute values (i.e. minimum, maximum and average; Figure 4) are apparent, likely reflecting minor changes in the local environment.

δ¹⁸O
As with Bar-Yosef Mayer et al. (2012), we suggest that the major driver of $\delta^{18}O$ in the shells is the precipitation/evaporation ratio of the water from which they formed (water balance). $\delta^{18}O_{\text{shell}}$ should be a function of the $\delta^{18}O$ of the water in which the shells grew and temperature of the water in which the shell grew (Leng and Marshall, 2004). However, temperature can be ruled out as the major driver of $\delta^{18}O$ change in these shells because of the size of the shifts. In some of the shells, there is >10‰ difference between maximum and minimum values, and for temperature alone to account for this, there would have to be a >40°C seasonal temperature variability, based on the palaeotemperature equation of Grossman and Ku (1986) during the growth period of the shell. Based on the modern meteorological data presented above (Figure 2), this is unlikely to have been the case. Furthermore, other regional climate records show colder conditions around 8.2ka (Rossignol-Strick, 1995; Bar-Matthews et al., 1999; Ariztegui et al., 2000; Rohling et al., 2002; Wenninger et al., 2006; Pross et al., 2009; Göktürk et al., 2011). During colder summers, summer $\delta^{18}O_{\text{shell}}$ would be expected to be higher in shells 8-12 (Figure 3 and 4) if temperature was the main driver of $\delta^{18}O$, not lower as we see in the Çatalhöyük $\delta^{18}O$ data, again supporting the argument that precipitation and evaporative (P;E) effects rather than temperature is main driver. Therefore, $\delta^{18}O_{\text{shell}}$ is likely related more to $\delta^{18}O$ of the water in which the shells grew, and given the size of the shifts and the fact it is thought any water bodies around Çatalhöyük where the shells might have lived were likely to have been small (Roberts et al., 1999; Doherty, 2013) and subject to evaporative effects, changes in water balance are therefore likely to be the major driver of $\delta^{18}O_{\text{lakewater}}$, and therefore $\delta^{18}O_{\text{shell}}$. Other controls on the shell $\delta^{18}O$ composition such as temperature and groundwater contributions might have been responsible for very minor shifts in the $\delta^{18}O$, but likely far outweighed by more dominant P;E effects. Similarly, there is also some evidence for changes in wind patterns and rainfall trajectories around 8.2ka (Dean et al., 2015), but again this could only account for very minor change in $\delta^{18}O$, and not the magnitude of change evident in this dataset.

The classic saw tooth pattern evident in many shells likely reflects the annual climate cycle with gradually rising $\delta^{18}O$ during late spring/summer due to evaporation, followed by a sharp shift to lower $\delta^{18}O$ during the winter, most likely due to enhanced precipitation (cf. Versteegh et al., 2011; Bar-Yosef Mayer et al., 2012 and see above). In the latest part of the Neolithic (after ca. 8,300 cal. yrs BP), a reduction in seasonality is inferred, characterised by a distinct drop in maximum summer values, but very little change in winter minimum values across the whole subfossil shell dataset. This suggests a change in summer climate, potentially indicating reduced summer evaporation (discussed in more detail below). Markedly different annual variability is displayed in the $\delta^{18}O$ data from the two shells corresponding to the Chalaolithic period (i.e. seasonal $\delta^{18}O$ range of 12.8‰ in the older (17208) compared to 4.1‰ in the younger (16918) shell; Figure 3). This might represent temporal change, perhaps unstable, fluctuating climate at this time, though any interpretation of seasonality must be treated with caution due the scarcity of data from the Chalcolithic period.

The lack of change in winter $\delta^{18}O$ over the study period (i.e. between −6‰ to −8.5‰; Figure 4) suggests relatively stable, wet winters. However, the very minor increase in minimum winter values ($\delta^{18}O$ of −1-2‰) in the Late Neolithic, might infer slightly drier winters at this time, consistent with the shift towards more arid conditions recorded in regional palaeoclimate records (Bar-Matthews et al., 2003; Eastwood et al., 2007; Jones et al., 2007;
Dean et al., 2015). Alternatively, winter growth cessation below a certain temperature threshold might mean that winter conditions cannot be deduced from the δ^{18}O data.

δ^{18}O vs. δ^{13}C

The δ^{18}O and δ^{13}C profiles for each shell were compared to assess linkages between molluscan carbon source (particularly diet) and seasonal climate variation over the study period. Covariation is apparent in some shells (i.e. 5291, 1563, 12318, 17208; Figure 2 and 3) suggesting that seasonal climate change influences carbon source to some degree, but this relationship is ambiguous. Predominately, the data infers that in addition to seasonal climate variations, local, short lived factors must also be important for determining food source and carbon uptake in Unio shells. This is perhaps further supported by the lack of any longer-term trend when shell δ^{13}C/ δ^{18}O are plotted in chronological order (Figure 3 and 4).

Early Holocene climate change at Çatalhöyük

We show low winter δ^{18}O in all shells (average minimum of –8.5‰; Figure 3 and 4), which we take to suggest wet winters (e.g. Bar-Yosef Mayer et al., 2012), followed by rising δ^{18}O (up to the summer maxima) indicative of dry, hot summers. The big cyclical shifts seen in the shells indicate that the climate in the early Holocene at Çatalhöyük was highly seasonal, as it is in the present day. There is a distinct drop in summer δ^{18}O shortly after ca. 8,300 cal. yrs BP (Figure 4 and 5). This occurs around the same time as millennial-scale cooling across the northern hemisphere that began around 8,600 yrs BP and lasted for 400-500 years (Rohling and Pälike, 2005 and references therein) and the later, more intense cold, dry 8.2k event (Alley et al., 1997; Rohling and Pälike, 2005; Thomas et al., 2007). A drop in temperatures could have led to less summer evaporation, which would account for the lower δ^{18}O recorded by the shells in the summer months. In contrast to the change in summer δ^{18}O after ca. 8,300 cal. yrs BP, winter δ^{18}O minima in the shells exhibit very little change (<1‰) over this period, despite regional climate records from Turkey and the wider region generally inferring drier conditions and intensified aridity between ca. 8,600-7,800 cal. yrs BP (e.g. Rohling and Pälike, 2005; Fleitmann et al., 2007; Kotthoff et al., 2008b; Geraga et al., 2010; Göktürk et al., 2011; Figure 5). As summer rainfall is thought to be low in the early Holocene in the Eastern Mediterranean (e.g. Wick et al., 2003; Turner et al., 2010), we speculate that a reduction in rainfall occurred during the winter/spring months, but is perhaps not picked up in the δ^{18}O data. This might be due to growth cessation occurring during the winter below a certain temperature threshold, hence the similar winter minima values exhibited many of the sub-fossil shells. Alternatively, changing precipitation values might have had little impact on the δ^{18}O of freshwater bodies in the Çatalhöyük region in the winter. This might be due to winter precipitation quickly recharging local water bodies after the summer dry season, meaning these water bodies have δ^{18}O close to the mean precipitation, even under periods of reduced rainfall (up to a threshold level, that perhaps wasn’t exceeded in the period around 8,300 cal. yrs BP).

Therefore, the reduction in seasonality that we infer after 8,300 cal. yrs BP was driven primarily by a reduction in summer δ^{18}O. This shift in seasonality occurs at the same time as there were shifts in other records. Many records from Turkey lack the temporal resolution to examine conditions at 8.2k (Eastwood et al., 2007; Roberts et al., 2011) or suffer from hiatuses (Leng et al., 1999; Roberts et al., 1999; Figure 1). However, a high resolution
record from the Sofular Cave in northern Turkey suggests drier conditions between 8,400 and 7,800 yrs BP (Figure 5) relative to the generally wetter period between 9,600 and 5,400 yrs BP, related to much stronger storms in winter due to either enhanced summer insolation associated with high sea surface temperatures or summer monsoon rains (Göktürk et al., 2011). Similarly, a new stable isotope and carbonate mineralogy record from Nar lake (central Turkey) records a dry period peaking around 8,200 yrs BP (Dean et al., 2015). In terms of the proposed cause of this increased dryness in Turkey at 8.2k, a significant amount of the precipitation that falls in central Turkey originates in the North Atlantic (Türkeş et al., 2009), so a reduction in cyclogenesis when it was cooler in the North Atlantic (such as at the time of the 8.2k event) could have reduced the frequency of Mediterranean storm tracks and reduced the precipitation in the region (Prasad et al., 2004; Rowe et al., 2012).

This pattern is replicated throughout much of the eastern and southern Mediterranean region (see Figure 5 and below), the Middle East and Arabia (Bar-Matthews et al., 1999; Fleitmann et al., 2003; Fleitmann et al., 2007; Verheyden et al., 2008) and into Africa (e.g. Gasse, 2000). For example, a number of records from the adjacent Aegean Sea and borderlands (e.g. Figure 5) infer a shift to cooler temperatures and/or drier conditions between ca. 8,600-8,000 yrs BP, with some records documenting longer term climate deterioration (e.g. Rohling et al., 2002; Kotthoff et al., 2008b; Marino et al., 2009), likely associated with centennial-scale cooling and solar modulation of climate (e.g. Rohling et al., 2002; Rohling and Pälike, 2005) and other records suggesting that this is more focussed around the 8.2k climatic anomaly (e.g. Kotthoff et al., 2008b; Pross et al., 2009). Cold, arid events generally recur on centennial timescales (e.g. 10,500, 9,500–9,000 and 8,000–7,800 yrs BP; Marino et al., 2009) and appear to correspond with increases in intensity of the Siberian High pressure system (as reflected in the GISP2 K+ record; Mayewski et al., 1997), believed to be an important driver of winter climate over the eastern Mediterranean region (Kotthoff et al., 2008b; Marino et al., 2009; Pross et al., 2009).

In summary, we infer here that there was a shift in seasonal climate (i.e. seemingly lower rates of summer evaporation) at Çatalhöyük around ca. 8,300 yrs BP (Figure 4 and 5), broadly synchronous with widespread climate change across the region. While it is difficult to establish the exact hydrology of the water bodies in which the shells lived, since they were collected and taken to Çatalhöyük, it is likely they grew in wetlands which had significantly different hydrologies to the lakes in the eastern Mediterranean from which previous isotope records have been published. This is likely to explain why we infer less evaporation in the summer around 8,200 yrs BP whereas other records from around the region infer drier conditions. However, the fact that changes seem to occur at the same time suggests that they could be responding to the same driver. A potential cause is related to the complex interplay of regional monsoon systems (African, Indian and Siberian) in response to long term centennial cooling between ca. 8,600-8,000 yrs BP, ultimately linked to solar forcing (Rohling and Pälike, 2005), later intensified by the large magnitude 8.2k event via climate system feedbacks stemming from the North Atlantic Ocean (Barber et al., 1999; Clark et al., 2001; Alley and Ágústdóttir, 2005; Overpeck and Cole, 2006; Born and Levermann, 2010).

Climate implications for human settlement at Çatalhöyük

Here we confirm a strong seasonal wet-dry early Holocene period at Çatalhöyük, which supports the fission-fusion farming hypothesis (outlined in the introduction) proposed by Roberts and Rosen (2009). Briefly, heavy rainfall in the winter/early spring caused flooding
of the Çarşamba fan, which forced crop growing in dryland soils distant from the main site (i.e. fission). Thus is followed by dry summers with intensive evaporation, which dried out the alluvial fan and enabled inhabitants to return to the main site in late summer (i.e. fusion). At the same time, this climate pattern would have enabled the growing of annual cereals in the vicinity of the site if flooding did not occur, or was restricted to a few channels, as proposed by Doherty (2013).

Between ca. 8,250-8,100 yrs BP, nucleated dispersal and the ‘fission-fusion’ farming system is thought to have ended due to multi-decadal drought (Roberts and Rosen, 2009), broadly coincidental (within 14C dating errors; less than 100 years for Çatalhöyük stratigraphic sequences following bayesian modeling; Marciniak et al., 2015) with the shift in seasonality in the Unio δ18O data presented here (i.e. beginning around 8,300 yrs BP; Figure 5). The inhabitants of Çatalhöyük could have already been subject to longer-term climate stress, which perhaps surpassed a threshold during the more severe conditions associated with the 8.2k event, forcing cultural change and adaptation (e.g. Wenninger et al., 2006; Roberts and Rosen, 2009). Whilst the resolution of the Unio isotope data presented here is far too coarse and the dating too imprecise to investigate seasonal conditions associated with the 8.2k event per se, the shells exhibiting the most reduced seasonality do date to the Late Neolithic, between ca. 8,300-8,100 cal. yrs BP according to the Çatalhöyük sequence stratigraphy (Figure 4 and 5). Thus, any farming system employed by the inhabitants of Çatalhöyük was closely connected to the climate of the region, and any change in climate is likely to have changed how agriculture could be practised around the site. Farming and cultural changes dating back to 8,200 cal. yrs BP have been observed at other Near East sites (e.g. Tell Sabi Abyad, Syria, Akkermans, 2010). However, as described by van der Horn (2015), extreme care must be taken deciphering climate-related impacts from anthropogenic activities and cultural development.

Overall, we argue that changing water balance (i.e. potentially reduced local summer evaporation post ca. 8,300 yrs BP) inferred from the shell δ18O data could be considered an important contributory factor behind observed cultural changes at Çatalhöyük in the Late Neolithic/Early Chalcolithic period. However, we acknowledge that other factors, including environmental (e.g. catastrophic earthquake; Marciniak et al., 2015), behavioural and socio-economic factors must also have played an important role, particularly concerning the short relocation distance (~150 m) to the west mound around 8,200 yrs BP.

Conclusions

δ18O data from Unio shells from Çatalhöyük record early Holocene seasonal changes in regional water balance, documenting a clear ‘saw-tooth’ pattern that we argue is due to dry, evaporative summers (increasing δ18O), and wet winters (rapid decline in δ18O, returning to ‘re-charged’ rainwater/groundwater values, prior to growth/cessation during the winter months). This supports previous work that has suggested a marked seasonal climate shift at Çatalhöyük in the early Holocene. The Unio shells indicate a reduction in seasonal contrast after ca. 8,300 yrs BP, mainly driven by a drop in summer δ18O, potentially caused by reduced summer evaporation in the local area. These changes coincide with widespread cooling (between 8,600-8,000 yrs BP), changes in the intensity of monsoon systems and the 8.2k event. For humans inhabiting the Çatalhöyük site and wider Konya basin, changing water balance seasonality and cooler climate might have caused long-term climate stress.
and therefore these should be must be considered potential contributory factors to observed cultural changes evident in the archaeological record.

Acknowledgements

Ewan Woodley and Carol Arrowsmith are thanked for the preparation of the shells and Hilary Sloane for the stable isotope analyses. Henk K. Mienis is thanked for mollusc identification. This work was undertaken with funding from the NERC Isotope Geosciences Facilities. We also thank Ian Hodder and the Çatalhöyük Research Project for enabling this study. The work in the upper levels at Çatalhöyük were financed by the Polish National Science Centre (decision DEC-2012/06/M/H3/00286).

Tables and Figures:

Table 1: Details of the Unio shells analysed in this study, including sample number, stratigraphic origin, cultural period, 14C age, δ^{13}C vs δ^{18}O regression statistics (see also text, Figure 4) and shell information (i.e. height, no. of samples, estimated no. of annual cycles).

Figure 1: A. Location of the study site Çatalhöyük (in the Konya Basin, south central Turkey) and others site mentioned in the text. B. Regional setting. C. Sub-fossil Unio mancus eucirrus (shell 1563) analysed in this study showing drilling pattern for isotope analyses along of the direction of growth.

Figure 2: Mean precipitation and temperature data (including mean maximum and minimum temperatures) for Konya, 1960-2012 (TSMS, 2013).

Figure 3: Temporal (i.e. interannual) profiles of δ^{13}C and δ^{18}O from all Unio shells analysed in this study (plotted in chronological sequence order; oldest shell at top to youngest at bottom). Isotope data are plotted against sample number (on x-axis), starting from the umbo (i.e. youngest part of the shell = 1) and moving away towards to the ventral margin. Dotted lines represent inferred maximum summer (July/August) evaporation and subsequently the number of summers represented in each shell. Potential growth stops are indicated with arrows. The shell ID numbers correspond to the excavation unit numbers in which the shell were found (see Table 1). Shells included in the pilot study (Bar-Yosef Mayer et al., 2012) are underlined.

Figure 4: δ^{13}C and δ^{18}O shell-isotope metrics ordered chronologically (from oldest on left to youngest on right, with archaeological divisions) including average, minimum, maximum (i.e. plot A for δ^{13}C and plot C for δ^{18}O) and range of values (i.e. plot B for δ^{13}C and plot D for δ^{18}O). δ^{13}C and δ^{18}O silhouettes based on smoothed (loess, 0.5 span) maximum and minimum values for fossil shells. Plot E illustrates regression statistics r (line graph) and r^2 (bar chart) for δ^{13}C vs. δ^{18}O for each shell. Black bars= statistically significant (p<0.01); grey bars not statistically significant (p>0.01); reference line added at 0.2. The sequence is divided into three cultural periods (i.e. EPN=Early Pottery Neolithic (Early Central Anatolia; ECA II), Late Neolithic (ECA III) and E. Chal.= Early Chalcolithic (ECA IV) using the CANeW system after Gérard (2002).
Figure 5: Comparison of δ¹⁸O range and standard deviation data for the subfossil *Unio* shells collected from Çatalhöyük (this study) with regional climate data (and event stratigraphy) for the Eastern Mediterranean Sea and the Middle East, and archaeological settlement and flooding history for the Çarşamba Fan (after Baird, 2005; Roberts and Rosen, 2009). A. Pollen-inferred summer and winter temperatures from Tenaghi Philippon (northeast Greece); B. Pollen-inferred annual precipitation from Tenaghi Philippon (all from Pross et al., 2009). C. δ¹⁸O from Qunf Cave in Oman (Fleitmann et al., 2003; Fleitmann et al., 2007). D. δ¹⁸O from Soreq Cave in Israel (Bar-Matthews et al., 1997); E. Foraminifera-inferred summer sea surface temperatures from the Aegean Sea (Marino et al., 2009). F. δ¹³C (200-year smooth) and ²³⁴U/²³⁸U from Sofular Cave in north Turkey (Göktürk et al., 2011). G. Range (in black) and standard deviation (in grey) of δ¹⁸O values of the *Unio* shells from Çatalhöyük (this study). NB. Solid circles indicate known sequence ages (using mid-point depths following calibration; see Table 1), whilst dotted circles indicate interpolations based on the chronological sequence order and therefore are not real ages, but estimates. Solid lines indicate interpolation (from mid-point depths) of dated sequences, whilst dashed lines indicate hypothetical interpolation as specific ages have not been determined. H. Excavated archaeological sites on or near the Çarşamba Fan and predicted flooding regime (from Roberts and Rosen, 2009). Grey shaded area indicates period of more arid conditions in the Eastern Mediterranean and Middle East according to regional palaeoclimate records (e.g. Rohling and Pälike, 2005; Göktürk et al., 2011; see text). The timing of the 8.2 k event (8,247–8086 yrs BP; Thomas et al., 2007) is also shown (i.e. white section interrupting grey shaded arid phase) and dotted lines indicate the timing of the ~70 year central event (8,141-8212 BP; Thomas et al., 2007). Solid back box (on chart A) indicates period of centennial scale cooling (8,600-8,000 BP) according to Rohling and Pälikhe (2005). Archaeological phases follow the CANeW system after Gérard (2002).

References

Jones, T. L. and Kennett, D. J. 1999. Late Holocene Sea Temperatures along the Central California Coast. Quaternary Research 51, 74–82.

<table>
<thead>
<tr>
<th>Shell No.</th>
<th>Archaeological unit (shell code)</th>
<th>Stratigraphic origin</th>
<th>Period</th>
<th>Sequence Age (cal. yrs BC)</th>
<th>Sequence Age (cal. yrs BP)</th>
<th>δ¹³C vs δ¹⁸O (regression statistics)</th>
<th>Shell height (mm)</th>
<th>No. of samples</th>
<th>Estimated no. of years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11376</td>
<td>South.G</td>
<td>Early Pottery Neolithic (ECA II)</td>
<td>r=0.62 (r²=0.38, p<0.01)</td>
<td>26.6</td>
<td>31</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5291</td>
<td>South.G</td>
<td>Early Pottery Neolithic (ECA II)</td>
<td>r=0.40 (r²=0.16, p<0.01)</td>
<td>39</td>
<td>46</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5306</td>
<td>South.G (Space 181)</td>
<td>Early Pottery Neolithic (ECA II)</td>
<td>r=0.55 (r²=-0.31, p<0.01)</td>
<td>31.48</td>
<td>66</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1563</td>
<td>South L. (Space 115)</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.51 (r²=0.26, p<0.01)</td>
<td>33.31</td>
<td>41</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17037</td>
<td>South.P</td>
<td>Late Neolithic (ECA II)</td>
<td>r=0.45 (r²=0.20, p>0.01)</td>
<td>30.79</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16718</td>
<td>4040</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.35 (r²=-0.13, p>0.01)</td>
<td>n/a</td>
<td>28</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12318</td>
<td>4040.G</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.55 (r²=0.30, p<0.01)</td>
<td>n/a</td>
<td>36</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17670</td>
<td>TP.M#</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.49 (r²=0.24, p<0.01)</td>
<td>33.46</td>
<td>48</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17809</td>
<td>TP.N</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.46 (r²=0.21, p>0.01)</td>
<td>27.61</td>
<td>26</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13532</td>
<td>TP.N</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.44 (r²=0.19, p>0.01)</td>
<td>n/a</td>
<td>31</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17687</td>
<td>TP.O</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.39 (r²=0.15, p<0.01)</td>
<td>27.74</td>
<td>30</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12278</td>
<td>TP.Q</td>
<td>Late Neolithic (ECA III)</td>
<td>r=0.46 (r²=0.21, p>0.01)</td>
<td>27.64</td>
<td>24</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>17208</td>
<td>Trench 5 (west mound)</td>
<td>Early Chalcolithic (ECA IV)</td>
<td>r=0.58 (r²=0.33, p<0.01)</td>
<td>25.11</td>
<td>31</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16918</td>
<td>Trench 7 (west mound)</td>
<td>Early Chalcolithic (ECA IV)</td>
<td>r=0.84 (r²=0.71, p<0.01)</td>
<td>n/a</td>
<td>32</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
Figure 3
Figure 4
Figure 5

A) Summer and winter temperatures (NE Greece)

B) Annual precipitation (NE Greece)

C) Qunf Cave (Oman) $\delta^{18}O$

D) Soreq Cave (Israel) $\delta^{18}O$ and $\delta^{13}C$

E) Summer surface temperatures (Aegean Sea, Core LC21)

F) Sofular Cave $\delta^{13}C$ and $^{234}U/^{238}U$

G) $\delta^{18}O$ range and standard deviation (SD) of Unio shells (Çatalhöyük)

H) Excavated sites occupation period:

Flooding regime:

- Perennial marshes
- Seasonal river flooding and alluviation
- Soil formation (= no flooding)

<table>
<thead>
<tr>
<th>Early Pottery Neolithic (ECA II)</th>
<th>Late Neolithic (ECA III)</th>
<th>Early Chalcolithic (ECA IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (cal. yrs BC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7500</td>
<td>7000</td>
<td>7000</td>
</tr>
<tr>
<td>6500</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>6000</td>
<td>5500</td>
<td>5500</td>
</tr>
<tr>
<td>5500</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>5000</td>
<td>4500</td>
<td>4500</td>
</tr>
<tr>
<td>4500</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>4000</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>3500</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>3000</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>2500</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>2000</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>1500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1000</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lab No.</td>
<td>Sample</td>
<td>Sample No.</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA111364</td>
<td>Shell (Unio</td>
<td>17208</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td>BA111363</td>
<td>Shell (Unio</td>
<td>17670</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td>BA111361</td>
<td>Shell (Unio</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td>BA111362</td>
<td>Shell (Unio</td>
<td>5306</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td>Poz-58534</td>
<td>Shell (Unio</td>
<td>13532</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poz-58535</td>
<td>Shell (Unio</td>
<td>12278</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poz-58536</td>
<td>Shell (Unio</td>
<td>17687</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poz-58537</td>
<td>Shell (Unio</td>
<td>16918</td>
</tr>
<tr>
<td></td>
<td>spp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Data Table 1: Details of ¹⁴C dates from 8 of the *Unio* shells and associated calibration (into calibrated years BP using the IntCal04 calibration curve (Reimer et al., 2004). NB. These ¹⁴C dates were discarded due to the unrealistic ages generated. Instead, we use the ¹⁴C Çatalhöyük archaeological sequence dates (e.g. Cessford et al., 2005; Marciniak et al., 2015; see main text, particularly Table 1).
