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Abstract The West Spitsbergen Current, which flows northward along the western Svalbard continental
slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of high-
resolution seismic images and hydrographic sections across this current has uncovered the oceanographic
processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal
temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding
colder waters is observed. Strong seismic reflections characterize these interleaving features, with a nega-
tive polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived
sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of
obliquely aligned internal waves emanating from the slope at 450-500 m. They follow the predicted trajec-
tory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.

1. Introduction

Fram Strait, a 450 km wide passage located between Greenland and Svalbard, is a critical exchange point
for the ocean circulation of the North Atlantic [Hunkins, 1990]. It is here that warm and saline Atlantic water
(AW) flows into the Arctic Ocean, where it is cooled and freshened by heat loss and melting of sea ice
[Untersteiner, 1988]. The resultant Arctic water is then exported back through Fram Strait, where it contrib-
utes significantly to the heat and freshwater budgets of the North Atlantic (Figure 1a) [Schauer et al., 2004].
This water mass can ultimately impact the southward-flowing limb of the North Atlantic meridional over-
turning circulation through its effects on ocean density, which controls the efficiency of deep convection in
the Nordic Seas [Rabe et al., 2013].

In addition to these global impacts, warm AW within Fram Strait can influence regional ocean currents
[Beszczynska-Moller et al., 2012a), sea ice conditions [Kinnard et al., 2011], nutrient and carbon transports
[Torres-Valdés et al., 2013; MacGilchrist et al., 2014], the marine ecosystem [Hunt et al., 2013], and the stability
of marine gas hydrates [Westbrook et al., 2009]. Heat carried by AW exerts a strong control on Arctic sea ice
stability, as heat from that layer can be mixed diapycnally through its upper surface, thereby becoming
available to melt ice [Sirevaag and Fer, 2009; Fer et al.,, 2010b; Polyakov et al., 2010]. Considerable shrinkage
of Arctic Ocean ice coverage in the past three decades has been linked with AW warming [Ivanov et al.,
2012]. Moreover, increased ocean temperatures and reduced sea ice coverage encourage enhanced plank-
ton production, which in turn influences fish populations and consequently, much of the marine ecosystem.
Seasonal to decadal changes in bottom water temperature are likely to control current and future methane
hydrate dissociation on the upper continental slope offshore of west Svalbard [Marin-Moreno et al., 2013;
Berndt et al., 2014], triggering release of hydrate-bound methane into the ocean.

Along the continental slope of western Svalbard (Figure 1b), the northward-flowing continuation of the Nor-
wegian Atlantic Slope Current, known as the West Spitsbergen Current (WSC), advects warm AW, reaching a
depth of 450-500 m [Orvik and Niiler, 2002]. A layer of fresh Polar Water (PW) overlies more saline AW (Fig-
ures 1c and 1d). The PW is sourced from a combination of glacial meltwater, water from the major fjords,
precipitation, and sea ice melt [Saloranta and Svendsen, 2001; Cottier et al., 2005]. The northward-flowing
warm AW loses heat and salt as it mixes with the local fresh PW [Saloranta and Svendsen, 2001; Sirevaag and
Fer, 2009]. The dynamics of the WSC and, in particular, the mechanisms of mixing by mesoscale processes,
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Figure 1. (a) Schematic of the circulation of the Nordic Seas, adapted from Beszczynska-Moller et al. [2012a]. The Norwegian Atlantic Current (NWAG, red line) is the northward-flowing
eastern branch of the warm and saline Atlantic Current. The western branch of the Atlantic Current flows along the mid-oceanic ridge system. Off the coast of west Svalbard, the NwAC
is known as the West Spitsbergen Current (WSC). The East Greenland Current (EGC, blue line) brings cold Arctic water from the north and flows southward along the east Greenland con-
tinental margin. (b) Locations of seismic lines (black lines) and CTD stations (black circles). The current meter mooring locations (F1-F4) are shown by red triangles. (c) Water mass divi-
sions on the 0-S plot of the CTD data along transect AD following Schlichtholz and Houssais [2002]. Potential density anomaly contours in kg/m? (reference pressure = 0 dbar) shown in
the background. PW = Polar Water, AW = Atlantic Water, and AIW = Arctic Intermediate Water. 0-S variations at the transition between PW and AW are enlarged in the inset at the lower
left corner. (d) Potential temperature section along an east-west CTD transect (AD in Figure 1b) with water mass boundaries.

internal waves, and the interaction with local water masses remain sparsely investigated due to the scarce
observational records both within Fram Strait and on the West Spitsbergen shelf and upper slope. More-
over, owing to their coarse lateral resolution (typically >10 km), conventional conductivity-temperature-
depth (CTD) sections have considerable uncertainty in resolving the horizontal oceanic thermohaline struc-
tures associated with mixing processes. In order to improve understanding of ocean mixing and thermoha-
line circulation, it is important to resolve both mesoscale and fine-scale structures along hydrographic
sections.

Seismic oceanography, a technique that maps acoustic reflections caused by thermohaline interfaces in the
water column, provides a method of measuring oceanic thermohaline structure at unprecedented horizon-
tal resolutions [Ruddick et al., 2009]. The technique has provided new insights into a variety of ocean phe-
nomena, such as thermohaline interleaving [Holbrook et al., 2003], internal waves [Holbrook and Fer, 2005],
double diffusive layering [Biescas et al., 2008], thermohaline staircases [Fer et al., 2010a] large-scale overturns
[Sheen et al., 2012] and mesoscale eddies [Sheen et al., 2009].

In this study, we use multichannel seismic reflection data collected west of Svalbard, alongside complemen-
tary hydrographic measurements, to examine the characteristics of the local thermohaline fine structure.
The main objectives of this study are (1) to map out the high-lateral-resolution spatial structure of the water
mass boundaries in the region, and (2) to understand the role of mesoscale and fine-scale physical
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processes in promoting both lateral and vertical mixing between warm AW and surrounding water masses.
This work aims at a qualitative description of mixing processes using seismic data collected in summer
2008, concentrating on the warm AW in Fram Strait.

2. CTD, Seismic, and Ancillary Data

Conductivity-temperature-depth (CTD) data for the study area were compiled from the World Ocean data-
base 2009 [Boyer et al., 2009]. Sixteen CTDs (Sea-Bird MicroCAT SBE37) covering water depths from 260 to
1500 m were collected on 12 September 2008 onboard RV Hakon Mosby (CTD transect AD in Figure 1b).
The CTD spacing varied along this transect: it was ~10 km above the shelf and shelf break, ~3 km above
the uppermost continental slope (water depths 300-800 m), and ~7 km above much of the slope (water
depths 800-1500 m). Potential temperature (0), potential density (p), and sound speed (c) were derived
from the CTD data following the international thermodynamic equation of seawater-2010 [/OC et al., 2010].
Salinity (S) presented here is unitless on the Practical Salinity Scale-1978. Our analysis uses these CTDs due
to their proximity in time and space to our seismic data set.

Multichannel seismic reflection (MCS) data were collected during the cruise JR211 onboard RRS James Clark
Ross between 5 and 7 September 2008 (Figure 1b). The seismic lines are almost perpendicular to the main
flow direction of the WSC. The seismic source consisted of two generator-injector air guns, each with a vol-
ume of 2.46 L (150 cubic inches), 0.74 L (45 cubic inches) generator, and 1.72 L (105 cubic inches) injector
and towed at a depth of 3 m. The air gun firing interval was 5 s (~12.5 m) and the sampling rate was 1 ms.
The seismic streamer was 600 m long with ninety-six 6.25 m long hydrophone groups. Data processing
included removing the direct arrival using an eigenvector filter, common midpoint binning (bin size
3.125 m), a static shift of —9 ms (as the source wavelet does not start at zero time), band-pass filtering
(Ormsby band-pass filter with corner frequencies at 10, 20, 100, and 200 Hz), a geometric spreading correc-
tion, and true amplitude prestack time migration with CTD-derived sound speed. The wavelet for the reflec-
tions in the water column shows peak energy at frequency about 70-75 Hz. Assuming a constant sound
speed of 1470 m/s, the vertical resolution is ~5 m. Sound speed was derived from the seismic data.

Multibeam swath-bathymetry of the upper continental slope was collected during the JR211 cruise (gridded
to 20 m cell size) [Sarkar et al., 2011]. We also used current meter data to compute tidal harmonics. We ana-
lyzed Aanderaa RCM9 current meter mooring data from 7 July 2008 to 3 July 2009 to determine the tidal
components on the upper continental slope of west Svalbard. Conductivity, temperature, and pressure
were recorded by CTDs (Sea-Bird MicroCAT SBE37) at the moorings. Mooring locations (F1-F4) are shown in
Figure 1b. Teigen et al. [2010] provided a detailed overview of all the moorings (F1-F7). Current meters were
instrumented at depths of 70, 250, 750, and 1500 m [Beszczynska-Moller et al., 2012b] and sampled at inter-
vals of 2 h. The tidal harmonic analysis was performed using the Matlab software routine T_TIDE [Pawlowicz
et al., 2002]. We interpolated the time series of eastward (u) and northward (v) flowing current components
onto an hourly time base as an input requirement for T_TIDE.

3. Water Mass Structure

A 0-S plot (Figure 1¢) of the CTD data along transect AD shows that water masses of four categories are
present: PW (0 > 0°C; S < 34.9), two types of AW (0 >2°C, S>34.91 (warm AW); 0°C < 0 <2°C, S>34.91
(cold AW)), and Arctic Intermediate Water (AIW, —1.1°C < 0 < 0°C; 34.7 < S < 34.9). Water mass boundaries
are shown on the potential temperature section obtained from the CTDs (Figure 1d). Warm AW occurs
below a thin cap of PW that is usually 10-50 m thick but thickens up to ~150 m to the east on the shelf.
The temperature and salinity records from the moorings were analyzed to understand temporal variations
of the water mass structure in the 1 week gap that occurred between seismic and CTD data collection.
Based on both these data sets obtained from 5 to 12 September 2008, the transition between warm and
cold AW varied between 550 and 600 m and the transition between cold AW and AIW was found at 700-
800 m depth. The WSC warm core carrying AW (0 ~ 7°C, in September, the peak of summer) is usually
found at ~50 m below the sea surface and is confined to the upper continental slope in the west Svalbard
region. The transition between PW and warm AW is marked by a saw-tooth pattern on the 6-S diagram (Fig-
ure 1¢, inset) indicating interleaving of warm, salty water with colder, fresher water. Such a saw-tooth pat-
tern is also known from the Arctic Ocean, e.g. [Rudels et al., 2000].
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Figure 2. Vertical gradient of density (p'), vertical gradient of potential temperature (¢'), vertical gradient of sound speed (c'), vertical gradient of salinity (S'), reflection coefficient (RC),
seismogram (generated by convolving a 75 Hz Ricker wavelet with the reflectivity series and peaks are filled by yellow color), variation of density (p), potential temperature (6), salinity
(S), and sound speed (c) obtained from a CTD (CTD position indicated by an asterisk in Figure 1d) in the shelf. The gray shaded region marks the field of warm Atlantic water. The reflec-
tion coefficient is strongly influenced by salinity variations in the top 35 m but the influence of temperature and sound speed variations on RC is obvious in depths >35 m. Large
changes in 0’ and ¢’ occur in conjunction with little change in p’.

4. Dependence of Reflectivity on Sound Speed and Temperature

Seismic reflection can be interpreted as a convolution of the source wavelet with the medium'’s reflection coef-
ficient, which is determined by the acoustic impedance (sound speed X density) change [Sheriff and Geldart,
1995]. The latter is in turn related to the temperature and salinity change across a boundary. Based on CTD
data, Sallares et al. [2009] estimated that sound speed variations provide 90-95% of the seismic reflectivity,
whereas only 5-10% is the result of density changes. Based on their method, we find that sound speed varia-
tions, derived from the CTD data, provide 92% of the reflectivity in the study area. Typically, seismic images of
the ocean are proxies for the temperature gradient as reflectivity is more strongly correlated to temperature
variations than salinity variations in the water [Ruddick et al., 2009]. However, for the Arctic region, this relation-
ship needs to be further examined because the salinity contribution to ocean stratification is considered to be
significant and consequently, the relative contribution of salinity and temperature to reflectivity was ascer-
tained. Based on CTD data, we find that in the top 50 m of the water column in the study area, the contribution
of salinity to reflectivity (55-60%) dominates over temperature fluctuations (45-40%), which contrasts with a
12-18% contribution of salinity inferred elsewhere [Sallarés et al,, 2009]. However, in water depths between 50
and 250 m, the salinity contribution to acoustic impedance is only 12-18% and the temperature contribution
(82-88%) dominates. Therefore, seismic reflections in the water depths between 50 and 250 m more likely
result from fluctuations associated with temperature. We also find that temperature and sound speed variations
correlate strongly (correlation coefficient 0.98). Therefore, sound speed variations derived from seismic data
could be effectively used to understand relative variations in temperature. The seismic data provide band-
limited information on the acoustic impedance contrast which identifies the boundaries in water column. Fol-
lowing Papenberg et al. [2010], stochastic deconvolution of time-migrated seismic data was used to derive
reflection coefficients and to map out laterally coherent reflectivity caused by fine-scale ocean layering. Reflec-
tion coefficients were inverted to obtain relative sound speed perturbation. The relative sound speed was
merged with the background sound speed obtained from the CTDs. We used sound speed from the CTDs
because of the band-limited nature of the seismic signal (>10 Hz) that prevents us from obtaining the long ver-
tical wavelength (>150 m) variation of the sound speed. The mean relative error in sound speed variations
associated with the above analysis is £0.1 m/s (maximum £0.5 m/s). Additionally, we generated synthetic seis-
mograms (an example shown in Figure 2) by convolving the seismic source wavelet with CTD-derived reflectiv-
ity series and find a strong correlation with vertical sound speed and temperature derivatives compared to
those of density and salinity below 50 m, which can be seen in the vertical gradients of sound speed and tem-
perature and the similarity between peaks. Therefore, we use the polarity of reflections as an additional criterion
to understand the transition between water masses with variable temperature in seismic profiles. For example,
a negative polarity reflection signifies that warm water (and therefore, higher sound speeds) overlies colder
water, as a negative acoustic impedance contrast is created at such an interface.
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cast  O- Seismic Image Analysis

In the seismic profiles, we identify four
zones (1-4) in the top 800 m of the
water column based on reflection pat-
terns (Figure 3a) and correlate these
zones with the water mass structure by
comparing with potential temperature
and sound speed sections from CTDs.
(a) The nearest seismic line is 3 km away
from the CTD transect. The seismic
reflection patterns observed on all our
across-slope seismic lines are similar to
the seismic line nearest to the CTDs.
Here we present seismic Lines 1 and 2
(Figure 1b) as they very clearly show
most of the fine structures seen in the
study area.

Depth (m)

Zone 1 is a low reflectivity region
(depths shallower than 125 m), which
has a wedge shape and thins toward

the shelf break (Figure 3a). This zone cor-
Figure 3. (a) Line 1 showing Zones 1-4. Black and white bands indicate acoustic o
reflections from thermohaline variability. Section EF was further analyzed for reSponds to the warmest AW (0> 6°C
sound speed variations and shown in Figure 4. (b) Line 2 showing water column and mean sound speed > 1476 m/s). A
reflections above the shelf and upper slope. Zone 1, characterizing the warmest strong negative poIarity reflection marks
AW, thins out toward the shelf. In the top 250 m, reflections are usually long, .
gently undulating, and more continuous above the shelf and shelf break. Here the base of the zone and indicates the
strong negative (marked by red dots and arrows) as well as positive polarity reflec- presence of colder water immediately
tions (marked by yellow dots and arrow) are observed. Above the slope and at below the warmest AW. The shape and
~150 m, reflection continuity is disrupted. The mean position of the maximum
northbound WSC is ~3 km west of current meter mooring F1 [Teigen et al., 2010].

extent of this zone seen on several
across-slope seismic lines could be
matched very well with the temperature and sound speed sections obtained from the CTDs and served
as a useful criterion to corroborate CTD-based sound speed and temperature sections to distant seismic lines
(Figure 1b).

Zone 2 (125-250 m depth) comprises strong to moderate reflections with wavy patterns and variable reflection
continuity (Figure 3a). Strong reflections interleave with regions of weaker reflections. In this zone, there exists a
region of relatively high-amplitude, long, continuous, and gently undulating near-horizontal reflections in the
shelf (Figure 3b). Below the band of bright reflections, we find patchy areas of weak reflectivity and few short,
bright reflections. Reflections become more disrupted and discontinuous over the upper continental slope.
Zone 2 coincides with a transition from the warmest AW to surrounding colder water (6°C < 0 < 4°C). In this
zone, sound speed (least squares regression line fitted to sound speed obtained from CTDs above the upper
slope) varied linearly from 1476 m/s at 75 m to 1466 m/s at 250 m. Sound speed derived from the current
meters (F2-F3) in this zone varied in a similar fashion during the time seismic data were acquired (e.g., Line 1,
Figure 1b), but the absolute sound speed values were slightly higher (~0.07%) at all measured depths in the
top 250 m than the mean sound speed values derived from CTDs at corresponding depths. Assuming that the
sound speed structure between the CTD transect and seismic Line 1 did not vary significantly, and as the abso-
lute mean sound speed variation in Zone 2 was minor between the time seismic Line 1 and CTD data were
acquired, we derived a sound speed model by combining CTD-based sound speed (Figure 4a) and seismic
reflectivity from Line 1 to understand fine-scale variations of relative sound speed in this zone (Figure 4b). The
sound speed model (Figure 4c) highlights interleaving between warm (higher sound speed) and cold (slower
sound speed) water bearing areas immediately below the warmest AW.

Zone 3 (250-500 m) is mostly acoustically transparent with a few distinct reflections. It corresponds to AW with
0 between 3°C and 4°C and average sound speed between 1466 and 1465 m/s. Although generally transparent,
obliquely dipping reflections emerge at the vicinity of the seabed (marked by white arrows in Figure 3a), which
are prominent in most of the slope-perpendicular seismic lines and they help to characterize this zone.
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1473.03 gion (depths 550-650 m, Figure 3a).

1471.34

::2322 It corresponds to 3°C<60<0°C and

wse.zr 1460 m/s < ¢ < 1465 m/s. A few contin-
uous reflections can be traced over long

distances (>2 km). As the transition

West East m/s Zone 4 (500 and 800 m) is the basal

m/s

150 from warm AW to cold AW is found at
o 500-550 m depth (Figure 1d), the upper
930 boundary of Zone 4 is likely to corre-
2% spond to the boundary between these
e two water masses.

-1.50

mis 6. The Transition Between

s the Warmest AW and
1476.41

e Surrounding Colder Waters
1473.03

1471.34 The mixing between warm and cold
1469.65

1467.96 waters both on the onshore and
1466.27 .
1465.00 offshore sides of the warmest AW has
previously been studied using conven-
tional hydrographic data. Cokelet et al.
Figure 4. (a) Sound speed obtained from the CTDs shown in Figure 5a. (b) Relative ydrog p
sound speed perturbation obtained after applying a low-cut filter (cutoff fre- [2008] showed isopycnals pass through
quency 10 Hz) to the reflection coefficients derived from the seismic data (section the warmest AW and outcrop on the off-
EF, Line 1, Figure 3a). Black arrows indicate several short, steeply dipping layers . e
above the upper slope. At ~150 m and close to the western end of the section shore Sld.e of It’_mdlcatmg that AW can
(yellow arrow), the continuity of the layers is disturbed. (c) Sound speed model communicate with the sea surface along

produced after merging background (Figure 4a) and relative sound speeds (Figure the isopycnals. Boyd and D’Asaro [1994]
4b). In the top 100 m, warm water layers (higher sound speed) interleave with h | ) iff
regions of relatively colder water (slower sound speed). Black arrows indicate SqueSted that mesoscale eddies diffuse

steeply dipping interleaving layers. heat along isopycnals to the sea surface,

which will then be cooled by the atmos-
phere and sea ice. Cottier and Venables [2007] described the thermohaline characteristics to the east of the AW
warm core from further south of the study area. From a hydrographic transect collected in September 2005, they
proposed double diffusion to be a likely process in the Arctic frontal region with considerable interleaving west
of Isfjorden Bank. Double diffusion takes place due to a difference in the diffusivities for heat and salt with the
molecular diffusivity of heat being approximately 100 times larger than that of salt [Ruddick and Richards, 2003].
Double-diffusion can result in a variety of phenomena, namely salt fingering and diffusive convection that can
break a smoothly varying thermohaline gradient into steps and layers. In the Kongsfjorden trough region, a large
horizontal temperature gradient is seen shelfward of the warmest AW on the upper continental slope (Figure 5a).
A salinity front coincident with the temperature front is situated near the shelf break and below the PW cap (Fig-
ure 5b). Layers of saline water extend horizontally from the salinity front further east onto the shelf. Both the
potential temperature and salinity sections reveal interleaving of warm, salty water and colder, fresher water (Fig-
ures 5a and 5b) that can enhance double-diffusive mixing in the frontal region. We computed Turner angle val-
ues [Ruddick, 1983], which indicate the potential for diffusive layering at the interface of interleaving warm, salty
water with colder, fresher water (Figure 5c). Much of Zone 2 on the upper slope is susceptible to salt fingering,
suggesting that the shelf break and upper slope regions may be influenced by this process. On the shelf, we find
sites susceptible to diffusive convection and salt fingering at the top and bottom of the warm and salty water
layer, respectively, occurring within colder, fresher water. At the transition between the warm, salty water layers
and the colder, fresher water layers, relatively high Turner angle values (+70°-78°) indicate that the density effect
of temperature variation is partially neutralized by the density effect of salinity variation and partial density com-
pensation is achieved.

The seismic data and the derived sound speed structure (Figure 4c) from the onshore side of the warmest AW
reveal salient details of the transition between warm AW and colder water on the shelf. Sound speed variation is
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East (°C) expected to resemble the temperature
variation because sound speed gradient
is closely proportional (correlation coef-
ficient 0.98) to temperature gradient.
The warmest AW has relative absence
of fine structure, but prominent fine
structures occur immediately below it.
c Filaments (~30 m thick, Figure 4c) of
higher sound speed (therefore, warmer
East (Salinity) water) interleave with areas of lower

!35-2 sound speed (therefore, colder water) at

(o2}

o N A~ O

£100 ‘ 221 water depths 50-150 m. Above the shelf
< 34.9 break, we find near-horizontal, long
& 34.8 (approximately 5 km) interleaving layers
al 34.7  and their slope (slope 0.0025-0.003)

_gf{g matching with along-front slope of the
(b) B C ' isopycnals (0.003) seen on the hydro-

graphic profile. In the potential temper-
ature section (Figure 5a), a warm

interleaving layer at ~75 m depth over

(Degrees)

East 135

£ gg the shelf closely follows the 27.7 kg/m?
= 0 potential density anomaly contour,
*% [ :38 indicating isopycnal interleaving. This
o 135 observation is also in agreement with

previously reported isopycnal interleav-
( C) B c ing found above the shelf by Cottier and

Venables [2007]. A limited number of
Figure 5. (a) A potential temperature section (BC, location in Figure 1d) along with interleaving layers above the uppermost
potential density anomaly contours in kg/m? (overlaid). A CTD (indicated by an continental slope have steeper slope
asterisk and shown in Figure 2) reveals temperature variations that are partially (slope 0.02-0.03 and marked by black

density compensated by salinity variations. A background sound speed model -
(Figure 4a) is derived from the region marked by a white rectangular box. arrows in Figures 4b and 4c), therefore,
(b) A salinity section (BC, location in Figure 1d) showing the presence of a horizon- crossing the isopycnals (isopycnal
tal salinity gradient near the shelf break. (c) Section BC showing variations of slope 0.0025). The lateral continuity of
Turner angles (Tu). For —45° < Tu < 45°, the water column is stable, whereas for . . . .

[Tu| > —90°, the column is statically unstable. In the range —90° < Tu < —45°, the the interleaving layers deteriorates with
water column is unstable to double diffusive convection, and between increasing depth, for example, water

4t5° <Tu <907 it .is pr'one to salt fingering. Salt fingering is the predominant depths150-200 m, where the reflectors
diffusive mechanism in the upper slope.
are shorter (e.g., 500 m).

The formation of interleaving layers, disruption of their continuity, and variations in their slope can be
understood by considering the dynamics of the warm Atlantic water. The warm core of WSC flows faster
than the shelf waters and introduces a strong horizontal velocity shear [Teigen et al., 2010]. According to Nil-
sen et al. [2006], the shear associated with a Gaussian current jet carrying a warm AW core can produce
unstable eddies. Such a jet is located between current meter mooring stations F1 and F3 [Teigen et al., 2010,
Figure 1]. The mean position of the maximum northbound WSC is halfway between current meter moorings
F1 and F2 [Teigen et al., 2010]. Stronger internal waves in regions with strong currents can destroy the lateral
coherence of thermohaline fine structures. This effect is seen in the upper slope region in Zone 2 where the
lateral continuity of the reflections is disturbed (Figures 3b and 4b). Steele et al. [2012] found high turbulent
kinetic energy dissipation rates to the east of the warmest AW (e.g., their Figures 3d and 3f) and suggested
this could be due to presence of eddies of variable sizes, such as less than 500 m diameter and also ~1 km
in diameter. The limited number of isopycnal-crossing interleaving layers on the uppermost continental
slope would require the presence of an eddy close to that region. The scenario could be very similar to
observations made by Smith and Ferrari [2009], who suggested that eddies can act on large-scale thermoha-
line gradients to produce sharp fronts that are tilted by mesoscale vertical shear. Such a process can locally
enhance temperature and sound speed gradients and accentuate the interfaces between warm and cold
waters, which are imaged very well by the seismic data. The regions with poor reflectivity could indicate
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homogenous water masses that result from mixing. To the east of this region and above the shelf, isopycnal
interleaving layers (Figure 5a) indicate partially density-compensated gradients in temperature (therefore,
sound speed, Figure 2) and salinity allowing for stirring along isopycnals. We propose that here the inter-
leaving features are most likely to arise from mesoscale eddy stirring of the large-scale distribution of ther-
mohaline properties along isopycnal surfaces, e.g. [Naveira Garabato et al., 2011].

A diffusive mechanism can also set smoothly varying temperature and salinity gradients into steps, how-
ever, eddies/frontal instability is more important in this region in setting up the interleaving layers as
opposed to double diffusion, which takes place in low-energy environment. Although double-diffusive
transport does not appear to be the main causative factor behind interleaving, it could still play a role once
interleaving has been established. Seismic profiles reveal the presence of undulations in the reflections
from the frontal region, which indicate the presence of internal waves generated by turbulence. Earlier, Sal-
oranta and Haugan [2004] emphasized the role of diapycnal mixing processes in addition to isopycnal cool-
ing for subsurface cooling offshore from the warm AW core. Turbulent mixing (for example, stirring by an
eddy field) can also aid diapycnal mixing across density surfaces [Thorpe, 2005] and will enhance vertical
heat and salt fluxes. While conventional CTD data could only indicate a strong lateral temperature and
sound speed gradient to the east of the warmest AW, the detailed frontal structure to the east of warmest
AW including the lateral extent and nature of interleaving layers revealed by the seismic images helped
to understand the causative factor behind their formation, such as the role of eddy stirring in enhancing
the 0/c gradients and distributing large-scale variations in temperature and salinity.

7. Internal Tidal Waves

Oblique reflections in across-slope profiles occur near the seafloor at depths of ~450-500 m (Figure 6a). Where
present, they stand out clearly in Zone 3. Similar reflections were reported earlier by Holbrook et al. [2009] from
the Norwegian continental slope (64°N-66°N). They interpreted the sloping reflections, which cross isotherms,
as internal waves propagating at tidal frequencies. In their case, the internal waves closely followed the trajec-
tory of semidiurnal (M2) internal tidal waves. The sloping reflections observed west of Svalbard appear to be
very similar. When surface (barotropic) tides force stratified fluids to flow over sloping topography, internal bar-
oclinic tides are generated that can emanate as internal tidal beams from the slope [Holloway and Merrifield,
1999; Garrett and Kunze, 2007]. Such beams can cause substantial vertical displacement of isopycnals in the
ocean interior and also trigger internal waves that propagate away from their generation site along the trajec-
tory of the internal tidal wave. Seismic reflections can result from the strain of the potential density field [Thorpe,
2005] induced by an internal wave field [Holbrook et al.,, 2009]. The frequency of such internal waves remains
close to the frequency of the barotropic surface tide that triggers internal tidal waves [Thorpe, 2005].

The two major semidiurnal tides observed from the recorded measurements at various locations in the Arctic
Ocean are M2 (principal lunar) and S2 (principal solar) [Kowalik and Proshutinsky, 1994]. Propagation of internal
tidal waves is usually determined by the relative magnitudes of three frequencies: the internal wave frequencies
o of the semidiurnal tides (ws, = 1454 X 10" * s, wy, = 1405 X 10~ * s "), the local buoyancy frequency
N(z) = [—(9/p)Dp/d2]"? (where g is the acceleration of gravity and p is the potential density, Figure 6b), and the
local inertial (Coriolis) frequency, f=1.423 X 10~% s~ at 78°N. The inclination of the tidal wave is given by
c=tan 0 = [(w® — /(N> — w?)]"". In previous studies, these tidal processes were only theoretically considered
and their probable sites of generation determined based on a coarse-resolution bathymetric data set [Figure 4
of Naveira Garabato et al,, 2004]. Modeling results by Miiller [2013] suggested that barotropic to baroclinic tidal
energy conversion is highest for M2 and negligible for S2 over the entire Arctic region. He proposed that pole-
ward of the critical latitude the energy conversion associated with the semidiurnal tides is insignificant.

West of Svalbard, the principal semidiurnal tide M2 remains subinertial and cannot usually generate internal
tidal waves as i, < f, hence the Coriolis force will suppress M2 internal waves. However, they can exist under
the influence of negative background vorticity, which weakens the local Coriolis force [Viasenko et al., 2003].
Analysis of along-slope and across-slope components of current velocity during our seismic survey from three
current meters on the upper slope (F1, F2, and F3) shows a persistent anticyclonic motion landward of station
F2 at the level of 250 m that introduces a negative background vorticity (mean = —3.85 X 10 6+ 0.83 s ',
minimum = —5.15 X 10" ¢s~", maximum = —2.75 X 10~ ¢ s~ "), which results in a suppressed effective inertial

frequency (measured as 1423 X 10 *s~ ' + 0.5 X relative vorticity) of at least 1.40 X 10 *s~ . Based on rotary
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Figure 6. (a) Seismic Line 2 showing dipping reflections (marked by white arrows) over a broad area of the slope (450-500 m). They follow the S2 internal tidal wave trajectory (yellow
line). Close to the seabed (at ~550 m and highlighted by an orange stripe), the fine structures associated with internal waves grade into a transparent zone and may indicate wave
breaking and subsequent mixing as a homogenous water mass develops. (b) Mean buoyancy frequency N (z) determined by CTDs shown in Figure 1b. (c) Ray slope of internal S2 tidal
wave (red curve) and seafloor slope (gray crosses) derived from multibeam swath-bathymetric data close to Line 2. Between 450 and 750 m they are very similar.

spectral analysis, Nilsen et al. [2006] showed that the energy levels for the M2 component are higher landward
of F2, and that there is elevated energy in the anticyclonic rotation component. Despite the likely presence of
an M2 tidal current at this depth, the inclined reflection in the seismic image is not consistent with a possible
M2 internal tidal beam as its internal wave frequency still remains close to the Coriolis frequency. In contrast,
internal S2 tidal waves can be generated as f < ws,. Strong internal tidal waves can be expected where the sea-
floor slope 7 is near critical for S2 [Cacchione et al., 2002]. The y and c variations in the vicinity of Line 2 indicate
that much of the slope (derived from high-resolution swath-bathymetric data) remains critical to an S2 tidal
beam in water depths of ~450-750 m (Figure 6c). The inclined reflections closely mimic the predicted trajec-
tory of internal semidiurnal tide S2 (Figure 6a). Current meter mooring data show that they crosscut isotherms
(Figure 7a). Additionally, an anticyclonic eddy causing prominent shoaling of the isotherms was seen close to
current meter F4 during our seismic survey (Figure 7b), but it was located further offshore of where inclined
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Figure 7. (a) Temperature section derived from current meters (marked by small white rectangular boxes) located at stations F1-F6. A series of temperature sections was generated
from the current meters during the time seismic data were acquired (5 September 2008) but only one such section is shown. Dotted red line on the upper slope, that crosscuts isotherm,
denotes location of sloping reflections seen in seismic Line 2. Similar crosscutting relationship is seen in other temperature sections obtained from the current meter data. Isotherms
shoal near the shallowest current meter at station F4, which is located offshore of the region showing inclined reflections. Such shoaling is a consequence of an anticyclonic eddy pass-
ing near current meter F4. (b) Hovmoller diagram of the northbound component of current velocity at the 250 m level for moorings F2-F8 during the period July 2008 to March 2009.
An anticlyclonic eddy (shown by arrows) nucleates close to F4 end of August 2008 and meanders (dotted line) westward to F5.
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Figure 8. Tidal ellipses for the dominant diurnal constituents (O1 and K1) and
semidiurnal constituents (M2 and S2) from current meter F2 at specific depths
displayed on the right of the plot. The major and minor axes are plotted and

sense of rotation of the ellipses is indicated by arrows.

reflections were observed (Figure 7a). We
infer that these reflections do not repre-
sent upwelling caused by eddies, but
that an internal S2 tidal beam exists in
this area.

Previously, the presence of a strong bar-
oclinic M2 tide in Fram Strait was only
shown in regions with more than
1000 m water depth [Kasajima and
Svendsen, 2002]. The current meter
mooring station F2 (Figure 7a) located
at a much shallower depth is well suited
to analyze the influence of diurnal and
semidiurnal tides on generating internal
tides on the upper continental slope, as
the station is close to the location
where inclined reflections in the seismic
image originate (450-500 m water
depth). Tidal harmonic analysis shows
that much of the shallow water column
(top 250 m) at this station has flat, high-
amplitude, and highly inclined ellipses
for the M2 tide (Figure 8). The tidal

ellipse results are summarized in Table 1. S2 ellipses are also flat but show smaller amplitudes compared to
M2. Presently, there is no current meter installed where the inclined reflections originate, so we cannot
comment on the tidal current pattern at this depth. However, flatter tidal ellipse patterns suggest presence
of both M2 and S2 baroclinic tidal currents at the ~250 m level on the upper continental slope.

The mean slope of the inclined reflections at water depths of 150-300 m in Zone 3 is 1.12° and the theoreti-
cally computed S2 slope is 1.15°, whereas at depths of 300-550 m, the mean measured slope of reflections

Table 1. Tidal Ellipse Analysis Results for the Dominant Diurnal Constituents (O1 and K1) and Semidiurnal Constituents (M2 and S2)

From Current Meter F2?

Ellipse Parameters With 95% Confidence Interval (Cl) Estimates

Tide Freq Major Emaj Minor Emin Einc Pha Epha Snr
Current Meter at 70 m Level

01 0.03873 1.157 0.372 0.137 0.38 87.56 16.82 153.05 16.54 9.7
K1 0.04178 1.958 0.372 0.393 0.38 103.77 10.85 233.38 10.7 28

M2 0.08051 3.35 0.212 —0.107 0.19 97.68 3.26 325 3.72 250
S2 0.08333 1.278 0.212 —0.043 0.19 97.58 8.32 80.31 9.5 36

Total variance = 353.7707 Predicted var =46.5139

Percent total var predicted = 13.1%

Current Meter at 250 m Level

01 0.03873 1.08 0.299 0.072 0.29 110.05 13.45 181.65 14.06 13

K1 0.04178 1.817 0.3 0.33 0.28 101.81 8.74 246.33 9.19 37
M2 0.08051 3.064 0.17 —0.227 0.15 103.95 2.88 64.14 3.27 330
S2 0.08333 1111 0.17 —0.046 0.15 103.82 7.7 124.48 875 43

Total variance = 241.1222 Predicted var =37.1458

Percent total var predicted = 15.4%

Current Meter at 750 m Level

01 0.03873 1.382 0.581 —0.272 0.29 94.02 12.01 31.95 22.18 57
K1 0.04178 1.874 0.574 —0.311 0.31 101.21 9.39 68.21 16.74 11

M2 0.08051 1.482 0.239 0.063 0.18 118.79 7.22 48.81 9.5 38
S2 0.08333 0.65 0.253 —0.09 0.16 106.72 14.87 76.85 22.78 6.6

Total variance = 122.1358 Predicted var = 9.6556
Percent total var predicted = 7.9%

?Abbreviations: Major = Major axis amplitude (cm/s), Emaj = Error associated with Major, Minor = Minor axis amplitude, Emin = Error

associated with Minor, Inc = Inclination, Pha = Phase, and Snr = Signal-to-noise ratio.
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is 1.70° and the computed S2 slope is 1.75°. The change in the computed slope close to 300 m depth occurs
because of a small change in local buoyancy frequency (Figure 6b). Because of the good match between
calculated S2 slopes and the slope of the reflections and the location of the observed seismic reflections,
we suggest that the inclined reflections in the seismic data are primarily caused by the S2 internal tide,
rather than the M2 internal tide. This can be explained by the ability of S2 to cause greater strain than M2
because of its high frequency. Generally, the closer an internal wave frequency is to the buoyancy fre-
quency, the more strain and less vertical shear the internal wave will possess [Polzin et al., 2014, and referen-
ces therein]. Conversely, the closer an internal wave frequency is to the Coriolis frequency, the more vertical
shear and less strain the internal wave will have. Thus, while the current meters show a stronger M2 than S2
tide because they measure velocity (which may or may not have vertical shear), the seismic data are more
likely to exhibit an S2 signature as they are sensitive to strain. The strain [Thorpe, 2005] can create reversible
fine structure as a result of stretching and thinning of isopycnals causing seismic reflections. The inclination
of the reflections mark the trajectory of the internal wave beams [Holbrook et al., 2009].

In contrast to modeling results [e.g., Miller, 2013], our data show that semidiurnal internal tidal waves are
present in Fram Strait in water depths <1000 m. Our current meter results also indicate that the M2 internal
tide can propagate north of its nominal critical latitude (74.5°N) because of relative vorticity changes; how-
ever, such effects will be localized and evanescent. The S2 internal tide can freely propagate and an S2 tidal
beam might be able to cause the strain that is observed in the seismic images.

8. Conclusions

We have obtained new high-lateral-resolution images of thermohaline fine structures from a number of
seismic lines west of Svalbard. Strong seismic reflections are seen where large lateral temperature gradients
occur shelfward of the warmest AW on the upper continental slope. Here we find isopycnal interleaving
between warm and salty water and colder, fresher water mostly above the shelf and few steeply dipping
interleaving layers above the uppermost slope and close to the warmest core. Strong reflections with both
normal and reversed polarities characterize this region. Such interleaving and subsequent mixing promotes
cooling of AW. While we have highlighted mesoscale eddy stirring and double diffusive phenomena as pos-
sible drivers, other dynamical processes responsible for interleaving, such as tidal mixing, remain to be
determined.

Seismic images help to identify areas of internal wave generation. Sloping internal waves, which can pro-
mote ocean mixing across isopycnals, are seen close to the critical slope for S2 wave generation (450-
500 m). We suggest that combined analysis of simultaneously acquired seismic data, current profiles (such
as towed or vessel-mounted Acoustic Doppler Current Profiler (ADCP) data), and microstructure data would
provide quantitative information on the distribution and mixing associated with internal tidal waves. Seis-
mic data could be useful to detect areas prone to M2 internal tidal wave generation poleward of the critical
latitude.

Our findings have implications for understanding the fate of AW as it mixes with cold and freshwater
masses formed in the vicinity of the West Spitsbergen shelf. Lateral transfer of heat (and salt) from the
warmest AW is likely to be an important process driving regional water mass modification. Additionally, the
likely enhanced vertical mixing [e.g., Rippeth et al., 2015] promoted by internal tides, as identified in this
study, will enhance the vertical fluxes of both heat and salt, which in turn may have a feedback effect on
rates of sea ice formation/melting [Holloway and Proshutinsky, 20071.

Recent developments in oceanography have highlighted the importance of small-scale mixing for a
number of physical oceanographic processes. The affected processes relevant to this study include the
heat budget of the Arctic, deep water formation in the North Atlantic, and the operation of a number
of important biogeochemical cycles. Recent rapid summer sea ice contraction in the Arctic and wide-
spread atmospheric warming in the region bring into sharp focus the necessity of acquiring a systematic
understanding of the interaction between warm and cold water masses on polar ocean shelves in both
hemispheres, as these locations form key areas from which the deep ocean is ventilated. Our results
illustrate the potential of seismic data to open up new avenues of oceanographic research in the Arctic,
particularly in understanding the role of mesoscale and submesoscale processes in impacting larger-
scale circulation.
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