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Comparison of small-footprint discrete return and full waveform airborne lidar data for

estimating multiple forest variables
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4Virginia Polytechnic Institute and Sate Univer sity, Department of Forest Resources and
Environmental Conservation, Blacksburg, VA 24061, USA.
® Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, UK.
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Abstract:

The quantification of forest ecosystems is important for a variety of purposes, including the
assessment of wildlife habitat, nutrient cycles, timber yield and fire propagation. This research
assesses the estimation of forest structure, composition and deadwood variables from small-
footprint airborne lidar data, both discrete return (DR) and full waveform (FW), acquired
under leaf-on and leaf-off conditions. The field site, in the New Forest, UK, includes managed
plantation and ancient, semi-natural, coniferous and deciduous woodland. Point clouds were
rendered from the FW data through Gaussian decomposition. An area-based regression
approach (using Akaike Information Criterion analysis) was employed, separately for the DR
and FW data, to model 23 field-measured forest variables. A combination of plot-level height,
intensity/amplitude and echo-width variables (the latter for FW lidar only) generated from
both leaf-on and leaf-off point cloud data were utilised, together with individual tree crown
(ITC) metrics from rasterised leaf-on height data. Statistically significant predictive models (p

< 0.05) were generated for all 23 forest metrics using both the DR and FW lidar datasets, with
R?values for the best fit models in the rande=F.43 - 0.94 for the DR data and R0.28 -

0.97 for the FW data (with normalised RMSE values being 18% - 66% and 16% - 48%
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respectively). For all but two forest metrics the differebeéveen the NRMSE of the best
performing DR and FW models was7%, and there was an even split (11:12) as to which
lidar dataset (DR or FW) generated the best model pertforesic. Overall, the DR data
performed better at modelling structure variables, whiist FW data performed better at
modelling composition and deadwood variables. Neither showed a athantage at
modelling variables from a particular vegetation layemépy, shrub or ground). Height,
intensity/amplitude, and ITC-derived crown variables were shtavibe important inputs
across the best performing models (DR or FW), but the additiated-width variables
available from FW point data were relatively unimportant. &hpps greater significance to
the choice between lidar data type (i.e. DR or FW) in detengpithie predictive power of the
best performing models was the selection of leaf-on and/éwotealata. Of the 23 best
models, 10 contained both leaf-on and leaf-off lidar variabledsidil contained only leaf-on
and two only leaf-off data. We therefore conclude that althougHie&¥ has greater vertical
profile information than DR lidar, the greater complimentarfporimation about the entire
forest canopy profile that is available from both leaf-on andd&adata is of more benefit to

forest inventory, in general, than the selection betweRmDFW lidar.

Keywords: remote sensing; forest inventory, airborne lagamseg; area-based regression

1. Introduction

A forest ecosystem can be described in terms of its strijctam@positional and functional
properties, which can be strongly influenced by any managememigstsatpplied to a site.
The quantification of forest structure is important for a raofyelisciplines, as vegetation
structure is related to a wide variety of ecosystem psesesHowever, a comprehensive
understanding of the overall spatial patterns of structuraltiarian large forested landscapes

is still largely incomplete (Anderson et al., 2008).
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The management of an area is often assisted by landsadeassanitoring (Newton et al.,
2009), with a requirement of measuring both vertical and horizontailcsid=or example, the
assessment of timber yields requires information on the deowisitges, together with their
species and size (Matthews & Mackie, 2006). Such data allevguhantification of timber
yield and its associated economic value, and in addition risksassesfor fire, wind or pest
damage, which are also partially dependent on canopy structerdcaV structure is of
importance in determining the species composition of ground floragfes al., 2000), in the
assessment of habitat quality for many forest-dwelling spéidiesley et al., 2009), and as an
indicator of biodiversity (Ferris & Humphrey, 1999). Traditiondlyest inventory data are
collected through manual field observations in sample plots. Tiefibef this approach can

be high accuracy, but it is time consuming and expensive (Aplin, 2005)

Airborne remote sensing technologies such as lidar can ch#&acbath horizontal and
vertical structures in forested environments. The use of tidarapidly come to prominence
in estimating forest biophysical characteristics, suataaspy height and basal area (Evans et
al, 2009). Most commercial airborne lidar systems are diwatiprint (i.e. < 1m) and deliver
discrete return (DR) point data. The point data correspond toitighsities in the back-
scattered light of the laser pulse interacting with a sarfallowing some systems to record
multiple returns per laser pulse (typically 1 - 5). Due tatétions in the design of most multi-
return airborne lidar systems, there is a sizable ‘blind qpotdead zone) following each
detected return (typically 1.2 m to 5.0 m) in which no other sesfatan be detected
(Reitberger et al., 2008). Range resolution is determined dgrigeh of the transmitted pulse

and the maximum number of returns recorded by the sensor. Themigoadsing algorithms



76  which are used to detect returns are often proprietary and beéteveen DR lidar sensors
77  (Disney et al., 2010; Neesset, 2009).

78

79  Recent developments in scanning lidar technology resolve she &f a blind spot. Small-
80 footprint, full waveform (FW) lidar systems have become lalsée commercially. FW lidar
81 sensors digitize the total amount of laser energy returned &etisor in fixed time intervals
82 (typically 1 ns to 5 ns), providing a near continuous distribution of ‘saakered laser
83 intensity for each recorded pulse (Wagner et al., 2008). Insfeelduds of individual three-
84  dimensional points, such as with DR lidar, small-footprint k& devices provide connected
85 profiles of the three dimensional scene, which contain moEletktinformation about the
86  structure of the illuminated surfaces (Alexander et al., 2(B&¢h waveform consists of a
87  series of temporal modes (or echoes), where each correspardmtbvidual reflection event
88 from an object or set of close but separated objects. Eachplalse waveform represents
89 complex data, which requires sophisticated processing before snetit be generated
90 (Chauve et al., 2009). One potential approach to derive informationtfr@waveform is to
91 identify proximal peaks, or returns, to present the waveform sexias of Gaussian curves;
92 fitted by a non-linear least squares approach (Miura & J@@€); Wagner et al., 2006). The
93 replacement of Gaussian functions with stochastic functiosesdoan marked point processes
94  (Mallet et al., 2010) has also been suggested as a methpdaafssing small-footprint FW
95 lidar data. Extracting individual returns from FW data can hheeeffect of removing the
96 blind spot present in DR data that have been processed by mppsettware.

97

98 Airborne DR lidar systems have been utilised for the estimatolretrieval of various forest
99 related variables, which are important to management and exallogbnitoring. This is due

100 to an inherent ability to provide both geo-referenced horizontal atidalenformation on the
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structure of forest canopies, with sampling dependent on theofyjidar system used and
flight configuration (Evans et al., 2009; Naesset, 2009). The almsbus vegetation measure
extracted from lidar is that of canopy height. Plot- or staméteegression analysis or non-
parametric model estimates of canopy density, mean tree hieagtati area and volume have
been applied (Bouvier et al. 2015; Hyyppa et al., 2008; Naesset, 20Dé). €udies have
been able to characterise understorey vegetation cover and sigipoéssed trees (Estornell
et al., 2011; Maltamo et al., 2005), assess regenerationnsatad floristic composition
(Bollandsés et al., 2008; Leutner et al., 2012), and estimamwd®d volume (Kim et al.,
2009b; Pesonen et al., 2008). Lidar sensors, typically DR, carctcdiiéa at point densities
sufficient to identify individual tree crowns in forest canopies arishege crown horizontal
extent and vertical depth (Kaartinen et al., 2012). Such indivite@lcrown (ITC) metrics
have been identified as important inputs into predicative modefsre§t variables (e.qg.

Hyyppa et al., 2001; Persson et al., 2002; Popescu et al., 2004).

With an increasing accessibility of small-footprint FW lid#drere is a small but growing
number of published studies which evaluate FW and DR lidar foeshimation of forest
structural and compositional parametérsr example, Cao et.a2014) compared statistical
predictions of total living biomass obtained from DR lidar mstii.e. height and height
variance measures, canopy return density measures, and canopyeasares) and from FW
lidar metrics (i.e. height of median energy, waveform degaheight/median ratio, number of
peaks, roughness of outermost canopy, front slope angle, return waesfergy and vertical
distribution ratio). They extracted the DR data by Gaussian decdiopad the FW data, and
therefore the two datasets shared the same sampling ratetehistias but supplied different
sets of metrics due to the way the full waveform informatias processed. They found that

lidar metrics related to canopy height (either DR or FW ddjiwere the strongest predictors
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of total biomass, but that there were benefits from the sigtiergise of DR and FW lidar
metrics in estimating the different biomass pools in the foesical structure. Lindberg et al.
(2012) outlined a method to analyse both DR and FW lidar data festimeation of canopy
vegetation volume for coniferous and deciduous forest. Estimatesiushe from FW lidar
were predicted more accurately than from DR lidar, eslhegien corrections were applied
for the shielding effects of higher vegetation layers basedeBaer-Lambert Law. Allouis et
al. (2013) reported similar results where the inclusion of FW iosetimproved model
estimates for the prediction of above-ground biomass of individeast,tbut gave slightly
inferior estimates of stem volume when compared with DR latdy. Yu et al (2014)
compared DR and FW lidar for individual tree crown delineation andabdorest species
classification, reporting that FW lidar was slightly bettardetecting trees, whilst DR metrics
combined with FW metrics improved species classifications.sfomet al. (2013) compared
DR and FW lidar data for the estimation of vertical canopy gegbability for savanna

woodland, showing that models produced using FW lidar data weramsuper

The use of small-footprint DR lidar data for forest inventory usincgarea-based regression
approach is now well established (Neaesset, 2007). As small-foofpintidar data become
more readily available, early studies suggest possible bereefd potential drawbacks in
moving towards these data. As yet there has been no syistesnaly to compare small-
footprint DR and FW data for the estimation of multiple inventaayiables from across a
forest profile. This study addresses this research gap, cogmpexint cloud data and derived
products from DR lidar and from Gaussian decomposition of FW lider vilork of Cao et al.
(2014) compared standard DR height metrics with newer sets ofidaV metrics, and
specifically avoided investigating the effects of higher dgnsoint clouds provided by FW

lidar decomposition. Here we specifically focus on a comparissiwden the different
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information content on forest vertical and horizontal structure anorded return pulse
characteristics in DR and FW-derived point clouds. We assessrafhon forest inventory
variables covering all forest vegetation layers (canopy, shndb ground layer) and both
living and dead wood. Airborne DR and FW lidar data were acquiredltaimeously under
both leaf-on and leaf-off conditions, and variables from both (inclupamgt cloud and ITC-
derived lidar variables) are used in area-based regressionllimpds forest inventory

variables. The wider context of this work was forest conditssessment.

2. Data and M ethods

2.1 Sudy site

The study site is located within the New Forest Nationak,Peetween Southampton and
Bournemouth, in southern England (lat: 50° 50' N, long: 1° 30" Wis Mhational Park has
multiple land covers and land uses, with much of the forestedaateely managed (see
Tubbs 2001). This study is focused on a ca. 23 &ma that sits in a triangle between the
villages of Lyndhurst, Brockenhurst, and Beaulieu. This area ishimg, between 5m and
45m above sea level, with only gently undulating terrain. Thesfforecludes managed
inclosures, in addition to unenclosed areas which are not subjetling operations and are

permanently open to grazing by large ungulates (mostly poresadd cattle).

The study area contains several types of semi-natural andtmantoniferous and deciduous
forests in close proximity (Newton et al., 2010). Deciduous spauthsde: oaks Quercus
robur and Quercus petrea), beech Fagus sylvatica), common alderAlnus glutinosa), silver
birch (Betula pendula), sweet chestnutCastanea sativa), and holly (lex aquifolium).
Coniferous species include: Corsican pifengs nigra var. maritime), Scots pinePinus

sylvestris), Douglas fir Pseudotsuga menziesii) and Norway spruceP{cea abies). This array
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of forest types within close proximity to each other presentside range of available
structural and compositional variables of interest, such as cayays/and the presence of

deadwood or understorey.

2.2 Field data collection

Using pre-existing data, the woodland areas of the study site gt into coniferous,
deciduous and mixed woodland compartments and stratified accordingeito rélative
biomass, as derived from Normalised Difference Vegetation I(ldBX/1) data. A total of 41
field plots were then randomly located across this straificddb enumerate a range of forest
types and canopy conditions. An initial 21 plots were visited in thanser of 2010
(subsequently used for establishing relationships), with theimarga20 plots visited in a
further field campaign in the summer of 2012 (used for validatifedioaships). The field
plots were only enumerated if they were located a minimuritOofn away from a stand

boundary in order to limit any potential edge effects.

Field data were collected from north-oriented 30 m x 30 m phdtsa 10 m x 10 m subplot
in the south-west corner. Plot positions were located accursigly a combination of a Leica
GPS 500 (Leica Geosystems) and Sokkia 6F total station (SOKRIRCION Co. Ltd.). Post-
processing of the coordinates was performed in Leica Geo-gsffit@are (version 8.2). Total

horizontal positional error was calculated<a®.08 m.

Plot-level totals and averages were calculated for eachréeorded metric. Within each plot,
diameter at breast height (DBH) was recorded at 1.3 m ahevground for every stem, and
for those with DBH > 10 crma 3D position (via total station) was recorded to estiratedm

spacing. In addition, canopy top height (m), height to the ligrayvn (HTLC) (m), crown
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horizontal dimensions in the east-west and north-south directionsspmuies type were
recorded. Vertical height measurements were calculatettig@nometry, using a measured
horizontal distance from the tree stem and an angular measuyéraeng clinometer, to the
required vertical feature. Plot-level basal area wasulzéd by summing the area of a circle
calculation applied to each tree DBH measurement within theeptent. The number of
stems of native tree species was recorded. Nativespeeies within the study site were
considered to include Scots pine, common alder, oak, beech, lsitear holly and sweet

chestnut.

The species compositional indices of the Shannon-Wiener indexX$8dihnon, 1948) and the
Simpson index (SI) (Simpson, 1949) were utilised in this study. ThenShaVNiener
diversity index for all tree species was calculated as:

n
SH =) pilogep [1]

=1
wherep; = the proportion of individuals (plot stem number) in itiespecies, and is the
number of species. The Simpson index was calculated forpeees in each plot as:
S1=1- (Z(l - p»m) 2
i=1
wherep; = the proportion of individuals (plot stem number) in itiespecies, and is the

number of species.

Each of the standing deadwood items, or snags, within a fieldva®trecorded. Snags were
defined as standing deadwood > 10 cm DBH (Spies et al., 1988)vS8uoatge was calculated
using the formula for determining cylindrical volume using height girth measurements.
Downed deadwood (DDW) was defined as deadwood logs or brancheseafsatlD cm

diameter lying on the ground (Spies et al., 1988). MeasuremerMf were made in the

9
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10 m x 10 m sub-plot only. Length and girth around the maximum and mindiameters of
the log were recorded. Estimates of DDW volume were détedrusing the equation for a
frustum of a cone. To assess deadwood decay class, snagb@hav&e divided into three
decay classes according to the following criteria, as defmé&hntarello & Newton (2008):
() logs with a low decay state, no surface breakdown, barkratiit, wood structure firm; (ii)
logs with a moderate decay state, with some surface breakemend, structure weaker but
bole mostly sound; and (iii) logs with high decay state, extermiviace breakdown, bark
mostly absent, bole with no sound wood present and colonised with vegefatgine-

weighted average decay class score was then calcutdatexdot level.

The number of saplings and their species types (including the numbaplofgs of a native
species) were recorded within each field plot. Saplings defieed as tree stems > 1.3 m in
height with DBH < 10 cm. The total number of seedlings, the@cies type, and number of
seedling stems of native species within the sub-plot exterd aiso recorded. Seedlings were
defined as tree stems < 1.3 m in height. The number of vasglaat species and the

percentage of bare ground within each 30 m x 30 m plot weyeedsrded.

In total, 23 forest variables were recorded in the field sulgsequently investigated using

airborne lidar data. Summary information of field data acros2ihplots surveyed in 2010

and 20 plots surveyed in 2012 is given in Table 1.

[insert Table 1 here]

2.3 Airborne lidar data collection

10
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Small-footprint lidar data were acquired for the study area under leaf-off (April 8) and leaf-on
(July 6) conditions in 2010. The lidar instrument used was the Leica ALS50-II airborne laser
scanner with an upgrade to allow the simultaneous recording of DR and FW data. On both
dates the lidar data were acquired at a flying altitude of ca. 1600 m, with a pulse repetition
frequency (PRF) of 147 kHz, a beam divergence of 0.22 mr, and a scan half an{leTbie10
geometric accuracy for the scanner is stated by the manufacturer (Leica Geosytems) as a
nominal vertical accuracy of 0.05 m to 0.10 m, and horizontal accuracy of 0.13 m to 0.61 m.
With the chosen flight and sensor configuration, the average sampling rate for the leaf-on and
leaf-off data was 5.0 and 5.2 pulse¥ nespectively (including areas of flight-line overlap).

The DR and FW data were recorded from the same set of emitted pulses, but the ALS50-II
scanner could only digitise the full waveform of every other pulse at the PRF used for these
acquisitions. In actuality, the sampling rate for the FW lidar data was slightly less than half
that of the DR data quoted above (49% and 48% for the leaf-on and leaf-off data respectively)
due to minor recording errors. The DR data had up to four discrete returns per laser pulse, with
X-, y- and z-coordinates, intensity, and return number supplied for the first, intermediate, and
last significant returns per pulse. For the FW data, 256 return signal amplitude values
(sampled every two nanoseconds for the April data and every one nanosecond for the July

data) were supplied for each laser pulse.

2.4 Airborne lidar data processing

The DR lidar data were supplied as LAS 1.0 format files, with a basic classification

identifying noise returns already applied using Terrascan softwée/fvww.terrasolid..

A number of pre-processing steps were required before metrics could be derived from the lidar

data for subsequent analysis. All of these steps were performed using the RSC LAS Tools
). The DR point cloud data

software (version 1.9.3)ht{tp://code.google.com/p/rsclastools

11



272 required filtering to separate the ground and vegetation hits sgrthaid elevation could be
273 determined and used to normalise vegetation hits to above-ground MRStLAS Tools
274  software employs a progressive morphological filter, as odtlineZzhang et al. (2003), to
275  filter out ground returns, which were then interpolated into a seiida 1m resolution using the
276  nearest neighbour method. Ground elevation values were then remmowedhe DR lidar
277 dataset to yield vegetation height. All points which intergkatighin field plot locations were
278 clipped from the dataset and used to create plot-level lidé@ables, as in Falkowski et al.
279  (2009) and Hudak et al. (2008). These included eight variables (mnehan, maximum,
280 standard deviation, variance, absolute deviation, skewnedsigndis) which were calculated
281  from the height data (separately for all and non-ground returns) amdtifre intensity data
282  (separately for all, non-ground and ground returns) for both leaf-onlemfebff lidar
283  acquisitions. This totalled 80 variables. In addition, percendites% intervals between 5%
284 and 95% were created for both height and intensity data usinguatseseparately for both
285 leaf-on and leaf-off acquisitions. This totalled an additionalattables (as the maximum and
286 median values were already calculated above).

287

288 In addition, canopy cover was calculated as:

g
= 3
¢ <hall> [ ]

289  where hyg and hy denote the sum total of non-ground returns and the sum of all returns,

290 respectively. A vertical profile was generated by diauy the frequency of all returns at the
291  plot-level vertically for every metre. The number of \ati layers was estimated by
292 iteratively fitting Weibull functions to the vertical pitef (fit to the frequency of return height
293  bins), where local maxima or ‘peaks’ were taken to represetitaldayers and troughs were
294 taken to be layer divisions (Coops et al., 2007). The number aif logxima was considered

295 to identify the number of vertical layers. The largestivalr separation between layers, or

12
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between a layer and ground, was then calculated for each pletive the largest vertical gap
within the canopy profile. These three metrics (canopy cover, nuaflenopy layers, and
the size of largest vertical canopy gap) were calculatparaeely for the leaf-on and leaf-off
DR lidar data. Thus, a total of 158 metrics were derived tft@DR point cloud data for each

30 m x 30 m field plot area.

The FW lidar data were provided in LAS 1.3 file format, contgnGPS, IMU, and laser
pulse return waveform data. The FW lidar pre-processing tasks performed using the
Sorted Pulse Software Library (SPDIib) (version 1.0.0) (Burdirg., 2013a, 2013b). In order
to derive 3D point information from the recorded waveforms, as wecessary to apply a
process of Gaussian decomposition to each (as described in Véager2006), identifying
peaks in the return signal above a background threshold level rdaprgsenise. A
combination of angular measurements, bearing, positional inforntitre aircraft and first
peak coordinates, trigonometry and the relevant pulse timings (@ 1 ns) allowed the
estimation of the 3D locations for each of the fitted Gauspeaks, in addition to peak
attributes such as amplitude and width. This yielded between ILhandturns per pulse,
supplying x-, y- and z- coordinates, amplitude and width per refim@.majority of pulses
generated at least two returns in the leaf-on data andsateae returns in the leaf-off data,
which compared with the majority of pulses generating only sirgglens in both the leaf-on
and leaf-off DR lidar data. The sampling rates of the DR &NbBint clouds are summarised
in Table 2. Overall, the FW lidar provided more returns fohgadse than the DR lidar (and
more information per return), supplying a higher vertical samptg (Figure 1). However,
the total sampling rate was lower in the FW data, and iicpkar the horizontal sampling rate

at the canopy surface was considerably higher in the DR dhta. contrast in sample

13
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distribution between DR and FW lidar across the 3D volume of atftaredscape is the focus

of the data comparison being made here.

[insert Table 2 & Fig 1 here]

The SPDIlib software also provided tools for noise filtering, teggen classification and
height normalisation on the extracted point data. As with the @&ptacessing, this used the
progressive morphological filter, as outlined in Zhang et al. (2@63)entify ground returns.
The above-ground heights were then calculated by subtracting the glemation surface (as
interpolated by a natural neighbour algorithm from the classifredngl returns) from all
returns. Subsequently, all returns which intersected within fiedt lptations were clipped
from the dataset, and eight variables (mean, median, maxistandard deviation, variance,
absolute deviation, skewness and kurtosis) were calculatedteoheight data (separately for
all and non-ground returns) and from both the amplitude and echo-widtlisdatately for
all, non-ground and ground returns), all for both leaf-on and leafetf hcquisitions. This
totalled 128 variables. In addition, percentiles at 5% interbatsveen 5% and 95% were
created for height, amplitude and echo-width data using all reggparately for leaf-on and
leaf-off acquisitions. This totalled an additional 108 variablHse metrics derived from
analysis of the canopy horizontal and vertical profile (i.e. cammwer, largest vertical gap,
and number of vertical layers) were also calculated frorfroleaand leaf-off FW data in the
same way as for the DR metrics. A total of 242 metriceeveerived from the FW-derived

point cloud data for each 30 x 30 m field plot area.

Individual tree crown (ITC) delineation techniques were implegtoh the DR and FW lidar

data (leaf-on only) using the Toolbox for Lidar Data Filtering ancestoStudies (TIFFS)
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software (version 5.0)h{tp://www.globalidar.com A 1 x 1 m resolution raster Canopy

Height Model (CHM) was created using the maximum above-ground hrighth cell. Tree
crowns were isolated using a marker-controlled watershed segfioantethod, as used in
Chen et al. (2006), where tree top positions were located and regions’ into areas of
decreasing height. The identification of individual tree crowns peaformed separately using
leaf-on DR and FW lidar data, resulting in a GIS databadadofidual tree locations and
crown attributes. Note that ITC objects with a crown horizoradius < 1.5 m or a height
< 1.3 m were removed from this database as non-tree feadliremmaining ITC objects with
a centroid within the field plot extent were extracted and this wsed to generate eight plot-
level ITC variables for both the DR and FW data: mean treghheinean and total crown
area, mean and total canopy volume, mean and standard deviatistaate between trees,
and the number of trees per plot. These were extracted ussgjtware (version 2.15.2)

(http://www.r-project.org).

2.5 Satistical analysis

A modification to the approach outlined in Langton et al. (2010) was taseonduct a ‘data
mining’ exercise to identify important predictor variables for sgpent regression analyses.
This was necessary due to the high number of lidar predictor \emiahd their potential high
colinearity with one another, (up to r = 0.9 in many cases).eitvey, the ‘MuMin’ (Multi-

Model Inference) package for R software (version 1.9.9)ttpf/CRAN.R-

project.org/package=MuM)nwas used to run Akaike Information Criterion (AIC) analysis t

regress the field data from the 21 plots visited in 2010 agthi@sorresponding lidar metrics.
In this case, due to the small number of field plots abigaa second order information
criterion (AlICc) was implemented. AICc incorporates aager relative penalty for extra

parameters, therefore decreasing the probability of selentiodels that have too many
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parameters and might over-fit the data (Burnham & Anderson, 2002ilyses were
performed separately for the DR and FW lidar data. To determhich lidar variables had
the most potential for the prediction of forest attributes, an attorstepwise AICc selection
was used on the dataset for 500,000 iterations, where eacloitdranctioned on a subset of
six randomly selected predictor variables. Significant predicteere recorded for each
iteration and the variables with the most counts acrosteddtions identified. For each of the
23 field metrics assessed, a subset of the lidar prediat@bles determined to be the most
significant (i.e. those with the highest counts) were input irftother stepwise AICc process
to derive a final regression equation. Twenty predictor besadetermined to be the most
significant for each field metric were entered into the ste@w@pproach. Note that zero values

in the field plot data were included in the regression angalyse

The stepwise procedure thus produced a regression model using ac$ubsetnput lidar
variables for each field metric. Several criteria weied to examine potential models,
including R and adjusted & individual covariate significance (Type Il errortests, p<
0.05); absence of multi-colinearity (i.e. variance inflatif@ctor < 1, see Bowerman &
O’Connell, 1990); and residual homoscedasticity. Root Mean Square (BWISE) of each
model was assessed using the 20 field plots that were not ussi@liishing the models. The
final models selected were those which exhibited a combinatior ddwrest changes of’Ro
adjusted R and the lowest overall dataset RMSE, whilst still satigfyindividual covariate
criteria. Adjusted Ris considered more conservative thah) fRus models where the two
showed little change were sought when using multiple predictbeseXclusion of redundant
covariates was addressed by the examination of individual stamdeod and variance
inflation factor values, as model validity in multiple lineagression relies partly on the

number of observations and covariates.
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3. Results

Statistical models were developed for each of the 23 fieliecs using the DR and FW lidar
as separate datasets. Input variables for each model could gbtdyei drawn from ground,
non-ground or all returns, from leaf-on or leaf-off data, for heigtensity/amplitude or echo-
width measures, and could also include ITC-derived metricsatfstcally significant model
(at p < 0.05) was created for all field metrics using thelithar datasets (DR and FW). Across
the 23 field metrics, the ®alue for the best fit model covered the rande=R.43 - 0.94 for
the DR data and = 0.28 - 0.97 for the FW data (Table 3). The normalised RM®Ered
the range 18% - 66% for the DR models and 16% - 48% for the FW snddhel difference in
NRMSE between the best fit DR and FW model was kw%) for all but two forest metrics
(number of sapling species and number of vascular plant spdtigispuld be noted that for
11 of the 23 forest metrics, the best fit models (i.e. thagethe highest B did not generate
the best predictions based on independent field validation data, thossteating over-fitting
of some models to the input data. This was particularly notabblenéan crown horizontal
area, standing deadwood decay class, number of sapling spadiesumber of seedling

species.

[insert Table 3 here]

Across the 23 best performing models (i.e. those with the IoNBMSE) the number and
composition of input lidar variables differed (Table 4). Thuspaibels had between one and
four input variables; with 11 models having two input variablespgdels having three input
variables, and three models each with either one variable (nushlieze stems of native

species, downed deadwood decay class, and number of vascular gdaigs) or four
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variables (number of tree stems, Shannon-Weiner index of iijyeaad mean height to the
living crown). In terms of the nature of input variableg, @i the best performing models had
input variables of a single type (i.e. intensity/amplitudeglite echo-width, or ITC-derived),
whilst the remaining 17 had input variables of multiple types. lal,tdt8 of the best
performing models contained intensity/amplitude variables, l4agmut height variables, a
further 11 contained ITC variables, and 2 contained echo-width vesiabbcussing on the
timing of lidar input variables; 11 of the best performing modelstained only leaf-on data,
10 models contained both leaf-on and leaf-off variables, and 2lmodntained only leaf-off

data.

[Insert Table 4 here]

Separating the best performing models into those containingd2iR data (11 models) and
those containing FW lidar data (12 models), there was diilerence between the two sets of
models in the proportional composition of intensity/amplitude, heigttio-width, or ITC-
derived input variables (Table 5), and between those point cloiables derived using all,
ground or non-ground lidar returns (Table 6). However, there wastable difference
between the proportion of input variables from leaf-on and leaflath between the best
performing DR and FW lidar models. Thus, 22 of 26 input variablebarbest performing
DR models were leaf-on, compared with 18 of 29 input variahlélse best performing FW
models. In terms of the type of forest metric, 6 of 9 structue&rics were best modelled in
DR data, whilst 6 of 10 composition and 3 of 4 deadwood metrics westarndelled in FW
data. There was an even division between the two lidar datasetlation to generating the
best performing models across the vegetation layers; thugiBxiRdata were used in 6 of 13

canopy layer models, 2 of 3 shrub layer models, and 3 of 7 grayedrhodels.
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[Insert Tables 5 & 6 here]

4. Discussion

As outlined in Matthews & Mackie (2006) there is a requirenientknowledge within a
defined area of how many trees exist, what species theydrhair relative sizes, in order to
make predictions for management purposes. Both structural and cbomadsinformation
from remote sensing sources have been used in a number of gtudisimate forest
inventory metrics, and assess habitat and species prgtesed et al., 2011; Martinuzzi et
al.,, 2009). This study has demonstrated the ability of both DR antid@Wdata to estimate

multiple forest metrics across a study area.

For the 23 forest metrics investigated here, one was detdnwith high accuracy (i.e.
NRMSE < 20%), 17 with moderate accuracy (NRMSE 20% - 35%), tvo with low
accuracy (NRMSE > 35%) in the best performing models. Sontieisoérror may have been
the result of a 2 year time lag between the collection di Hw airborne lidar data and the
field plot data used to establish the models (2010) and the field pdousked to validate these
models (2012). Also, for many forest variables, the range affdai the field plots surveyed
in 2012 was outside that from the field plots surveyed in 2010, which vatsddhave had a

likely impact on the estimated prediction accuracy of moelsisblished using the 2010 data.

There is extensive surrounding literature on the estimation oofstf structural and
compositional metrics using airborne lidar data and an area-bagegssion approach.
However, many only predict a relatively limited number of forastrics (e.g. Hudak et al.,

2009; Hyyppa et al., 2008; Li et al., 2014; Lim et al., 2003; Nax3¥@4; Richardson &
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Moskal, 2011). Thus, no single study has covered such an extensiveofdagest metrics as
that presented here, especially relating to all vegetéi@rs in a forest. For those metrics for
which direct comparison can be made with other published studiesiuengper of tree stems
(Lee & Lucas, 2007; Neesset, 2002), mean height to the livingnc¢dwdersen et al., 2005;
Muss et al., 2011), DBH and basal area (Neesset, 2002; 2004), andidiemaevood volume
(Micke et al., 2013), the prediction accuracy in the current study a similar magnitude.
Standing deadwood volume was predicted with the highest NRMSE (16#6)thnee FW
lidar variables contributing to the best performing model: skesvieésamplitude in non-
ground returns (leaf-off), the ?Spercentile of echo-width in all returns (leaf-on) and the
standard deviation of ITC centroid spacing (leaf on). Thus, stgrdkadwood is detectable
where the return signal strength is low and skewed in relagisartounding living biomass,
and where there is variation in tree spacing. By contraspdteentage of bare ground cover
and number of sapling species were the least well modelled foeastures (with NMRSE of
42% and 48% respectively). Whilst the input lidar variableshierest performing models for
these two forest metrics are readily understandable (rgl&ti low order height percentiles,
canopy vertical structure, and variation in either amplitude rowm size), these are
nonetheless indicators of below canopy conditions in which saplings anddgflora may
exist rather than direct measures of the features theesselhe implication here is that
variance in overstorey canopy structure indicates structural@ngasitional diversity in the

lower portions of the forest.

In general, the DR and FW lidar datasets performed sigilaterms of the predictive power
of the models generated for each forest metric. In total, ltReobest performing models
included FW lidar data whilst the remaining 11 included RRrlidata. There was a slight bias

in these models of the DR data towards forest structure wesianld the FW data towards
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compositional and deadwood variables. Nonetheless, in all butases (the number of
sapling and vascular plant species), the difference in tHd®Rbetween the best performing
DR and FW model was slight 7%). A disparity existed between sample densities of DR and
FW lidar data in this study resulting from fewer FW pulsesidgpeecorded. However, small-
footprint full waveform lidar data offer a much higher potential detecting returns beneath
the canopy (Wagner et al., 2006). Thus, with the detection afadegmumber of return points
through Gaussian fitting for the FW lidar data, which provided inddion along the vector of
the laser pulse penetrating the canopy, the distribution of pointsotaldsampled forest
elements were different between the DR and FW lidar dafaisrstudy. The DR data had a
higher horizontal sampling rate at the canopy surface, whilstF¥Wedata had a higher
sampling rate through the canopy vertical profile. It was nothileneither DR nor FW data
showed a clear advantage at modelling forest metrics atati@py, shrub or ground level.
Thus the perceived advantages of a higher canopy surface rsqumgté in the DR data and a
higher vertical sampling rate in the FW data for modelliritedént elements of a forest were
not demonstrated as particularly significant in the resulthisfstudy. It should be noted, that
the reduced sampling rate of the FW data (compared with thelddy in this study was
specific to the lidar system and PRF used for data acquisitiorattempt was made in this
study to thin the DR data to the same horizontal sampling matihea FW data, as the
difference between the horizontal and vertical sampling ratieeofwo datasets and the effect
of this when using the data in area-based modelling of forest inyemtas the core
comparison being made here. Processing techniques to derive medbts from FW lidar
data for input into forest modelling are still in development, @&y provide more metrics
beneficial to future analyses, such as the backscatter sgosen or coefficient for each

waveform (Alexander et al., 2010; Wagner et al., 2010).
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520 The majority of the best performing statistical models ildfmetric estimation (i.e. 18 out of
521  23) involved the use of lidar intensity/amplitude variables festtmer DR or FW lidar. Moffiet
522 etal. (2005) and Kim et al. (2009a) indicated that the distributididanfintensity values in a
523 forest is related to the presence or absence of foliage susgadtial arrangement within the
524  vertical profile, which is dependent on stem density, canopy opemmesspecies types.
525 Hence deadwood biomass volume in a forest context exhibits diffedantintensity values
526 when compared with living biomass (Kim et al., 2009b). FurtherniRedberger et al. (2008)
527 showed that lidar return intensity can be used to distinguish betvesehark and coniferous
528 needles, and that the distribution of intensity values could beaiingdoof broad species types
529  (e.g. coniferous and deciduous), especially under leaf-off conditituhe: intensity from the
530 mid-canopy has been shown to be indicative of species number (Brandtbal., 2003),
531  whilst intensity metrics from the higher portion of the canopy (inlmoation with height
532 data) have been shown to make significant contributions to the poeditforest biomass (Li
533 et al.,, 2014). The usage of intensity information from small-fotpPR lidar systems
534 remains a somewhat contested issue, however, due to the prgpriethods that commercial
535 systems use to report return intensity which can change in fhigditing it impossible to
536 directly compare two returns (Disney et, &#010). Nonetheless, Kaasalainen et al. (2009)
537 showed the potential to calibrate DR lidar intensity data ussference targets of known
538 backscatter properties from laboratory testing.

539

540 FW lidar echo-width metrics were utilised in just two besifggening models; standing
541 deadwood volume, and the number of seedling species. FW return etthaelates to small
542  height variations of scattering elements within the footprintthef laser beam, and is
543 considered a means of inferring surface roughness (Wagner 2010). Miicke (2013)

544  considered the forest ground-level and fallen stems to san®th surfaces, whereas other
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vegetated elements, such as shrub vegetation, were considdvedrougher. It should be
noted that echo-width metrics were the predictor variabldstivit smallest contribution in the
regression models in this study, and therefore this additiar&ble only available in FW

data may be considered relatively unimportant for forest iovgmpLrposes.

It was notable that almost as many of the best performing smadeitained ITC-derived
variables (11) as contained point cloud height variables (14buhlbne of the field metrics
relating to tree structure and density (i.e. number of tremsstéheir mean spacing, mean
DBH, basal area, HTLC, and mean crown horizontal area) dtildet-level ITC-derived
variables within the predictive model equation. Of these, bimsarelated to the horizontal
areas of ITC delineated crowns and the spacing between ITC obje@smost used in the
modelling of tree structural properties. A number of other studave reported the benefits of
using ITC estimates of crown area in addition to varial#tgead to the distribution of height
values in the prediction of forest structural charactesissach as mean DBH and basal area
(e.g. Hyyppéa et al., 2001; Maltamo et al., 200#)should be noted that image-based ITC
delineation methods, such as those used in this study, have a rairoballenges relating to
how well both the vertical and horizontal components of a foresbeaguantified (Kaartinen
et al., 2012), which can constitute a source of error as non-daintieas are often obscured

or incorrectly identified in structurally complex forests

Almost half of the best performing models (i.e. 10 of 23)saddi a combination of variables
produced from both leaf-on and leaf-off datasets. These datadétsapture different

properties of the forest when acquired at peak and lowest leaf due to the different
penetration of the laser pulses through the canopy for both coniferdudeaituous species

(where deciduous leaf-loss is typically more obvious) (Ne&e2868). Lidar data flown under
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leaf-off conditions are optimal for surface feature mappindeatsires close to the ground are
less likely to be obscured; likewise this has applicationsuhderstorey mapping when data
acquisition is appropriately timed (Hill & Broughton, 2009). Kim let{2009a) reported that a
combination of both leaf-on and leaf-off intensity values gaeditional explanatory power
when combined in a single model for species differentiation, whmés some way to

capturing the variability in multiple forest structural types.

Only relatively basic lidar metrics were used within tlatext of this study, of which many
have also been used within the surrounding literature. There exratsnber of alternative
methods which could be implemented in future research, such agetbetion of vertical
layers by examining the return frequencies at different binnecdhtise{gr voxels) above
ground (e.g. Popescu & Zhao 2008; Wang et al., 2008). In addition, thrutadion of indices
relating to the overall vertical density of vegetativetdess, e.g. the vertical distribution ratio
or height-scaled crown openness index (Lee & Lucas, 2007) may improgel estimates.
More complex analysis of the FW waveform could also be perfottmetkrive variables
relating to the waveform shape, such as height of median emeaggform distance, and front
slope angle, as used in Cao et al. (2014). There are alsol®mnofmalternative approaches
available for the estimation of plot-level field metricgr fexample the random forest
algorithm (Breiman, 2001), whilst more fieldwork samples from shme year as lidar data
acquisition would potentially improve the precision and validity of medgmates (Strunk et

al., 2012).

5. Conclusions
The approaches used in the current study demonstrate that itildgts®stimate a range of

structural, compositional and deadwood forest metrics from airbigiamedata throughout the
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vertical profile and across a landscape. For 23 metrics iegdmstatistically significant
predictive models were generated for each using both DR anddaWdatasets in an area-
based approach. There was an even division between the bestmpeyf models that
incorporated DR and FW data, and in all but two cases the diffebeteen the NRMSE of
the best performing DR and FW models was slight€i.82). The prediction accuracy for the
best performing models ranged from an NRMSE of 16% for standing deadwhode to

48% for the number of sapling species.

Lidar intensity or amplitude variables (DR or FW respecyivelere the most numerous
selected in the best performing models. However, only two obés¢ performing models
contained the extra intensity-related variable (echo-wialiajlable only from FW lidar data.
Although these intensity variables were not calibrated in this sthey were indicative of the
presence and distribution of foliar and woody features within thiecakprofile. ITC-derived

variables were of almost equal importance as plot-level heggfdbles derived from the point

cloud in contributing to the best performing models.

Perhaps of greater significance to the choice between diatar type (i.e. DR or FW) in
determining the predictive power of the best performing modeldtveaselection of both leaf-
on and leaf-off data. Thus, of the 23 best performing aresdbesgression models, 10
contained both leaf-on and leaf-off data, whilst 11 contained onlyoleafata. We can
therefore conclude that the complimentary information about theedotiest canopy profile
that is available from both leaf-on and leaf-off data is ebtgr benefit to forest inventory in
general than the selection between DR or FW lidar data (if aseoint clouds). However,

this can be forest metric specific.
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The area-based method of developing models for the charatiberieé forest composition
and structure of the selected New Forest field site hag dipptications in forest management
and for wider objectives (such as forestry and habitat modelimg}her forested regions.
Although the models which incorporate lidar intensity are inhgrewth-transferable because
of the lack of calibration, the approach is transferable anddcbal applied in many
environmental contexts and to estimate other forest attributgpsaf@move-ground biomass) or

combined into estimates of forest condition.
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