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Abstract 16 

Droughts are complex natural hazards, and planning future management is complicated by the 17 

difficulty of projecting future drought and low flow conditions. This paper demonstrates the use of a 18 

response surface approach to explore the hydrological behaviour of catchments under a range of 19 

possible future conditions. Choosing appropriate hydrological metrics ensures that the response 20 

surfaces are relevant to decision-making. Examples from two contrasting English catchments show 21 

how low flows in different catchments respond to changes in rainfall and temperature. In an upland 22 

western catchment, the Mint, low flows respond most to rainfall and temperature changes in summer, 23 

but in the groundwater dominated catchment of the Thet, changes in spring rainfall have the biggest 24 

impact on summer flows. Response surfaces are useful for understanding long-term changes, such as 25 

those projected in climate projections, but they may also prove useful in drought event management, 26 

where possible future conditions can be plotted onto the surface to understand the range of 27 

conditions the manager faces. Developing effective response surfaces requires considerable 28 

involvement and learning from catchment decision-makers at an early stage, and this should be 29 

considered in any planned application. 30 
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1. Introduction and background 34 

Droughts are complex natural hazards, with the threat they pose reflecting not only atmospheric, 35 

hydrological and biogeophysical processes (Touma et al. 2015) but also the way that people interact 36 

with and manage water (Sofoulis 2005, Watts et al. 2012, Lloyd-Hughes 2014)). While droughts are a 37 

problem for most of the world (Kallis 2008), universal definitions are probably impossible (Lloyd-38 

Hughes 2014), though in broad terms all droughts are caused by a deviation below long-term average 39 

rainfall (Tallaksen and Van Lanen 2004). In temperate climates such as northern Europe, this 40 

complexity means that historical major droughts show different spatial and temporal footprints (Parry 41 

et al. 2012), partly because every drought develops differently. For example, in the English lowlands, 42 

no single large scale atmospheric driver can explain the occurrence of multi-annual droughts (Folland 43 

et al. 2014).  44 

With poor predictability of drought initiation and termination (Weisheimer and Palmer 2014), water 45 

managers must plan for a range of different possible droughts, usually relying on past experience and 46 

historical records to provide the context for their plans. However, even this presents problems. There 47 

are relatively few droughts in the instrumental historical record, and there is no reason to expect that 48 

droughts of recent decades present a full picture of possible droughts under the current climate. For 49 

example, in the UK, twentieth century droughts typically lasted no longer than two years, but in the 50 

nineteenth century several droughts were of much greater duration (Jones et al. 2006, Marsh et al. 51 

2007). As a result, water supply planning tends to take a precautionary approach, with long-term plans 52 

based on hydrological variability supplemented by drought plans that can cope with a wide range of 53 

possible conditions (Spraggs et al. 2015, Watts et al. 2012, Wilhite et al. 2007). 54 

As the climate changes in response to anthropogenic emissions of greenhouse gases, drought 55 

frequencies and characteristics are also expected to change globally (Prudhomme et al. 2014) and in 56 

Europe (e.g Vidal et al. 2012, Prudhomme et al. 2012). However, the regional picture is much less 57 

clear, partly because of Global Climate Model (GCM) uncertainties (Stocker et al. 2013) and also 58 

because of the difficulty of downscaling GCM results to a scale relevant to drought management 59 

decisions (Ekström et al. 2015). This makes the conventional ‘top down’ climate change impact study 60 

particularly problematical for drought management: new hydrological projections for a given region 61 

may be markedly different from previous results, necessitating a new impact study and possibly 62 

requiring a new drought plan. Such difficulties have led some authors to question the utility of climate 63 

change impact studies for developing robust adaptation plans; instead they advocate ‘bottom up’ 64 

approaches (Wilby and Dessai 2010). 65 

Concerns over the value of impact studies have led to the development of the scenario-neutral 66 

approach. In this, changes in a policy-relevant indicator are calculated for a range of plausible climatic 67 

changes, with the results shown as response surfaces (Prudhomme et al. 2010). Understanding the 68 

response to a range of possible changes has several benefits. As new climate projections become 69 

available, these can be mapped onto the response surface, hence avoiding the need for new impact 70 

studies every time climate models change. Perhaps more importantly, the shape of the response 71 

surface helps the decision-maker understand the changes to which the system is most sensitive, 72 

encouraging management responses that are robust to a range of feasible changes. In some respects 73 

the scenario-neutral approach is similar to Robust Decision Making (RDM, Lempert et al. 2006) and 74 

Decision Scaling (Brown et al. 2012) but does not try to model the impact of strategies or decisions. 75 
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Instead the scenario-neutral approach illustrates the response of the system indicator to change, 76 

leaving decisions firmly situated with the decision-maker. This may be desirable for some decision-77 

makers, who may prefer this clear separation of science and policy (Gluckman 2014). Scenario-neutral 78 

approaches have been used successfully in a number of water management questions, including 79 

seasonal river flows in large rivers in Europe (Weiß 2011), lake water levels in Sweden (Wetterhall et 80 

al. 2011) and the USA (Brown et al. 2011), changes in flood peaks in the UK (Prudhomme et al. 2013), 81 

and changes in urban water supply robustness in the USA (Whateley et al. 2014). 82 

This paper demonstrates the utility of the scenario-neutral approach in planning future drought 83 

management by considering low flow response surfaces for two contrasting English catchments from 84 

northwest and eastern England. The approach consists first of identifying appropriate indicators that 85 

are relevant to drought management, next using hydrological modelling to develop response surfaces 86 

for these indicators, and then interpreting these indicators to illuminate the challenges that catchment 87 

managers face. The paper finishes with a discussion of the benefits and difficulties of using the 88 

scenario-neutral approach in this way.  89 

2. Data and methods90 

2.1. Case study 91 

The analysis was conducted on two contrasting English catchments: the Mint at Mint Bridge in 92 

Cumbria, north west England (National River Flow Archive NRFA number 73011) and the Thet at 93 

Bridgham in Norfolk, in eastern England (NRFA number 33044) (Table 1 and Figure 1). 94 

The Mint is a small upland catchment of just under 70 km2, with annual average rainfall of more than 95 

1500 mm but only around 400 mm of evaporation, resulting in an average annual runoff of nearly 96 

1200 mm. The catchment is largely impermeable and fast-responding. This catchment is used here to 97 

be representative of typical upland catchments in Wales and western and northern England. In such 98 

catchments, water supply is usually provided by reservoirs formed by building an impounding dam 99 

across a valley, capturing all of the upstream flow. In the UK, such reservoirs typically fill every winter 100 

but are susceptible to intense spring and summer droughts, with the lowest levels reached in autumn. 101 

There are several problems in managing such supply systems. Droughts can develop very quickly 102 

during a single year, but as a series of consecutive dry months is very unusual it would not be prudent 103 

to take drought measures after one or two dry months. However, as a severe drought develops there 104 

are often very few options to enhance supplies.  105 

In contrast, the Thet is typical of a lowland catchment with limited rainfall (just over 600 mm) but a 106 

similar level of potential evapotranspiration, which means that the average annual runoff is only 107 

around 140 mm in this 280 km2 catchment. The mixture of permeable chalk overlain by clay means 108 

that the catchment responds relatively quickly to heavy rainfall events, but also has a relatively high 109 

baseflow flow index (BFI, Gustard et al. 1992) of 0.74 showing a groundwater-dominated regime. 110 

Located in an agricultural region with high irrigation needs, the Thet is typical of a catchment requiring 111 

careful water management planning partly because of conflicting water needs. Public water supply 112 

systems in such catchments typically combine groundwater abstraction with pumped storage 113 

reservoirs, and are generally resilient to single year droughts but are stretched by longer droughts, 114 

particularly when there are consecutive dry winters with limited groundwater recharge. At the same 115 
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time, agricultural abstraction can be limited towards the end of a single dry summer. Under climate 116 

change, warmer temperature are expected to drive higher water needs by crops but this may not be 117 

compensated by changes in rainfall patterns: for example, in the latest UK projections, rainfall is 118 

projected to increase during winters but not in summer (Murphy et al. 2009).  119 

Average catchment daily time series were extracted from 1 km2 resolution Gridded Estimates of Areal 120 

Rainfall GEAR data set (Keller et al. 2015, Tanguy et al. 2014) for precipitation and the 5 km Met Office 121 

UKCP09 data set (Perry et al. 2009) for temperature. Average catchment monthly potential 122 

evapotranspiration PET was extracted from the Met Office Rainfall and Evaporation Calculation 123 

System MORECS (Thompson et al. 1982) and uniformly converted to daily PET. Daily discharge data 124 

and catchment information was available from the National River Flow Archive. 125 

Table 1. Main characteristics of the two basins. Statistics are computed on records available within the period 01/01/1961 126 
to 31/12/2011 (1: from http://www.ceh.ac.uk/data/nrfa/index.html) 127 

Figure 1. Location of case study catchments: A: Mint at Mint Bridge; B: Thet at Bridgham. Grey shading shows the main 128 
aquifers. 129 

2.2. Hydrological regime and associated indices 130 

The first stage in the response surface approach is to identify decision-relevant indices that can be 131 

characterised using appropriate hydrological models. The success of the approach depends on finding 132 

indices that are both useful for decisions and sensitive to changes in climate. For this case study, four 133 

hydrological indices were selected for their relevance for water management and their 134 

complementarity in describing the different components of low flow regime:  135 

1. daily flow exceeded 90% of the time on average (Q90);136 

2. mean daily flow between April and September (QAS);137 

3. annual maximum duration with flow continuously below Q90 with a 5 year return period138 

(Q90_dur_5yr); and139 

4. date when flow first falls below Q90 (Q90_day_1).140 

Details of the calculation are given in the appendices. Q90 and QAS characterise water resource 141 

available during the drier spring and summer months. Q90_dur_5yr characterises the duration of 142 

severe low flow events. Q90_day_1 is an indicator of seasonality. Table 2 (next section) gives values 143 

of each hydrological index for the two case study catchments. QAS and Q90 are expressed in mm to 144 

allow comparison with climate forcing. 145 

Figure 2 shows, for both catchments, the recorded low flow periods within each water year, defined 146 

as flow below Q90, in a circular diagram. The water year has also been calculated for each catchment, 147 

and its start is displayed as a black dot. In England, the conventional definition of the water year begins 148 

on 1 October. Here we calculate a dynamic low flow water year centred on the low flow period. The 149 

start of the water year is defined as the average day associated with the annual maximum mean daily 150 

flow, and is computed for each catchment. This approach allows analysis of the way catchment 151 

hydrological response changes with climate change. In the Mint, low flow periods start in early June 152 

and end in late August while they are delayed by around 1 month in the Thet (starting in early July and 153 

ending in late September). The Mint is also associated with large variability of flow, with only 10% of 154 

years without periods under Q90, against nearly 30% in the Thet (dashed inner circle). This is likely to 155 

be due to low storage capacity to sustain flows during period of no rain in the Mint. As a result, the 156 

http://www.ceh.ac.uk/data/nrfa/index.html
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water year also starts later in the Mint than in the Thet, as high flow from the recharge season continue 157 

into winter (late January and early January, respectively). The baseflow regime also influences when 158 

low flow occurs in the year, with more episodes of continuous low flow (length of orange lines in 159 

Figure 2) and slightly longer Q90_dur_5yr (Table 2) found in the Thet than in the Mint. In contrast, the 160 

flashier regime of the Mint results in a larger variability in the start of the low period periods compared 161 

with that in the Thet. 162 

Figure 2. Circular diagram of the periods of flow below Q90 recorded during each water year with available observations 163 
for the Mint at Mint Bridge and the Thet at Bridgham, ranked by increasing duration of low flow period. The radius of the 164 
dashed blue inner circle gives the proportion of water years without any recorded flow below Q90. The thickness of the 165 
grey ring gives the proportion of incomplete years with flow below Q90. 166 

2.3. Sensitivity framework 167 

The next stage in developing a sensitivity framework is to identify the climatic parameters for the 168 

response surface. Following Prudhomme et al. (2010), the sensitivity of the catchments’ low flow 169 

regime to climatic changes was quantified from changes in precipitation and temperature. The range 170 

and seasonality of changes tested were chosen to encompass the range of climate changes in Western 171 

Europe from CMIP5 projections including both uncertainty in atmospheric forcing and climate 172 

modelling as given by Terray and Boé (2013). The changes represent the absolute deviation from the 173 

baseline climatology for both temperature (°C) and precipitation (mm), and were applied here to the 174 

full observational climatic record 1961-2011.  175 

As it is not possible to test every possible combination of possible monthly changes in rainfall and 176 

temperature, idealised models must be fitted. The effect of seasonality of precipitation change on 177 

river flow was accounted for by introducing correction factors ∆𝑃  to the baseline precipitation 178 

reference for each month i, i= 1,.., 12, through the following cosine function suggested by Prudhomme 179 

et al. (2010): 180 

Equation 1 ∆𝑷(𝒊) = 𝑷𝟎 + 𝑨𝑷 ∙ 𝒄𝒐𝒔 ((𝒊 − 𝝋𝑷) ∙
𝝅

𝟔
) 181 

The mean annual change is P0 and AP is the semi-amplitude of change (see Wilks 2006 for terminology 182 

and equations; semi-amplitude is half the difference between highest and lowest values).  183 

To capture the significant asymmetry of projected ranges of changes in seasonal temperature 184 

suggested by Terray and Boé (2013) in Western Europe (minimum in DJF and maximum in JAS), a 185 

modified harmonic equation was used to define the factors ∆𝑇 for temperature: 186 

Equation 2 ∆𝑻(𝒊) = 𝑻𝟎 + 𝑨𝑻 ∙ [𝟏 − 𝒄𝒐𝒔 ((𝒊 − 𝝋𝑻) ∙
𝝅

𝟔
)] 187 

The mean annual change associated with Equation 2 is given by T0+AT. 188 

Monthly climate change factors were used to perturb the baseline time series to create new input for 189 

the hydrological model as follow.  190 

For precipitation, monthly scale factors were applied so that the frequency of dry days is preserved: 191 

Equation 3 𝑷∗(𝒅) = 𝑷(𝒅) ∙ (𝑷𝑴̅̅ ̅̅ ̅(𝒎𝒐𝒏𝒕𝒉(𝒅)) + ∆𝑷(𝒎𝒐𝒏𝒕𝒉(𝒅))/𝑷𝑴̅̅ ̅̅ ̅(𝒎𝒐𝒏𝒕𝒉(𝒅)) 192 
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With 𝑃(𝑑) and 𝑃∗(𝑑) baseline and perturbed precipitation for day d respectively, 𝑃𝑀̅̅̅̅̅(𝑚𝑜𝑛𝑡ℎ(𝑑)  193 

average monthly baseline precipitation for month month(d) and ∆𝑃(𝑚𝑜𝑛𝑡ℎ(𝑑)) precipitation change 194 

factor for month month(d), all in mm. 195 

Perturbed daily temperatures T* for day d (in °C) were obtained by additive changes: 196 

Equation 4 𝑻∗(𝒅) = 𝑻(𝒅) + ∆𝑻(𝒎𝒐𝒏𝒕𝒉(𝒅)) 197 

With 𝑇(𝑑)  and 𝑇∗(𝑑)  baseline and perturbed daily temperature for day d, respectively, and 198 

∆𝑇(𝑚𝑜𝑛𝑡ℎ(𝑑)) temperature change factor for month month(d), all in °C 199 

Changes in potential evapotranspiration PET were calculated (in mm) by applying the temperature-200 

based formula suggested by Oudin et al. (2005) to baseline temperature data. The perturbed PET 201 

values are calculated as follows: 202 

Equation 5 𝑷𝑬𝑻∗(𝒅) = 𝐦𝐚𝐱⁡(𝑷𝑬𝑻(𝒅) +
𝑹𝒂

𝟐𝟖.𝟓

(∆𝑻(𝒎𝒐𝒏𝒕𝒉(𝒅))+𝟓)

𝟏𝟎𝟎
; 𝟎) 203 

With 𝑃𝐸𝑇(𝑑) and 𝑃𝐸𝑇∗(𝑑) baseline and perturbed potential evapotranspiration for day d in mm, 204 

respectively, Ra the extra-terrestrial global radiation for the catchment in MJ m-2 day-1, and 205 

∆𝑇(𝑚𝑜𝑛𝑡ℎ(𝑑)) temperature change factor for month month(d) in °C. 206 

2.4. Rainfall-runoff modelling 207 

For identifying the catchment responses to climatic changes, a rainfall-runoff model was used so that 208 

the hydrological indicators derived from simulations based on the climate scenarios were compared 209 

to those derived from simulations based on observed climate. The conceptual lumped rainfall-runoff 210 

model GR5J (Le Moine 2008) was used for the hydrological modelling. GR5J is a modified version of 211 

GR4J originally developed by Perrin et al. (2003), considered to be well suited to simulating low flow 212 

conditions. It was chosen for its ease of calibration and the good performance of the GR4J model 213 

across a wide range of riverflow regimes (Zhang et al. 2014, Seiller et al. 2015, Wu et al. 2014, Tian et 214 

al. 2013). The GR5J model has five parameters to be fitted (Figure 3): the capacity of soil moisture 215 

reservoir (X1) and of the routing reservoir (X3), the time base of a unit hydrograph (X4) and two 216 

parameters of the groundwater exchange function F (X2 and X5). GR5J is combined with a simple 217 

snowmelt runoff module using a temperature index (degree day) approach. Snowmelt rate is 218 

proportional to the difference between the daily air temperature and the temperature Tm where 219 

melting is initiated. The degree-day factor for melt and the melting temperature are fixed to average 220 

values of 3.7 mm/°C and 0°C, respectively.  221 

Figure 3. Schematic of the conceptual lumped rainfall-runoff model GR5J (modified by Le Moine 2008). 222 

The Nash-Sutcliffe efficiency criterion NSE (Nash and Sutcliffe 1970) calculated on the square root of 223 

the daily discharges NSESqrt (Equation 6) was used as objective function to calibrate the five free 224 

parameters while giving less emphasis to extreme high discharges. In addition NSEInv (Equation 7) was 225 

also calculated as it gives a special emphasis of very low flows and very little to high flow (Pushpalatha 226 

2013), but was not used for optimisation of the model parameters as this might result in a poorer 227 

overall fit. The first two years of available daily catchment rainfall and potential evapotranspiration 228 

forcing (generated from 1-km grids and available from 01/01/1961 to 31/12/1962) were used as a 229 

spin-up to limit the influence of reservoir initialization on the calibration results. 230 
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Equation 6 𝑵𝑺𝑬𝑺𝑸𝑹𝑻 = 𝟏 −
∑ (√𝑸𝟎

𝒅−√𝑸𝒎
𝒅 )

𝟐
𝑫
𝒅=𝟏

∑ (√𝑸𝟎
𝒅−√𝑸𝒐

𝒅
̅̅ ̅̅ ̅̅

)

𝟐

𝑻
𝒅=𝟏

 231 

Equation 7 𝑵𝑺𝑬𝑰𝒏𝒗 = 𝟏 −
∑ (

𝟏

𝜺+𝑸𝟎
𝒅−

𝟏

𝜺+𝑸𝒎
𝒅 )

𝟐
𝑫
𝒅=𝟏

∑ (
𝟏

𝜺+𝑸𝟎
𝒅−

𝟏

𝜺+𝑸𝟎
𝒅

̅̅ ̅̅ ̅̅
)

𝟐
𝑻
𝒅=𝟏

 232 

With 𝑄0
𝑑 observed daily discharge for day d, 𝑄𝑚

𝑑  simulated daily discharge for day d, 𝑋̅ the long term 233 

mean of variable X, D the number of days of record and ε a small operator to avoid division by zero. 234 

NSESqrt calculated over 1963-2011 is equal to 0.91 and 0.93 for the Thet and Mint catchments 235 

respectively, suggesting a good reproduction of the daily variation of flows in both catchments. NSEInv 236 

was also calculated so that calibration could be compared with the range of performance of GR5J 237 

published for over 1000 French basins (Pushpalatha et al. 2011). The NSEInv of 0.69 and 0.82 found for 238 

the Thet and Mint, respectively, are in line with those obtained in the French basins with oceanic 239 

climates, where runoff generation is mainly controlled by rainfall and evapotranspiration processes 240 

(showing NSEInv mostly between 0.16 and 0.78). Finally, visual assessment of the median, 10th and 90th 241 

percentile daily hydrograph confirmed the good performance of GR5J (Figure 4). Note the better fit 242 

for the Mint than for the Thet where the GR5J model suggests less severe low flow in summer than 243 

observations. The day-to-day variability – given by the interdecile range – is correctly reproduced for 244 

the Mint whereas an overestimation is noticeable for the Thet particularly in autumn. However in the 245 

rest of this paper, results are expressed as changes from GR5J outputs obtained under baseline and 246 

‘scenario’ conditions, hence removing the effect of any systematic bias in the simulation such as 247 

delayed low flow period. 248 

Figure 4. Simulated (red) and observed (black) median annual hydrographs for the Mint at Mint Bridge and the Thet at 249 
Bridgham. Shading indicates the interdecile range of the daily discharge for both observations and simulations. Note the 250 
log y-axis and the difference in scale 251 

The four hydrological indices were derived from observations and simulations for the period 1963-252 

2011 (Table 2) and calculated over two distinct periods: all dates with observations within 1963-2011 253 

(Sim|Obs) for comparison with statistics derived from observations (Obs); and complete 1963-2011 254 

period (SimRef) for comparison between catchments. Results show good match between observed 255 

and simulated hydrological indicators and absolute relative errors lower than 15%. This suggests that 256 

GR5J performs reasonably well, capturing the average pattern of river flows as well as the interannual 257 

variability at daily time step. 258 

Table 2. Low flow hydrological indices calculated from all available observations (Obs) and simulated time series (Sim|Obs: 259 
for dates with observation available within 1963-2011; Sim Ref: complete 1963 and 2011 period). 260 

2.5. Climate-low flow response surfaces 261 

The most comprehensive way to present the sensitivity analysis results is as response surfaces, i.e. 262 

hydrological indices associated with the climatic scenarios in a two dimensional space. As a 263 

compromise between clarity of the figures versus representation of the complexity of the climate-to-264 

flow processes, a 2-dimensional response surface was chosen, with axes represented by the main 265 

climate drivers and the colour gradient showing the response of each given hydrological indicator. In 266 

Prudhomme et al. (2010) the two axes were defined by the variation of the two parameters of the 267 

harmonic function applied to precipitation. However, this representation ignores most of the climatic 268 
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variations described by the methodology, which imposes 12 changes (each scenario has different 269 

monthly changes) to three variables (P, T and PET). While a representation of all degrees of freedom 270 

would be incomprehensible, the choice of the axes is important as the response surfaces aim to 271 

highlight the climatic factors influencing most the low flow regime. Priority was given to include 272 

variables directly available from GCMs output, i.e. P and T, with changes in PET being implicit from 273 

changes in T. Climate elasticity, a measure of the strength of the link between river flow and climate 274 

(Schaake 1990, Sankarasubramanian et al. 2001), and linear correlation were also applied between 275 

each hydrological index, mean temperature and total precipitation over the four seasons to identify 276 

the climate variables with the largest influence on hydrological variability and to inform the choice of 277 

the representation as response surfaces. Here the nonparametric elasticity estimator was used: 278 

Equation 8 𝜺(𝑿, 𝒀) = 𝒎𝒆𝒅𝒊𝒂𝒏(
𝑿(𝒕𝒚)−𝑿̅

𝒀(𝒕𝒚)−𝒀̅

𝒀̅

𝑿̅
) 279 

where (X, Y) is the elasticity of the variable X to the factor Y, X(ty) and Y(ty) are the values of X and Y 280 

for year ty, N is the total number of available years of record, 𝑋̅ and 𝑌̅ are the long term mean values 281 

of X and Y, respectively. For this application, X is one of the hydrological indices average (Q90, QAS, 282 

Q90_dur_5yr, Q90_day_1), Y being precipitation or temperature averaged at different time scales 283 

(from month to year).  284 

Finally, bi-linear interpolation of the 1050 scenarios on a given response surfaces was conducted using 285 

the function Interpol of the akima R package (Albrecht 2015). The response surfaces are constructed 286 

by plotting the hydrological indicator derived from a given climate scenario, the (x,y) coordinates given 287 

by the scenarios’ climate indicators. Some climate indicators however can have the same value while 288 

resulting from different scenarios and annual pathways (e.g. precipitation mean annual change). This 289 

means that a same point on the response surface can be associated with different hydrological 290 

indicator values. In this case, response surfaces are interpolated based on the minimum, mean and 291 

maximum response to capture the range and associated uncertainty in the climate-to-low-flow 292 

response. For clarity only the response surfaces based on the mean of all responses are shown in the 293 

paper.  294 

3. Response surfaces and applications295 

3.1. Constructed climate scenario 296 

Using Equation 1, an ensemble of 35 precipitation scenarios was created associated with mean 297 

monthly changes P0 ranging from -20 to +20 mm and semi-amplitudes AP ranging from 0 to 26.67 298 

mm/season, all of them by increments of 6.67 mm/season. The parameter 𝜑𝑃  was fixed to 1 299 

(minimum in January and maximum in July; Figure 5 right). The majority of scenarios of the framework 300 

describe drier, hotter summers (Figure 5); precipitation changes during the transition seasons MAM 301 

and SON are evenly distributed while winters are generally wetter. Only a few scenarios are associated 302 

with a small cooling. 303 

A set of 30 temperature scenarios was created using Equation 2 to describe mean annual changes 304 

(T0 + AT) from 0.5°C to 8.5°C by increments of 1°C, with five semi-amplitudes AT ranging from -0.5°C to 305 

3.5°C and six values for T0 varying from 0 to 5°C, all of them by increments of 1°C. The parameter AT 306 

takes a negative value when absolute changes are higher in winter than in summer. Minimum and 307 

maximum changes occur in February and in August (𝜑𝑇 =2), respectively (Figure 5, left).  308 
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Changes in precipitation and temperature were combined independently to create a set of 1050 309 

scenarios. 310 

Figure 5. Monthly changes in temperature and precipitation associated with the sensitivity framework scenarios 311 

3.2. Elasticity and response surfaces 312 

Elasticity estimates were obtained from an extended dataset of 247 near natural gauged basins in the 313 

UK with more than 30 years of flow records, including the Mint and the Thet. The analysis of the 314 

elasticity was performed at national scale to identify more clearly the variables to which low flows are 315 

sensitive. Climate elasticity was assessed at monthly time scale.  316 

For each basin, monthly elasticities were calculated independently for temperature and precipitation 317 

respectively, and the month with the highest absolute value of elasticity was identified for each 318 

climate variable. To illustrate the analysis, results are provided for the two hydrological indices Q90 319 

and Q90_day_1. Figure 6 shows for each month the proportion of basins where elasticity for this 320 

month is ranked first. Q90 is particularly sensitive to changes in both summer precipitation and 321 

temperature: summer climate governs the severity of low flows. On the other hand, for the seasonality 322 

index Q90_day_1, the maxima of the two curves are not observed during the same period of the year: 323 

Q90_day_1 is most sensitive to changes in spring precipitation but to changes in summer temperature. 324 

The differing sensitivity of the two low flow indices highlights that different aspects of low flows are 325 

governed by different processes, confirming the complexity of the climate-to-low-flow relationships.  326 

327 

Figure 6. Proportion of basins when absolute value of elasticity of a given month is largest of the year. 328 

The elasticity analysis was complemented by visual examination of response surfaces to identify any 329 

discontinuities due to the influence of other factors not represented by the axes of the surfaces. 330 

Results show different sensitivity for the indicators and catchments: Q90 is sensitive to spring and 331 

summer climate (April to September AMJJAS) in the Mint and to summer and autumn (July to 332 

November JJASON) in the Thet. Summer flow (QAS) is also sensitive to spring and summer climate 333 

(AMJJAS) in the Mint but to spring climate (March to May MAM) in the Thet. The duration of severe 334 

low flow periods is sensitive to summer climate (JJA) in the Mint and autumn (SON) in the Thet. The 335 

first day of the low flow period is sensitive to the whole year climate for the Mint and to spring climate 336 

(MAM) in the Thet. This demonstrates that the different low flow indices capture different low flow 337 

behaviours, each governed by a different climate signal.  338 

Climate-to-low-flow response surfaces for each hydrological index are shown for both catchments in 339 

Figure 7; note however the different scales.  340 

Figure 7. Climate-to-low-flow response surfaces of the Mint at Mint Bridge and the Thet at Bridgham with x-axis: 341 
precipitation; y-axis: temperature. Note the difference in scale and climate drivers associated with each response surface. 342 
Reference values (SimRef) are shown as black bar in the key and as a black square on the response surface. 343 

There is a direct link between same season climate and flow changes in the Mint with spring to 344 

summer flow QAS showing a clear relationship with spring to summer precipitation and temperature 345 

(P-AMJJAS and T-AMJJAS). This is probably because of the low storage in this catchment, meaning that 346 

there is little “memory” in the system: QAS decreases with precipitation. It is also notable that 347 

additional temperature increase and its associated PET increase can compensate for precipitation 348 
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increase and lead to decrease in QAS; all scenarios with a spring-summer temperature rise of 4°C or 349 

more are associated with a reduction of QAS even when precipitation increases.  350 

In the Thet, the picture is more complicated: the best climate-to-spring-autumn flow relationship is 351 

found with spring precipitation but links with temperature are less smooth, illustrating that climate-352 

to-low-flow processes are complex and cannot be captured completely by a 2-dimensional response 353 

surface. Unlike the Mint, the Thet has a large groundwater component that delays the climate-to-low-354 

flow response, so changes in spring precipitation have the largest influence on changes in QAS. As the 355 

Thet is located in one of the driest regions of England, where actual evapotranspiration is limited by 356 

water availability in the soil, an increase in temperature (and by extension, in potential 357 

evapotransporation) is not necessarily associated with increase in water losses as evaporation is 358 

already limited. As a result, an increase in P first enhances PET before resulting in flow increase, and 359 

increase in T is only associated with decrease in flow if P also decreases.  360 

In the Mint, changes in Q90 show a very similar response to climate than QAS, albeit with a slightly 361 

stronger signal of decrease (i.e. more scenarios lead to a reduction of Q90 than QAS). In the Thet there 362 

is a clearer relationship in the climate-to-low-flow signal for Q90 than for QAS: summer to autumn 363 

climate influences most the low flow changes, and there are fewer discontinuities in the response 364 

surface (appearing as horizontal graduations in the surfaces and non-uniform relationship between 365 

QAS and spring temperature). This suggests that Q90 is mainly controlled by summer and autumn 366 

precipitation and temperature signal. Note that relative increase in Q90 are however much larger for 367 

the Thet than for the Mint as wetter winters sustain flows all year round, including low flows. 368 

Q90_dur_5yr describes the length of severe continuous low flow periods. Both catchments show an 369 

increase in low flow duration for most scenarios but show a very different range of changes, with the 370 

Mint showing a maximum increase just above 3 months, against nearly a year for the most extreme 371 

scenarios in the Thet. This is likely to reflect a baseflow-dominated signal (see Figure 4) with much 372 

smoother hydrograph resulting in uninterrupted periods of low flow.  373 

For the Mint, the date of the first day of low flow is earlier when precipitation decreases or 374 

temperature increases by more than 2-3 °C, and later when mean annual precipitation increases. In 375 

the Thet, the pattern is similar but with much earlier occurrence possible; for the most extreme 376 

scenarios, flow is always lower than baseline Q90 hence first day of occurrence is the 1st January.  377 

3.3. Response surfaces and mitigation strategies 378 

One of the strength of the response surfaces is that they can be put into the context of specific 379 

weather scenarios. For example this could be during a drought event, where forecast weather 380 

anomalies can be considered as future possible range and mapped onto the response surfaces to 381 

visualise possible drought trajectories. These trajectories can then be considered when management 382 

options are evaluated. Response surfaces could also be used for long term planning under different 383 

assumptions of future climate. For example, the Copenhagen Accord recognised that emissions 384 

reductions should try to avoid a global temperature rise of more than 2°C (UNFCCC 2009); while this 385 

does not necessarily correspond to uniform warming across the globe, it is possible to assess the 386 

impact of different levels of warming using response surfaces as this might put mitigation strategies 387 

into a more local context. Figure 8 shows the range of changes in Q90 associated with a local annual 388 

warming ranging from 2.5 to 5.5°C for the Mint and the Thet as described by the set of scenarios of 389 
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Figure 5. For both catchments, there is a wide range of responses reflecting the sensitivity of the 390 

catchments to the range of precipitation scenarios explored. However, sensitivity to temperature is 391 

also visible in the change in the distribution of the response associated with each temperature set. 392 

This influence is the largest for the Mint which shows a much stronger decrease in Q90 for the warmest 393 

scenarios (black). For the Thet, the influence of temperature is less apparent, mainly shown in the 394 

upper tail of the distribution, possibly because evaporative losses do not increase much under warmer 395 

climate as they are already water limited. Note that this is an illustrative example as the precipitation 396 

scenarios have not been sampled for consistency with climate model projections of given global 397 

temperature rise, but they demonstrate how the response surfaces can help in exploring the effect of 398 

mitigation policies. 399 

Figure 8. Distribution of changes in Q90 associated with annual warming scenarios for the Mint at Mint Bridge and the 400 
Thet at Bridgham. 401 

3.4. Response surfaces and drought management planning 402 

Local adaptation planning generally relies on assessing the impact of plausible local climate change 403 

scenarios, and response surfaces can help with such assessment by overlaying climate change factors 404 

from state-of-the-art climate change projections on the surfaces and identifying the associated 405 

responses. Here we used the UKCP09 probabilistic sample climate change factors for the 2050s 406 

associated with the medium emission scenario (Murphy et al. 2009). Monthly change factors were 407 

extracted for each catchment and combined to be expressed in the same unit as the relevant response 408 

surfaces: for the Thet, July to November consistent with the Q90 response surface and for the Mint, 409 

June to August consistent with changes in Q90_dur_5yr. Each pair of change factors was displayed on 410 

the relevant response surface (Figure 9 top), and the associated change in the low flow indicator 411 

quantified and shown as cumulative density function (Figure 9 bottom). Note that the response 412 

surface domain for precipitation does not fully capture the variability of the UKCP09 sample, which 413 

has a longer tail towards wetter scenarios for both catchments.  414 

Here only the value of climate change factors for the season represented in the response surface was 415 

considered and the within-year variability of each UKCP09 scenarios was ignored. This means that the 416 

whole annual pathway of some UKCP09 scenarios might be very different from that of the scenarios 417 

explored in the sensitivity framework. A more sophisticated method could be used where a sine curve 418 

would be fitted to each UKCP09 monthly scenarios and higher likelihood weights given to scenarios 419 

closest to those used in the sensitivity framework. 420 

Figure 9. UKCP09 probabilistic samples for the 2050s medium emission (black dots) and climate-low flow response surface 421 
and derived risk curves (based on the proportion of UKCP09 scenarios for 2050s time horizon within the explored climatic 422 
range) for the Mint a Mint Bridge and the Thet at Bridgham. Response surfaces as described in Figure 7. The risk curves 423 
show the percentage of scenarios with changes greater or equal to a response threshold. See text for details. 424 

Similarly to the differences in the catchment climate-to-low-flow responses, the magnitude of possible 425 

changes under UKCP09 by the 2050s also shows contrast between the two catchments: assuming all 426 

UKCP09 scenarios not plotted on this surface would suggest an increase in the indicator (located on 427 

the right-hand side of the curve) and looking again at Q90, the Thet shows a relatively small range of 428 

changes, with relatively modest decreases in low flows even under the driest and warmest projections 429 

(less than 0.05mm decrease; see risk curve in Figure 9), and around 28% of all UKCP09 scenarios 430 

associated with a decrease. However, in the Mint, more of the UKCP09 projections give decreases in 431 
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Q90, with a much larger reduction in Q90 from the driest and warmest projections; around 85% of the 432 

UKCP09 scenarios within the response surfaces show a decrease, corresponding to a minimum of 46% 433 

of all UKCP09 scenarios (not shown). This may suggest that the Mint is more sensitive to local climate 434 

change, and that managers in catchments like this must pay particular attention to the possible 435 

impacts on low flows. It also seems clear that the Mint is more vulnerable to UKCP09 changes than 436 

the Thet, as a larger proportion of UKCP09 scenarios suggest a decrease of Q90. However it is 437 

important to note the range in UKCP09 scenarios, and hence uncertainty associated with the climatic 438 

signal, is wider for precipitation in the Mint than in the Thet for the months relevant to low flow 439 

processes (as shown by the proportion in UKCP09 scenarios captured by each response surface). As 440 

projections of rainfall under climate change are inherently more uncertain than projections of 441 

temperature (Shepherd 2014), the response surfaces may show that planning for the Mint is relatively 442 

more uncertain than for the Thet.  443 

Looking at a range of different response surfaces also helps to illuminate some of the other conditions 444 

for which the water resources manager may need to plan: for example, in the Mint at least 49% of 445 

UKCP09 scenarios suggest an increase in the duration of severe low flow periods (assuming that the 446 

30% of scenarios outside the response surface all are associated with a decrease) by up to 80 days 447 

(Figure 9), while in the Thet the proportion is much smaller but the expected maximum increase will 448 

reach 250 days for the most extreme UKCP09 scenario (not shown).  449 

4. Conclusion450 

How do these response surfaces illuminate problems of future water resources and drought 451 

management? At the simplest level, they show the different hydrological responses of the contrasting 452 

catchments, demonstrated by the different climate drivers associated with the same indicators in the 453 

two catchments. In the Mint, representative of typical catchments in Wales and western and northern 454 

England, low flows mostly respond to changes in spring and summer rainfall and temperatures while 455 

in the Thet, typical of a lowland catchment with limited rainfall and high potential evapotranspiration, 456 

the primary climate drivers change with the indicators from spring for first low flow occurrence to 457 

summer/autumn for low flow magnitude.  458 

It is easy to concentrate on the worst possible outcomes for water resources, but the response 459 

surfaces also provide a valuable reminder that the range of possible future climates translates into a 460 

wide range of future hydrological conditions. Catchment managers may decide to ignore some of the 461 

more favourable outcomes, but in doing so they will be forced explicitly to contemplate their risk 462 

tolerance. 463 

It seems that response surfaces are a valuable tool for understanding and communicating the range 464 

of possible changes that climate change may bring. However, their use in water resources problems 465 

is perhaps less straightforward than in some previous applications such as understanding changes in 466 

flood peaks e.g. Prudhomme et al. (2010). Water resources respond not only to the magnitude of 467 

changes in rainfall and temperature but also to the timing of these changes; for example, reductions 468 

in winter rainfall may be more or less important than equivalent changes in spring, summer or autumn, 469 

depending on catchment characteristics. This means that multiple response surfaces are needed to 470 

explain the range of possible changes. Identifying and then interpreting these response surfaces is far 471 



13 

from trivial. Inappropriate identification of response surfaces could lead to poor adaptation response, 472 

with a risk of misplaced confidence in inadequate interventions. 473 

In addition, the choice and pattern of the climate scenarios explored in the sensitivity framework have 474 

also an influence on the result. Here, consistently with most future climate-change signals, a simple 475 

cosine function was used to describe a seasonal change in the climatology, which fixes the seasons of 476 

maxima and minima. Different seasonal patterns, or more complex variability in the seasonal changes 477 

of precipitation and temperature, would influence the response surfaces but also greatly add in 478 

complexity to both their representation and interpretation. One important limitation of the 479 

methodology is its inevitable simplification of complex processes, and its function as a screening tool 480 

rather than as a comprehensive process-based impact analysis.  481 

Finally, for response surfaces to be of full value to water resources managers, the managers 482 

themselves will need to invest time in investigating and understanding water resources system 483 

response. While this is unlikely to be wasted effort, it does mean that managers need to be involved 484 

early in a project, which may not always be welcome to busy managers facing other, more immediate 485 

pressures. 486 

This paper demonstrates that the scenario-neutral approach can be of great value in understanding 487 

future pressures on water resources. The response surfaces developed here look only at hydrological 488 

response and hence possible impacts of climate change, but the concept could be developed further 489 

in various directions. One simple development would be to work with catchment managers to identify 490 

regions of the response surface that would either cause different levels of impact or demand different 491 

types of response. Fung et al. (2013) demonstrated this with a simple matrix of changes in the duration 492 

and magnitude of low flows, looking at the possible impact on ecosystem form and function in a chalk 493 

catchment in southern England. Their matrix was a simple grid; on a response surface, it would be 494 

possible to identify different regions of irregular shape, making the response surface approach much 495 

more flexible. It may also be possible to identify thresholds beyond which change would demand 496 

alternative approaches to management, and also which climate drivers would result in the threshold 497 

being crossed. Such thresholds could include regulatory thresholds, such as abstraction licence 498 

conditions or discharge consents. It may also be valuable to develop response surfaces that reflect 499 

variables that are of more direct relevance to water resources managers, such as reservoir deployable 500 

output. This could be valuable in planning climate change adaptation interventions, though every time 501 

the water supply system changes the response surface would also change and need to be recalculated, 502 

negating some of the benefits of the response surface approach. However, exploring these concepts 503 

further could add to the benefits of scenario-neutral approaches and improve the flexibility of 504 

approaches to climate change adaptation. 505 
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7. Appendix – Hydrological indices calculations647 

7.1. Daily flow exceeded 90% of the time Q90 648 

The 10th percentile daily flow calculated over the relevant period. 649 

7.2. Mean flow April to September QAS 650 

The average daily flow between 1 April and 30 September. 651 

7.1. Duration of severe low flow episodes Q90_dur_5yr 652 

First the maximum duration of consecutive flows Q under Q90 for each water year (Q90_dur) was 653 

sampled by block maxima approach. Q90_dur_5yr is then defined as the empirical 80th percentile of 654 
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cumulative distribution function of Q90_dur. A non-parametric approach is used to estimate the 655 

quantile with a return period of 5 years since there is no guarantee that a distribution valid under 656 

current climate may still hold under climate change. 657 

7.2. Day of first occurrence of low flow Q90_day_1 658 

The procedure is as follow: 659 

1. Identify 𝐽1,𝑖 first day with flow Q below Q90 for water year i, in Julian day;660 

2. Convert 𝐽1,𝑖 into angle, in radian, by 𝜃(𝐽1,𝑖) =
2𝜋

365
𝐽1,𝑖; 661 

3. Calculate mean of cosines and sines of each angle (years without flow below Q90 not662 

accounted for);663 

4. Calculate associated angle as664 

𝜃(𝑄90_𝑑𝑎𝑦_1) =

{

 

 
tan−1 (

sin𝜃(𝐽1,𝑖)

cos𝜃(𝐽1, 𝑖)
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡sin𝜃(𝐽1,𝑖) > 0, cos 𝜃(𝐽1, 𝑖) > 0

tan−1 (
sin 𝜃(𝐽1,𝑖)

cos 𝜃(𝐽1, 𝑖)
) + 𝜋⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ cos 𝜃(𝐽1, 𝑖) < 0

tan−1 (
sin 𝜃(𝐽1,𝑖)

cos 𝜃(𝐽1, 𝑖)
) + 2𝜋⁡⁡ sin 𝜃(𝐽1,𝑖) < 0, cos 𝜃(𝐽1, 𝑖) > 0⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡

665 

5. Convert back into a date, in Julian day, by 𝑄90_𝑑𝑎𝑦_1 =
365

2𝜋
𝜃(𝑄90_𝑑𝑎𝑦_1); 666 
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Mint at Mint bridge 73011 Thet at Bridgham 33044 

Area (km2) 65.8 277.8 

Median elevation (m) 209.3 39.2 

Catchment description1 Geology: Steep, very wet 
catchment. Predominantly 
impervious Silurian slate with 
bands of flags and shale, small 
patches of Carboniferous 
Limestone and basal 
conglomerate, patchy Boulder 
Clay cover in middle and lower 
reaches.  
Land use: Sheep grazing with 
peat moorland in extreme 
north. 

Geology: Chalk with 
approximately 75% boulder clay 
cover. 
Land use: arable with some 
forest and grassland, several 
small towns 

Record period 01/08/1970-30/09/2013 01/06/1967-30/09/2013 

Mean annual 

precipitation (mm) 

1585 636 

Mean annual 

temperature (°C) 

8.1 9.7 

Mean annual potential 

evapotranspiration 

(mm) 

479 630 

Mean annual runoff 

(mm) 

1197 186 

Base Flow Index 0.31 0.74 

Factors affecting runoff1 Natural to within 10% at the 95 
percentile flow 

Groundwater abstraction 
and/or recharge, effluent 
returns and industrial and/or 
agricultural abstraction 

Table 1. Main characteristics of the two basins. Statistics are computed on records available within the period 01/01/1961 20 
to 31/12/2011 (1: from http://www.ceh.ac.uk/data/nrfa/index.html) 21 

22 
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Mint at Mint bridge 73011 Thet at Bridgham 33044 

Obs Sim|Obs Sim Ref Obs Sim|Obs Sim Ref 

Q90 mm/day 0.386 0.438 0.466 0.141 0.135 0.137 

 (m3/s) 0.294 0.334 0.355 0.453 0.434 0.440 

QAS (mm/day) 1.858 1.740 1.828 0.344 0.354 0.354 
      (m3/s) 1.415 1.325 1.392 1.105 1.137 1.139 

Q90_dur_5yr (day) 29 35 41.4 34.8 41.8 44.6 

Q90_day_1 (Julian day) 158 155 146 196 226 225 

  (date) 7th June 4th June 26th May 15th July 14th Aug. 13th Aug. 

Table 2. Low flow hydrological indices calculated from all available observations (Obs) and simulated time series (Sim|Obs: 23 
for dates with observation available within 1963-2011; Sim Ref: complete 1963 and 2011 period). 24 

25 
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