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The wavelet transform and the linear mixed model with spectral tempering are two methods which have been
used to analyse soil data without assumptions of stationarity in the variance. In this paper both methods are
compared on a single data set on soil pH where marked changes in parent material are expected to result in
non-stationary variability. The two methods both identified the dominant feature of the data, a reduction in
the variance of pHover Chalk parentmaterial, and also identified less pronounced effects of other parentmaterial
contrasts. However, there were differences between the results which can be attributed to (i) the wavelet
transform's analysis on discrete scales, for which local features are resolved with scale-dependent resolution;
(ii) differences between the partition of variation into, respectively, smooth or detail components of the wavelet
analysis and fixed or random effects of the linear mixed model; (iii) the fact that the identification of changes in
the variance is done sequentially for the wavelet transform and simultaneously in the linear mixed model.
© 2015 British Geological Survey, NERC. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The properties of soil depend onmany factors, which vary at a range
of spatial scales. As a result soil properties may show substantial spatial
variability (Beckett andWebster, 1971), which requires statistical treat-
ment. One statisticalmodel of soil variationwhich has beenwidely used
is the linear mixed model (LMM) (Lark et al., 2006) which is a general-
ization of the geostatistical model of regionalized random variables
(Webster and Oliver, 2007). In the LMM we treat the variation of a
soil property, z, in terms of fixed effects (categorical or continuous
covariates), which represent factors that we can understand and mea-
sure. The LMM represents the remaining variation with random effects.
There are two sets of random effects in a LMM, thosewhich are spatially
correlated because they are caused by factors which operate at spatial
scales which can be resolved by the sampling used to obtain our data,
and an uncorrelated white-noise component (called the nugget varia-
tion in geostatistics). The LMM is written

z ¼ X τ þ uþ e; ð1Þ

where z is an n-vector containingn observations of variable z,X is a n×P
matrix with n values of each of P fixed effects, τ is a vector of fixed ef-
fects coefficients, u is a vector of correlated random variables and e is
a vector of independent and identically distributed (iid) random
shed by Elsevier B.V. This is an open
variables, the nugget component. In the LMM we treat the random ef-
fects asmultivariate normal (after appropriate transformation, if neces-
sary) and of mean zero, which means they are characterized by their
n×n covariancematrix. In the case of the iid randomeffect, e, the covari-
ance matrix is given by σe

2In where σe
2 is the variance and In is an n×n

identity matrix. In the case of u the covariance matrix, C, has a more
complex structure reflecting the spatial dependence between
observations.

Parameters of the LMMmust be estimated from data. This provides
something of a challenge for the random effects because, treating them
as a realization of a multivariate gaussian process means that we have
just one realization from which to estimate the covariance parameters.
This is solved by stationarity assumptions. In the LMM a common
assumption is second order stationarity, whereby the covariance of u
at locations si and sj is a function only of the separation in space between
them: si−sj. In this studywe simplify themodel by considering only the
distance between the locations, h=|si−sj |, but directional depen-
dence can be modelled too. One can therefore express C as the prod-
uct of a correlation matrix, the entries of which depend only on the
distances between the corresponding observations, and a constant
variance, σu

2. The entries in the correlation matrix can be modelled
most generally with a Matérn correlation function (Diggle and
Ribeiro, 2007).

ρ hjν;ϕð Þ ¼ h=ϕð ÞνKν h=ϕð Þ
2ν−1Γ νð Þ

ð2Þ
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where Kν(⋅) denotes the modified Bessel function of the second kind of
order ν, Γ(⋅) is the gamma function, ϕ is a distance parameter, and ν is a
parameter which determines the smoothness of the spatial process. If
ν=0.5 then theMatèrn function is equivalent to thewidely-used expo-
nential correlation, larger ν give smoother variation and smaller ν
rougher variation. The random effects of the LMM are therefore fully
characterized by the set of parameters θ={ϕ,ν,σu

2,σe
2}. Estimates of

these parameters are best obtained by residual maximum likelihood
(REML) as described by Lark et al. (2006).

Under the model outlined above the covariance of the random
effects at any two locations depends only on the distance in space
between them. This is a necessary assumption to make the model esti-
mable, but it has a cost for pedological plausibility. Consider a transect
from the levées of a small river, across braided sediment deposits onto
gentle slopes covered with soliflucted material and onto local hilltops
with loess over the underlying sandstone. If we examine the clay con-
tent of the soil on this transect we will observe trends in the mean,
which may be accounted for with appropriate fixed effects in the
LMM. However, the LMM also requires the assumption that the varia-
tion about this mean is homogeneous across the transect. This seems
implausible, given the different processes (alluvial deposition, solifluc-
tion, aeolian deposition) causing textural variation, and the different
scales at which they operate. The implausibility of the stationarity
assumption may undermine the prediction error variances calculated
for interpolated values of the clay content (Lark, 2009), more generally
the parameters of the random effects do not represent soil variability
anywhere on the transect.

The stationarity assumption is one reasonwhy the LMM, as common-
ly implemented, may often give limited insight into soil variation. This is
one reasonwhy soil scientists considered an alternative analysis to exam-
ine scale-dependent variation in soil. This is the wavelet transform. The
discrete wavelet transform (DWT) is discussed in more detail elsewhere
(e.g. Lark and Webster, 1999) and in the theory section below. In short
the DWT represents data by a set of coefficients that represent local var-
iability at different spatial scales (discrete intervals of spatial frequency).
In the context of the example transect above,wavelet coefficients at some
scale may differ in magnitude from one part of the landscape to another,
representing changes in the variability of the property of interest.

Recently, attention has been directed to the extension of the LMM
to cases where the random effects have a non-stationary covariance.
Of particular interest here is the development by Haskard and Lark
(2009) of the spectral tempering method proposed by Pintore and
Holmes (2004, 2005). This method allows one to model changes in
the variance and autocorrelation of a variable as a function of location
in space or some other covariate. This is done by considering the empir-
ical spectrum of the data of interest, and modifying it locally to adjust
the distribution of variance between spatial frequencies, as well as the
absolute variance.

The LMM with spectral tempering and the DWT are different but
complementary ways to represent spatial variation without assuming
homogeneity of the variability. However, the two analyses have yet to
be compared on a common data set. Such a comparison would be of in-
terest. First, variations in the tempering parameter of the LMM with
spectral tempering and variations in the relative magnitude of wavelet
coefficients for different spatial scales must both reflect the particular
spatial heterogeneity of variation of some soil property, and a direct
comparison should be instructive about the methods and the insight
that they can give into soil variation. Second, if the spectral tempering
random effects model in the LMM can, at least in some circumstances,
provide information on changes in soil variation comparable with
those from theDWT then this could beuseful for the interpretative anal-
ysis of irregularly sampled data on the soil, where the scope for wavelet
analysis is limited (Milne and Lark, 2009).

In this paper I report the analysis of measurements of soil pH on a
transect using both the LMM with spectral tempering and the DWT.
The data set is selected as an example where distinct pedogenetic
domains, with contrasting parent material, give rise to heterogeneous
spatial variability. The spectral tempering model and the DWT-based
analysis are compared.

2. Theory

2.1. Linear mixed model with spectral tempering

In the introduction I reviewed the LMM as commonly applied to
soil variables. The non-stationary form of this model with spectral
tempering starts from a stationary covariancematrix, C, for the spatially
correlated random term in the model, the random variable U. One may
compute the n eigenvectors of C, v1,v2 ,… ,vn and corresponding eigen-
values, λ1 ,λ2 ,… ,λn, as in a principal components analysis. This pro-
vides the basis for what is called the spectral decomposition of the
covariance matrix,

C ¼ ∑n
k¼1vkλkvTk

¼ VDVT;
ð3Þ

where the superscript ‘T’ denotes the transpose of a matrix or vector,
the matrix V is n×n with the eigenvectors of C in its columns, and D is
a matrix with zeros on all but the elements of the main diagonal,
which contains the corresponding eigenvalues, ordered from the largest
to the smallest.

The early and later eigenvalues correspond to low spatial fre-
quencies (long-range variation) and to high frequencies (short-range
variation) respectively (Haskard and Lark, 2009). The eigenvalues
λk ,k=1,2 ,… ,n, therefore constitute an empirical spectrum which
describes how the variance of U is partitioned between the spatial
frequencies. The empirical spectrum is not obtained directly from data
but from a stationary covariance function, and is therefore itself station-
ary. I refer to this as the pre-tempering spectrum. Tempering is a
method to adjust the spectrum locally; for example by a relative
increase in the early eigenvalues (low spatial frequencies) in these
areas where the variable appears to be smoother than it is elsewhere.
Pintore and Holmes (2004) proposed that this is achieved by raising
the terms of the pre-tempering spectrum to some positive power η.
Where ηN1 the low-frequency terms in the spectrum are increased rel-
ative to the others, while setting a local value of ηb1 has the opposite
effect, which enhances the short-range variation. Of course, if η=1
the spectrum is unchanged. The spectrum can be adapted locally by
allowing η to vary spatially. This is possible if we can express η as a func-
tion of location in space η(s). The joint value of η for any two locations is
obtained as

η si; s j
� � ¼ 0:5η sið Þ þ 0:5η s j

� �
: ð4Þ

A modified covariance matrix of U, which is in general non-
stationary, CNS, can then be obtained from the spectral decomposition
of the pre-tempering covariance matrix. The (i, j)th element of this
matrix is

CNS
ij ¼ ∑n

k¼1; vk½ �ληij
k vk½ � j ð5Þ

where [vk]i denotes the ith element of vk, which corresponds to the ith
location si and the term ηij=η(si,sj) is obtained from Eq. (4). Haskard
and Lark (2009) showed that CNS is positive definite for positive values
of η and positive definite C. Given this, it is possible for some data set
and a set of fixed effects, to compute the residual log-likelihood for
some set of parameters that specify CNS, and so, by an appropriate nu-
merical optimization, tofinda set of parameter estimates thatmaximize
this (or, equivalently, that minimize the negative residual log-
likelihood).
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In the procedure proposed by Pintore and Holmes (2004) the pre-
tempering covariance matrix is the estimated covariance matrix for
the correlated term in a LMM for the data under an assumption of
second-order stationarity, the covariance matrix for this term in the
non-stationary model is obtained with Eq. (5) and a stationary nugget
variance is also estimated. Haskard and Lark (2009) proposed a modifi-
cation of this procedure to make the tempering parameters η indepen-
dent of the units of measurement of the variable, and to allow
the variance of U to be modelled as a non-stationary parameter inde-
pendently of local variations in the autocorrelation. They proposed
that the non-stationary covariance matrix, CNS, obtained by applying
tempering parameters obtained with some function η(s) to the pre-
tempering covariance matrix be converted to a correlation matrix, B.
This correlation matrix is then rescaled to a non-stationary covariance
matrix CRNS. In this paper I did this with the following expression

CNS
R ¼ diag σð ÞB diag σð Þ; ð6Þ

where diag(a) for some n-vector a denotes an n×n matrix with the
elements of a on the main diagonal and zeroes in all off-diagonal ele-
ments and σ is a vector, length n, the elements of which are standard
deviations of U at each sample location, σi , i=1,2 ,…n. One may
express σi as a function of location, σ(s), analogous to η(s).

Recalling the LMM for a soil variable, z, in Eq. (1), under the non-
stationary model

u � N 0n;CNS
R

n o
;

and

e � N 0n;diag γð ÞIndiag γð Þf g;

with CRNS calculated as in Eqs. (5) and (6) and γ is a vector, length n, the
elements of which are standard deviations of e at each sample location,
γi , i=1,2,…n. One may express γi as a function of location, γ(s), anal-
ogous to σ(s) and η(s).

We denote by ϑ the set of parameters which characterize the
random effects of the non-stationary LMM, this comprises parameters
of the functions η(s),σ(s) and γ(s) in addition to the stationary correla-
tion parameters that specify the pre-tempering covariance matrix, ν
and η when a Matérn correlation is used. As noted above, Pintore and
Holmes (2004) originally proposed that these parameters are fixed at
the values from the best-fitting stationary model for the data, but
Haskard and Lark (2010) found that a better fit (as measured by the
maximized residual log-likelihood) might be obtained with a pre-
tempering covariance matrix with different parameters and suggested
that a profiling approach be used to find the best values of ν and η.

2.2. Maximal overlap discrete wavelet transform

The wavelet transform has been used by soil scientists to investigate
complex spatial variation (e.g. Lark andWebster, 1999; Lark et al., 2004;
Zeleke and Si, 2007; Milne et al., 2013; Biswas, 2014). For details of the
wavelet transform the reader is referred to the text by Percival and
Walden (2000) and to the paper by Lark and Webster (1999). In sum-
mary, the wavelet transform is an analysis of a variable on vector basis
functions. One can think of the basis functions as basic mathematical
building blocks which can be combined, with appropriate coefficients,
to represent any real variable of finite variance. In thewavelet transform
one finds the coefficients required to represent a variable of interest on
some preselected set of wavelet basis functions.

A wavelet function can be represented by the mother wavelet ψ(x).
Many such functions have been defined, but they have certain common
properties. A wavelet integrates to zero mean but has square norm one,
indicating that it oscillates around zero. A wavelet is compact, the
oscillations of a wavelet damp rapidly to zero, and so a wavelet takes
non-zero values only over a relatively narrow window, its support.
This means that the coefficient for a particular wavelet in the analysis
of some variable depends only on the values of that variable within
the narrow support. This has two implications. First, a wavelet coeffi-
cient provides information on local rather than global variability. This
is why it is of interest for the analysis of non-stationary variation. Sec-
ond, to complete the analysis of a variable over some finite distance
one will require coefficients for wavelets with compact supports in dif-
ferent locations. The support of a wavelet depends on M, its number of
vanishing moments where

Z
xcψ xð Þ dx ¼ 0 ð7Þ

for c=0,1,2,… ,M−1. Within a family of wavelet functions, increas-
ingM makes the wavelet smoother and increases the support.

A wavelet analysis is based on wavelet bases which are obtained by
dilating and translating the mother wavelet. The dilation of a wavelet
function increases the width of its support, and also reduces the
frequency of the components of the variable which are represented by
its coefficients. A series of dilations of the wavelet therefore provide
wavelet bases which will represent different spatial scales of variation.
The translation of a wavelet changes the location of its support.

Herewe are interested in the analysis of discretely sampleddata. The
discrete wavelet basis functions for some mother wavelet are given by

ψm;n xð Þ ¼ 1ffiffiffiffiffiffi
2m

p ψ
x−n2m

2m

� �
; ð8Þ

which is the basis function for themth dilation of thewavelet and its nth
translation. Note that the dilations of the discrete wavelet transform are
in the dyadic sequence 21 ,22 ,23 ,… The wavelet coefficients from all
wavelets in the mth dilation are said to represent variation at scale
2mx0 where x0 is the basic sample interval. To avoid confusion with
cartographic scale I refer to scales with large m as ‘coarse’ scales. A
scale corresponds to a frequency interval (with some leakage between
adjacent frequencies), increasing m reduces the frequency. Note also
that the translation of the wavelet takes place in steps of 2m, i.e. larger
steps at coarser scales.

A wavelet coefficient is obtained as the inner product of a sequence
of data values, f(x) with the particular dilation and translation of the
wavelet:

Dm;n ¼ f ;ψm;n

D E
: ð9Þ

One practical difficulty that arises from this definition of thewavelet
is the computation of coefficients at locations near the start and end of
the sequence of values where components in the dilated wavelet func-
tion overlap the ends of the data. A standard procedure is to pad the
ends of the data, the best way to do this for our purpose is by reflection
at each end of the sequence (see Percival and Walden, 2000).

The wavelet transform can be inverted, reconstituting the original
data. If one sets all wavelet coefficients to zero, except the set that cor-
respond to some dilation, m= j, then compute the inverse transform
then one obtains an additive component of the data with variations at
frequencies in an interval corresponding to scale 2jx0. This is called the
‘detail’ component of the data at this scale. If one computed all the detail
components for m=1,2,… , j and subtracted these from the data one
would be left with what is called a ‘smooth’ component for the jth
scale. The set of detail components for some set of dilations of thewave-
let, and the residual smooth component are known as a multiresolution
analysis (MRA) of the data (Mallat, 1989).

The Discrete Wavelet Transform (DWT) partitions the variance of a
sequence of observations over all scales (see Daubechies, 1992). On
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this basis one can define the variance for a particular scale, 2jx0 by

σ̂2
j ¼

1

2 jn j

Xn j

n¼1

D2
j;n ð10Þ

where nj is the number of DWT coefficients at the jth scale. This is
known as the sample wavelet variance (Percival, 1995).

Recall that the wavelet coefficients Dj ,n for the jth scale are obtained
by translations of the dilatedwavelet in steps of 2j sample intervals. This
is equivalent tofiltering the signalwith the dilatedwavelet and subsam-
pling the output at interval 2j. A consequence of this is that all wavelets
in the basis are orthogonal to all others. However, Percival and Guttorp
(1994) showed that the wavelet variance could be more efficiently
estimated by retaining all output from the filtering of the signal with
the dilated wavelet. This is called the maximal overlap discrete wavelet
transform (MODWT). The wavelet functions for the jth scale in the
MODWT basis are translated in unit steps rather than steps of 2j. The
kth MODWT coefficient for the jth scale is denoted dj ,k. The MODWT
wavelet variance is computed as

σ
^2

j ¼
1

2 j n
^

j

Xn^ j

k¼1

d2j;k ð11Þ

where n
^

j is the number of MODWT coefficients at the jth scale. These

coefficients are not orthogonal, that is to say they do not provide n
^

j

independent pieces of information about the variance at this scale. In
this study I followed Percival and Walden (2000) and used nj as the

equivalent degrees of freedom of σ
^2

j to compute confidence intervals.
The wavelet variance is a global property of a variable, the particular

value of wavelet transforms is that they are based on local coefficients.
One can use the wavelet coefficients for some scale to examine the
evidence that variance at this scale is not spatially homogeneous.
This was developed by Whitcher et al. (2000), see also Percival and
Walden (2000). The method has been applied to examine spatial
variation of soils (Lark and Webster, 2001; Milne et al., 2013), and I
outline it below.

Define the normalized cumulative sum of squared MODWT coeffi-
cients for scale j at the kth coefficient by

Sk ¼
Xk

m¼1
dj;mXn

^
j

m¼1
j j;m

; k ¼ 1;2;…; n
^

j−1: ð12Þ

Under the null hypothesis whereby the variance of our variable at
the jth scale is spatially uniform we expect Sk to increase linearly with
k. Consider an alternative where the variance changes at location k′. In
this instance one expects the graph of Sk against k to be approximately
a bilinear piecewise functionwith the breakpoint at k′. The null hypoth-
esis is tested by computing a statistic Bwhich finds a candidate change
point at some location and measures how far the graph of Sk departs
from the expected linear function under the null hypothesis. Define
Table 1
Principal soils on the transect.

Sampling
positions

Parent material

1–70 Mixed drift over Lower Greensand Group
71–171 Mixed drift over Gault Formation
172–235 Chalky colluvium over West Melbury Marly Chalk
236–254 Chalk (West Melbury Marly Chalk and harder lithological units
255,256 Boulder Clay over White Chalk Subgroup

a Totternhoe Stone Member, Zig Zag Chalk Formation and Melbourn Rock Member.
B+ and B− as

Bþ ≡
max

1≤k≤n
^

j−1
k

n
^

j−1
−Sk

 !
; ð13Þ

and

B− ≡
max

1≤k≤n
^

j−1 Sk−
k−1

n
^

j−1

 !
; ð14Þ

then

B ≡ max Bþ;B−� �
: ð15Þ

In this study I followed Percival andWalden (2000) by usingMonte
Carlo simulation to find the distribution of B under the null hypothesis

for some j and n
^

j when n
^

jb128 and otherwise using a large-sample
result from Inclán and Tiao (1994) to compute the P-value. In the
approach of Whitcher et al. (2000) one tests the first candidate change
point in a sequence of observations. If the null hypothesis is rejected
then the change point is accepted, and one may then use the same
procedure to test the homogeneity of variance of the two segments of
the original sequence, divided at the accepted change point.

3. Materials and methods

3.1. Data collection

The data that are used in this study are on the pH of topsoil (depth
0–15 cm) on a transect of just over 7.5 km length in eastern England
sampled at regular intervals of 29.45 m. The data are from a study
reported by Haskard et al. (2010a) and by Milne et al. (2013). The
study was primarily concerned with the emission of N2O from the col-
lected cores, but soil pH was determined, and in both cited papers the
relationship between pH and aspects of the variability of N2O-emission
rate was examined, but the pH data themselves have not previously
been analysed.

The first sample point was at 508,329, 237,450 on the UK Ordnance
Survey grid (Warren Wood, near Silsoe, Bedfordshire), and the tran-
sect was aligned approximately North–South on a line of bearing
173.5 degrees from grid north. The soils of the landscape traversed
by this transect are described by King (1969) and the principal
soils are described in Table 1. The parent material is identified from
the descriptions of King (1969) and with reference to the British
Geological Survey mapping at 1:50 000 (British Geological Survey,
1992). There are five soil associations. The Cottenham Association
overlies the Lower Greensand Group, a Cretaceous Sandstone. The
soils of the Wicken Association are formed in drift over the Gault
Clay. The drift deposits in this area showmarked and complex variation,
ranging from heavy Chalky Boulder Clay, with large pH, to lighter-
textured acidicmaterial (Sandy Loams) influenced by the Lower Green-
sand (King, 1969). The three associations in the southern section of the
transect are all formed over Chalk from below the base of the scarp and
Soil association WRB groups

(King, 1969) (IUSS working group WRB, 2006)

Cottenham Arenosols, Cambisols
Wicken Cambisols, Luvisols and Acrisols
Burwell Gleyic and Rendzic Leptosols

a) Icknield Rendzic Leptosols
Oak Gleyic Luvisols
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just onto the top of the dipslope. The Burwell Association is formed over
the soft, argillaceous, West Melbury Marly Chalk Formation below the
scarp. The Icknield Association is found at the base of the scarp over
the West Melbury Marly Chalk and over somewhat harder units of the
Grey Chalk Subgroup (Zig Zag Chalk Formation and Totternhoe Stone
Member) and the White Chalk Subgroup (Melbourn Rock Member)
which form the scarp itself. The last two sample locations are from
soil formed in Boulder Clay over the White Chalk.

There was varied land use on the transect as shown in Table 2.
Predominantly broadleaf woodland occurred over both Lower Green-
sand and Gault Clay. In addition to some grass and shrubby paddock,
field margins and waste ground, and set-aside, most of the land on
the transect was in arable use, either cultivated prior to drilling of
spring-sown crops or with emergent winter-sown cereals or oilseed
rape. These variations in land use could be expected to contribute to
variation of soil pH. Soils over the Lower Greensand, and some over
the Gault Clay, may be limed routinely if they are used for arable
production, which may enhance contrasts in pH with soil under
woodland or rough vegetation over the same parentmaterial. Wood-
land was not found over the Chalk on the transect, otherwise there is
no evidence of a trend in land use from north to south with a mixture
of arable, grazed and uncultivated land over all parent materials.
While land use might contribute to local variations of pH, there is
no reason to expect it to contribute to any non-homogeneity of the
variance of pH.

All samplingwas completed in a single day (5th February 2008). Soil
pH was determined from one core of length 150 mm and diameter
44mm collected at each sample site. After air-drying soil pHwas deter-
mined for a 10-g subsample of soilmixedwith 25ml of deionizedwater.
The five distinct soil associations can be expected to differ with respect
to soil pH. In general the CottenhamAssociation is expected to have the
most acid soils because of the influence of the underlying Lower Green-
sand. Larger pHs may be found in soils of the Wicken Association, be-
cause of the presence of Chalky Boulder Clay, but pH is expected to be
variable over this association because of the variability of the drift. The
Burwell and Icknield associations are all formed over chalk, albeit
groups with differing lithology, so the pH of the soil can be expected
to be controlled by the presence of free calcium carbonate from the un-
derlying solid rock, particularly on the scarp slope where the soils are
Table 2
Land use on the landscape-scale transect.

Sampling positions Land use

1–21 Woodland
22–34 Winter-sown crop
35–36 Woodland
37–51 Cultivated for spring-sown crop
52–52 Uncultivated field margin
53–54 Woodland
55–58 Uncultivated waste ground
59–63 Sports field
64–70 Cultivated for spring-sown crop
71–97 Set-aside
98–108 Woodland
109–123 Winter-sown crop
124 Uncultivated field margin
125–130 Winter-sown crop
131–150 Uncultivated grass and scrub
151–152 Animal paddock
153–154 Uncultivated field margin
155–172 Winter-sown crop
173–178 Uncultivated field margin
179–181 Animal paddock
182–187 Uncultivated grass and scrub
188–238 Winter-sown crop
239–239 Uncultivated field margin
240–248 Winter-sown crop
249–256 Uncultivated field margin
relatively shallow. It is likely that the soils of the Oak Association have
pH values in excess of 7 because the Boulder Clay typically contains
some chalk fragments, but the presence of drift over the White Chalk
Subgroup may reduce the influence of the solid geology on the pH of
these soils.

3.2. Data analysis

Given the marked variations in parent material it can be expected
that the variability of soil pH on this transect is complex and not homo-
geneous. The analysis by the DWT with the detection of change points
in the variance at different scales is a natural way to represent this
complexity. A corresponding approach based on the LMMwith spectral
tempering is to specify change points, the location of which are them-
selves variance parameters of the model, and separate values of the
correlated and nugget variances and the tempering parameter, η, for
the segments defined by these change points. I describe these analyses
below.

3.2.1. Linear mixed model
It is expected that the variability of pH will change along the

transect, but also the mean which should increase from the soils over
cretaceous sandstone in the north to soils over chalk in the south. I
chose to use cubic B-splines as fixed effects in the model to describe
this trend. Cubic splines have been used before to represent soil var-
iation (e.g. Voltz and Webster, 1990). The cubic B-spline basis func-
tions were obtained with the bs procedure from the splines
package for the R platform (R Core Team, 2014). The number of
spline basis functions was chosen in an exploratory analysis by con-
sidering increasing numbers, in all cases with the interior knots at
equal intervals) and examining the distribution of the residuals.
The objective was to find the model with the smallest number of
spline basis functions for which the assumption of normal residuals
seemed plausible. A fixed effects model with a constant term and
10 spline basis functions was selected on this basis. Note that I
used the default option in the bs procedure under which the basis
does not include a constant, so the constant is an additional fixed
effects parameter.

The LMMwith spectral tempering andN change-points has a total of
4N+5 variance parameters. These are:

1. the two parameters, ν and ϕ, of the stationary autocorrelation
function — Eq. (2) — used to define the pre-tempering spectrum;

2. the N+1 values of the tempering parameter, one value for each
segment of the transect;

3. the N+1 values of the nugget variance, c0, one for each segment;
4. the N+1 values of the correlated variance, c1, one for each segment;
5. the locations of the N change-points themselves.

As noted above, Haskard and Lark (2010) recommended that thefirst
two parameters, ν and ϕ, are not fixed at values estimated in a
stationary LMM for the data. They suggested that a profiling method
is used. This is computationally demanding, so in this study I used the
following procedure. First, LMMs with stationary variance parame-
terswere estimated. I estimated five suchmodelswith the parameter
ν fixed, respectively, at values 0.1, 0.5, 1.0, 1.5 and 2.0, following the
recommendation of Diggle and Ribeiro (2007), and the other param-
eters allowed to vary. The model with the smallest negative residual
log-likelihoodwas selected. I then fixed ν at this value and computed
the negative log-residual likelihood profile for the LMMwith spectral
tempering, fixing the ϕ parameter at each of a set of values in turn,
including the estimated value for the stationary model, and finding
the maximum residual likelihood estimates of the other parameters
subject to that constraint. The value of the ϕ parameter was selected
for which the negative log-residual likelihood was smallest. In addi-
tion, I computed the values of Akaike's information criterion (AIC) for
each likelihood on the profile (Akaike, 1973). If the negative residual



Fig. 1. Soil pH measured at locations along the transect.

Table 3
Summary statistics for residuals of exploratory spline models.

Number of spline
basis functions

Median Standard
deviation

Skewness Kurtosis

5 0.05 0.57 −0.75 2.13
6 0.05 0.57 −0.77 1.98
7 0.05 0.57 −0.80 1.92
8 0.03 0.57 −0.74 2.08
9 0.04 0.56 −0.62 2.00
10 0.02 0.52 −0.31 1.73
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log-likelihood is ‘ for some model with P parameters then AIC takes
the value A.

A ¼ 2P þ 2‘; ð16Þ

Note that the positive sign appears in this expression because ‘ is the
negative residual log-likelihood. The AIC is ameasure of the goodness of
fit of a model which penalizes improvements in likelihood which
increase the number of parameters. By selecting from a set of models
the one with smallest AIC one minimizes the expected information
loss through the selection decision (Verbeke and Molenberghs, 2000).

This procedure was repeated to fit LMM models with spectral tem-
pering with the number of change points, N=1, 2, until increasing the
number of change points increased the value of AIC for the selected
value of ϕ from the profile. I then fixed the value of ϕ at this value and
computed residual log-likelihood profiles for the discrete values of ν
examined for the stationary model, and with different numbers of
change points to see whether an improved fit could be obtained with
a value of ν different to the one selected for the stationary model.

Values of ν andϕ selectedwere those for which the value of AICwas
smallest in the two sets of profile residual log-likelihoods described
above. In addition to this non-stationary LMM for the whole data set I
fitted two additional models with the same number of change points.
First, the maximal model (separate variances and tempering parameter
values for each segment) was fitted to a subset of 150 observations
formed by simple random sampling without replacement. This was to
examine the effect of using a sparser and irregularly sampled data set.
Second, I considered the possibility that the variability of pH is station-
ary in the autocorrelation but not in the variance by fitting a LMM in
which only the variances of the correlated and nugget components dif-
fer between the segments. In this case I used the pre-tempering spec-
trum selected for the non-stationary model and estimated a constant
value of η to produce the stationary autocorrelationmatrix, this allowed
me to use the same code as used for the fully non-stationary models.

3.2.2. Wavelet transform
Themaximal overlap discrete wavelet transform, as described in the

theory section, was implemented using the waveslim package for the R
platform (R Core Team, 2014;Whitcher, 2015). I wrote separate code in
R, using the modwt function with the option boundary = “reflection”,
to implement the detection and testing of candidate change points,
using eitherMonte Carlo simulationwith 5000 realizations or themeth-
od of Inclán and Tiao (1994) as described above. In theMonte Carlo case
one evaluates an empirical P-value for acceptance or rejection of the
null hypothesis from the number, M′ out of M simulations for which
the B-statistic exceeded the observed value for the actual data. I follow-
ed Percival and Walden (2000) by rejecting the null hypothesis with
confidence level α if

M0

M
−α

� �2

N
4M0 M−M0� �

M3 : ð17Þ

This is more robust than considering only the empirical P-value,
M′/M, by accounting for the sampling error.

A reviewer drew attention to the fact that changes in variance near
the ends of the transect may be detected with less power than those
near the middle. This has received no attention in the literature on
wavelet transforms, but is clear in the original paper on the cumulative
sum of squaresmethod by Brown et al. (1975)where it can be seen that
the value of B corresponding to an increase in variancemay be necessar-
ily restricted below the threshold for some P-value in the first half of a
signal, and, similarly, the value corresponding to a reduction in variance
may be restricted in the second half of the signal. To avoid this problem
any candidate change point for which the null hypothesis of uniform
variance was accepted in these conditions (possible variance increase
in the first half of the transect or segment of the transect, or variance
reduction in the second half) was re-tested after reversing the order of
data values. In no case was there any substantial change in P-values or
any change in inference about candidate change points.

In these analyses I used Daubechies's extremal phasewavelet with 2
vanishingmoments (Daubechies, 1988). This wavelet is specified by the
option wf = “d4” in the waveslim package, the number in d4 refers to
the number of filter coefficients which is twice the number of vanishing
moments. This was preferred over smoother wavelets with more
vanishing moments, since we do not necessarily expect smooth varia-
tion in soil pH, and limiting the number of vanishing moments makes
the basis of the wavelet more compact and so improves the spatial
resolution of changes in the variance. However, it was also preferred
over the Haar wavelet, with just one vanishing moment, since this
has poorer frequency resolution, (Percival and Walden, 2000). The
MODWT, using reflection to deal with end effects, was specified to ob-
tain multiresolution analyses using the mra function in waveslim with
the options method = “modwt”, boundary = “reflection”.

4. Results

Fig. 1 shows soil pH plotted against position on the transect, with
distance from start of the transect in metres also shown. In Table 3 are
shown statistics of residuals from the exploratory fit of models with in-
creasing number of B-spline basis functions. The skewness decreases



Fig. 2. (a) Fitted spline (10 basis functions) (b) residuals from the fittedmodel plotted against location (c) histogram of residuals (d) histogram of residuals for the first 150 locations and
(e) histogram of residuals from location 151 to 256.
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markedly when 10 basis functions are used, Fig. 2 shows this fitted
model, the residuals and their histogram. As the plot of residuals
shows a marked change in their variability near location 150, separate
histograms are also shown for the first 150 residuals on the transect
and the remaining ones. An assumption of normality of the residuals
looks plausible so this spline basis was selected as the fixed effect for
all linear mixed models. Table 4 shows results for a LMM with these
fixed effects and stationary random effects with the ν autocorrelation
parameter fixed at different values. The value of ν was fixed at 1.5 for
the pre-tempering model for the initial set of non-stationary LMM as



Table 4
Estimated stationary variance parameters for models with different fixed values of ν.

ν (fixed) c0 c1 ϕ/m ‘

0.1 0.016 0.214 249.9 −53.97
0.5 0.100 0.156 94.9 −60.97
1.0 0.115 0.183 68.2 −63.59
1.5 0.122 0.200 54.2 −64.29
2.0 0.123 0.171 40.4 −64.10
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this value had the smallest negative log residual likelihood (nlrl). This
autocorrelated process is smoother than onewith an exponential corre-
lation (ν=0.5) but less smooth than a gaussian correlation (ν=∞).
Fig. 3.Results forfitting non-stationary linearmixedmodelswith 1–5 changepoints. The symbo
triangle corresponds to a model with five change points but a stationary autocorrelation. Top
(b) Negative residual log-likelihood (‘) for different values of ν and ϕ=1472m. Bottom left (c)
to points in (b).
Fig. 3 (left column) shows the profile nlrl (top) and AIC (bottom) for
LMM fitted by spectral tempering with one to five change points, and
with ν fixed at 1.5 and the ϕ parameter fixed at different values for
the pre-tempered spectrum. When there are three or more change
points there is a clear minimum in the profile with ϕ for the pre-
tempering spectrum equal to 1472 m. Adding change points reduces
the minimum nlrl as expected, but the AIC was smallest for a model
with N=4 so this was selected. The right column in Fig. 3 shows corre-
sponding nlrl and AIC values for models with different numbers of
change points and the pre-tempered spectrum based on parameters
ϕ=1472mandνfixed at values from0.5 to 2.0. This shows that the ini-
tial selection of ν=1.5 was robust. With N=4 the minimum nlrl/AIC
l corresponding to eachnumber of change points is shown in the legend to Fig. 3c. The open
left (a) Negative residual log-likelihood (‘) for different values of ϕ and ν=1.5. Top right
Values of AIC corresponding to points in (a). Bottom right (d) Values of AIC corresponding



Table 5
Parameters of non-stationary linear mixed model identified from profile on parameter ϕ
with ν=1.5. The first line of the table shows, for comparison, the parameters of the select-
ed stationary model (from Table 4) with N=0. Note that the terms in column ‘Start’ are
the N+1 first locations (transect positions from 1–256) of the segments formed by N
change points. The model denoted 4⁎ has 4 change points but a common value of the η
parameter over all segments (i.e. stationary autocorrelation with non-stationary vari-
ances). Themodel denoted 4⁎⁎ has four change points and non-stationary autocorrelation
and variances, and was fitted to a random subset of 150 observations. Note that A, the
value of AIC, is not given for model 4⁎⁎ because it is comparable only between models
fitted to the same data.

N P ν ϕ ‘ A Start η c1 c0

0 15 1.5 54.2 −64.3 −98.6 – – 0.200 0.122
1 20 1.5 1177.6 −195.3 −350.6 1 0.372 0.826 0.170

142 0.365 0.008 0.007
2 24 1.5 1472.0 −201.0 −354.0 1 0.347 1.037 0.244

71 0.350 0.749 0.072
142 0.333 0.006 0.008

3 28 1.5 1472.0 −210.8 −365.6 1 0.646 2.343 0.019
16 0.242 1.163 0.129
65 0.274 0.463 0.057
142 0.956 1.828 0.008

4 32 1.5 1472.0 −218.3 −372.6 1 0.390 0.275 0.008
16 0.369 1.603 0.327
71 0.374 0.851 0.091
142 0.354 0.008 0.006
254 0.255 0.015 0.042

5 36 1.5 1472.0 −219.7 −367.4 1 0.659 1.406 0.032
12 0.025 0.755 0.063
64 0.372 1.700 0.173
108 0.434 1.594 0.077
143 1.518 0.430 0.029
250 0.528 0.005 0.027

4⁎ 28 1.5 1472.0 −216.4 −376.8 1 0.344 0.411 0.001
15 __"__ 1.536 0.279
71 __"__ 0.755 0.065
142 __"__ 0.009 0.006
254 __"__ 0.009 0.049

4⁎⁎ 32 1.5 1472.0 −335.2 1 0.596 0.719 0.302
7 0.370 0.598 0.527
62 0.078 1.635 0.527
142 0.732 0.386 0.007
169 1.233 0.244 0.007

Fig. 4. Marginal residuals of the non-stationary LMM showing segments determined by
change points from (numbered) the non-stationary LMM and (letters) wavelet change-
point detection. Note that the region in grey shows the range of change points identified
from the wavelet coefficients near to 4270 m (location 145 on the transect).
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was obtained with ν equal to 1.0 or 1.5, with three or for change points
the minimum was at ν=1.5. Table 5 shows estimated parameters for
LMM with N=1,2,3 ,4, and the values of the change points identified
by REML. The model indicated by N=4⁎ in Table 5 has four change
points but η is fixed over all segments (i.e. the autocorrelation is station-
ary) and only the variances differ. Note that the AIC is smallest for this
than for any other model for the full data set, it is also indicated by an
open triangle on the bottom left plot in Fig. 3. This indicated that,
while a model with non-stationary variance is needed for these data,
only the variance components and not the autocorrelation need be
treated as non-stationary.

The change points for the selected model were at the 15th, 71st,
142nd and 254th location (first location in the second to fifth segments
respectively). These are illustrated in Fig. 4 on a plot of the marginal
residuals from the fixed effect model, where the segments are labelled
numerically 1–5. The second change point corresponds exactly to the
geological boundary between the Lower Greensand Group and the
Gault Clay (see Table 1). Both the nugget variance, c0, and the correlated
variance, c1, become smaller at this boundary, possibly reflecting how
the Chalky Boulder Clay may constrain the scope for variation in pH
where it occurs over the Gault Clay, and the potential for very small
pH values over the Lower Greensand. Note that this change point
also appears in the LMMs with varying values of η and with two and
four change points; in the model with 3 change points one appears at
the 65th location, less than 200 m from the mapped position of the
boundary.

The third change point in the selected model was somewhat north
of the mapped boundary between soils formed over the Gault Clay
and those formed over Chalk units. However, this change point is very
apparent on plots of the residuals (see Fig. 4). The discrepancy with
the mapped boundary could reflect boundary uncertainty. It could also
reflect superficial influences of the Chalk on soils formed over the
Gault Clay, either by transport of Chalky material in the Boulder Clay
from where the Chalk is in outcrop just to the south, or by recent pro-
cesses of colluviation. At this point the variation in pHbecomesmarked-
ly smaller than it is to the north, presumably because of the constraint
that free calcium carbonate imposes on possible soil pH values (see dis-
cussion). Note that this change point appears consistently in all models
fitted to the full data set (although it is at location 143 rather than 142 in
the model with five change points).

The first change point in the selected model, at the 15th sample site,
at which the variance of pH increases, occurs in broadleaf woodland.
There is no obvious relation to geology, the first two segments of the
transect both lie over the Lower Greensand. The last three locations in
the transect form a segment. Note that the last two are over Chalky
Boulder Clay and have a notably smaller pH than neighbouring samples.
The Chalky Boulder Clay, as the name indicates, is not decalcified, and
the pH of the last three observations are all larger than 7, but there
seems to be more scope for variation of pH in soils formed over this
superficial material than there is for soils formed directly over the
Chalk. However, care must be taken not to over-interpret an effect
that only involves the last three observations. The nugget variance in
the final segment is larger than for the segment immediately to the
north over Chalk, and this may just reflect some outlying observations
rather than an underlying non-stationarity that would have been rein-
forced by additional observations on Boulder Clay over the Chalk.

There are some differences in the change points for the model fitted
to the subset of 150 data. Note that the change point at location 142,
with a marked reduction in the variance, but the other change points
are some way from those found for the full data set. It is not surprising
that the removal of a substantial number of observations should affect



Fig. 6.Wavelet variances for pH data estimated fromMODWT coefficients of four dilations
of Daubechies's extremal phase wavelet, 2 vanishing moments. Also shown are 95%
confidence intervals.

93R.M. Lark / Geoderma 266 (2016) 84–97
the estimated parameters, including the locations at which changes in
variance are indicated. However, this analysis shows how the LMM
can be used to detect non-stationary features in irregularly sampled
data whichwould be harder to examinewith a wavelet transformation.

Fig. 5 shows three autocorrelation functions for LMM fitted to these
data. The dotted line shows the autocorrelation for the stationary LMM
(parameters in Table 4 with ν=1.5). The dashed line shows the pre-
tempering autocorrelation with parameters for the selected model
(four change points, constant η, different variances). The solid line
shows the autocorrelation for the non-stationary LMM, recall that only
the variances changed between segments of the transect in the selected
model. While, in principle, the autocorrelations and variances of the
random effects of a spatial mixed model can be treated independently
of each other as stationary or non-stationary, it is of interest that
when the assumption of stationarity in the variancewas relaxed the sta-
tionary autocorrelationmodel showed spatial dependence over a longer
effective range. This shows that a stationary spatial model may give a
misleading impression of the spatial dependence of a variable even
when it is stationary if the assumption of a stationary variance is not
justified.

Fig. 6 shows the overall wavelet variances for the first four dilations
of the selected wavelet function. These are the four scales equivalent to
2, 4, 8 and 16 times the sampling interval (i.e. approximately 60, 120,
240 and 480 m). Fig. 7 shows the corresponding components of the
MRA of the data. These show the marked reduction in variance at all
scales near the 142nd location. The significant change points are listed
in Table 6. Fig. 8 shows the diagnostic plot of the Sk statistic for the sec-
ond scale (120 m) with the candidate change point, and the empirical
distribution of the B-statistic under the null hypothesis, with the value
of the actual B statistic indicated by a symbol on the axis of the plot.
The locations of significant change points are indicated by vertical
lines on the plot of theMRA (Fig. 7), and also on Fig. 4where the vertical
dotted lines at the bottom of the graph delineate segments, labelled
with letters that differ with respect to wavelet variance at one or more
scales. As noted above there was a change in variance near the 142nd
location at all scales, the grey bar on Fig. 4 indicates the interval over
which these change points occurred. Fig. 9 shows the separate wavelet
variances computed from theMODWTwavelet coefficients at each scale
within each segment separately.
Fig. 5.Correlation functions from LMM for the autocorrelated random variableU. The ‘pre-
tempered’ autocorrelation is the function that provided the basis for a tempered spectrum
with maximum likelihood.
The change in wavelet variance between segment C and D is seen at
all four scales and is consistent with the change point in the LMM with
Fig. 7. Detail components and smooth component for MRA of pH data by MODWT with
Daubechies's extremal phase wavelet, 2 vanishing moments. The vertical symbol at the
bottom of the plot shows 2 pH units on the vertical scale. Vertical lines show significant
change points in the wavelet variance at each scale.



Table 6
Results of tests of homogeneity of wavelet variance, using MODWT and Daubechies's
extremal phase wavelet with 2 vanishing moments. The reported P-values are obtained
by themethod of Inclan–Tiao or byMonte Carlo simulation, following Percival andWalden
(2000). In the latter case the null hypothesis can be rejected at 0.05, 0.01 or 0.001 respec-
tively if the empirical P-value is less than 0.044, 0.007 or 0.0004 respectively, indicated by
*, ** or *** in the table. P-values shown in italic are those for which the candidate change
point was retested with the order of values reversed as described in the text.

Segment Candidate
change point

B P-value Method of
inferencea

Scale 1
256 124 0.445 ≪0.001 ⁎⁎⁎ IT
123 63 0.198 0.078 MC
256 142 0.526 b0.001 ⁎⁎⁎ MC
141 133 0.367 0.117 MC
256 253 0.146 0.338 MC

Scale 2
256 143 0.424 b0.001 ⁎⁎⁎ MC
142 64 0.169 0.182 MC
256 241 0.660 0.328 MC

Scale 3
256 145 0.423 b0.001 ⁎⁎⁎ MC
144 27 0.106 0.860 MC
256 244 0.087 0.976 MC

Scale 4
256 60 0.421 0.001 ⁎⁎ MC
59 30 0.326 0.241 MC
256 148 0.516 b0.001 ⁎⁎⁎ MC
147 132 0.358 0.116 MC
256 238 0.457 0.016 ⁎ MC
237 217 0.267 0.354 MC
256 249 0.458 0.129 MC

a Inclan–Tiao (IT) or Monte Carlo (MC).

Fig. 8. Detection of the change point for the second detail component. On the left is plotted (
expected value of Sk for a homogeneous variable. The solid symbol indicates the location of th
On the left is shown the distribution of the corresponding B statistic for 5000 realizations of a hom
for the data on soil pH.
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spectral tempering. Both thewavelet transform and the LMM show this
to be the dominant non-stationary feature in the soil variation.

The change from segment A to B in the wavelet analysis, with a
reduction in variance at the coarsest scale (480 m) is at location 60,
about 330 m from the boundary between the Lower Greensand and
the Gault clay, which is a change point in the selected LMM. This change
can be given an interpretation comparable with the change at location
71 for the LMM, with a smaller variance (at the 480-m scale) south of
the change point over the Gault Clay. The wavelet variances in Fig. 9
for these segments show that the variances at the three finer scales
are all similar in segments A, B and C.

Other change points indicated by the MODWT do not so clearly
correspond to change points in the LMM. No change point (or rejected
candidate change point) in the wavelet analysis corresponds to the
change at the 15th location in the selected LMM. Similarly, there is no
counterpart in the LMM to the change in the wavelet coefficients
between segments B and C. The change-point between segments D
and E is someway north of the change-point in the LMM at the Chalky
Boulder Clay over theWhite Chalk Group, and is a reduction in variance
at a coarse scale, whereas the LMM showed an increase in variance for
the last three locations over the Chalky Boulder Clay.

The selected LMM has a stationary autocorrelation function with
changes only in the variance. It is interesting to compare the sets of
wavelet variances in Fig. 9 in the light of this. For all segments other
than D the wavelet variance at the finest scale is the largest, and there
is a general decline in variance at coarser scales. This is consistent
with a stationary autocorrelation, but thewavelet variances for segment
D, all of similar order, with the maximum at the third scale (240 m)
indicates that the variation at these scales is smoother than in the
other segments.
solid line) the value of Sk against k (location on the transect). The dashed line shows the
e candidate change point, and the length of the dotted line is the value of the B statistic.
ogeneous randomvariable of length 256. The solid symbol shows the value of the statistic



Fig. 9.Wavelet variances with confidence intervals for five segments of the transect defined by change points identified bywavelet analysis. Note that variances are shown on a log scale.
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5. Discussion

The LMM with spectral tempering provides a basis for modelling
non-stationary variation, and the inferences from likelihood using the
AIC allows us to justify the number of change points in the finally-
selected model. In the data set examined here the model parameters
provide insight into the sources of soil variation. In particular the
model shows how differences between the parent materials with re-
spect to the constraints on possible soil pH (narrowest over the Chalk
and widest over the Lower Greensand) give rise to non-stationarity of
the variance in soil pH, although the autocorrelation appears to be sta-
tionary. The difference in variances of pH between the parent materials
make sense in terms of basic soil chemistry. In calcareous soils without
large concentrations of sodium the pH is determined by the equilibrium
of the calcium carbonate–calcium bicarbonate–carbon dioxide system.
The pH depends on the partial pressure of carbon dioxide but can be
expected to be buffered between 7.5 and 8.5 (Russell, 1973). This is con-
sistent with the narrow range of soil pH over the Chalk on this transect.
A much wider range of soil pH is seen in the soil over the other parent
materials which ranges from the Lower Greensand under woodland
with pH as small as 4, and pH approaching 8, presumably due to the
presence of free calcium carbonate, in soils formed from Chalky Boulder
Clay. In principle land usewill influence soil pH, but there is no evidence
here of trends in land use which might give rise to non-stationarity in
the variance of pH.

It is interesting to compare the autocorrelation functions in Fig. 5.
When stationary variances are assumed there is a much shorter range
of autocorrelation than when non-stationary variances are modelled.
This may be because large contrasts over short distances between or
within particularly variable parts of the transect dominate the station-
ary model. This would have implications for the reliability of any
decisions made about further sampling in comparable environments
based on the stationary LMM.
The wavelet transform also allows us to identify locations on a tran-
sect at which the variance of a property changes. In this case study,
where both methods were used on a single data set we can see consis-
tencies between the two analyses. The clearest common feature is the
pronounced change in variance near location 142 where the effect of
Chalk in the parent material on the scope for variation of pH is seen.
There is a change point identified at this location in the LMM, and
change points near this location for all scales of the wavelet transform.
There is some variation in the exact locations of the changes in wavelet
variance, but this should not be surprising as the spatial resolution of
the wavelet coefficients declines with increasing scale (Percival and
Walden, 2000).

The LMM identified a change in the variance coincident with the
boundary between soils formed over the Lower Greensand and those
formed over the Gault Clay. The variance was smaller over the latter
soils. There was a change in the wavelet variance for the fourth dilation
(scale 480m)at location 60, about 330m from this soil boundary,with a
reduction inwavelet variance. The difference in location of these change
points could be due to various factors.

First, as noted above, the spatial resolution of the wavelet coeffi-
cients is scale-dependent and decreaseswith scale (while the frequency
resolution increases). In the LMM fitted here the autocorrelation is
stationary so the change point indicates a change in variance over all
spatial scales represented by the random effects of the model. So,
while the change points are likely both to be explained by the soil
boundary, the wavelet analysis is considering variation at particular
scales separately, and the spatial resolution of local features such as
change points is poorer at the coarser scales.

Second, in the wavelet analysis we look for changes in variation at
scales represented by the detail components of the MRA, the variation
not represented by the smooth component. In the LMM we look
for non-stationarity in the variance of the random effects in the
model, the variation not accounted for by fixed effects (here the spline
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model). If one compares the smooth component in the MRA (Fig. 7)
with the spline function from the LMM (Fig. 2), then one can see that,
though broadly similar, there are some differences. In particular there
are fluctuations in the spline function between locations 50 and 150
that are not seen in the smooth component of theMRA, andwhichprob-
ably contribute largely to the variation at the 480-m scale. For this rea-
son the wavelet analysis and the LMM are not examining exactly the
same variation, with the differences likely to be greatest at the coarsest
scale of the wavelet analysis.

Finally, it should be recalled that all change points in the non-
stationary LMM are found in a single optimization. In the case of the
wavelet analysis the change points are found in sequence, so that the
position of a change point in the wavelet analysis is based on a contrast
in variance between two segments of the transect, one or both of which
may subsequently be subdivided by further change points. Given these
factors it should not be surprising that, while consistent features can be
seen in the two analyses of this data set, there are also differences.

The wavelet transform has advantages over the LMM. The algorithm
is fast to execute, and the analyses of thewavelet coefficients for change
detection, even with Monte Carlo inference for the distribution of the B
statistic in the null case, are faster than maximization of the residual
likelihood of the LMM. However, the wavelet transform does require
the selection of an appropriate wavelet function, on which the infer-
ences are conditioned, and, as noted above, there is a pay-off between
frequency and spatial resolution which depends on scale.

Estimation of the parameters of the LMM is computationally inten-
sive, in particular the profiling procedure to find a good set of parame-
ters for the pre-tempering spectrum is time-consuming, but the LMM
framework does allow for inference using the log residual likelihood,
via Akaike's information criterion. Furthermore, the LMM procedure
can be applied to irregularly-sampled data, as seen here, in a more
straightforward way than can be done with the wavelet transform
(Milne and Lark, 2009). However, the interpretation of the LMM with
spectral tempering for markedly irregularly sampled data may not be
straightforward. When sampling density changes systematically one
component of the spectral decomposition (eigenvector) may represent
rather different frequencies at different locations, for example (Haskard
and Lark, 2009), which may reduce the sensitivity with which changes
in the covariance can be modelled by tempering. The properties of the
spectral decomposition and tempered empirical spectrum under irreg-
ular sampling, and the implications for the spectral tempering method,
require further investigation.

This study has compared the two methods for the analysis of non-
stationary variation of soil properties in a case where discrete changes
may be expected at locations where the transect traverses boundaries
between distinctive soil parent materials. The wavelet transform is
particularly well-suited to such a case. However, it is conceivable that
a non-stationary property may show continuous variation in space, in
which case discrete change points are not appropriate. The LMM with
spectral tempering has greater flexibility to deal with such variation,
by treating the tempering parameter as some function of a continuous
covariate or allowing it to show a spatial trend, perhaps using a B-
spline basis in each case (Haskard et al., 2010a). It should also be
noted that the LMM can be readilly extended to the two-dimensional
case whenmore general models are available for the tempering param-
eter (e.g. Haskard et al., 2010b).

6. Conclusions

I have presented the first comparison between a wavelet analysis
and an analysis with a non-stationary LMM of a common soil data set.
The two analyses both gave consistent results on broad changes in the
variability of soil pH along a transect which are not consistent with
assumptions of stationarity in the variance. These changes were attrib-
utable to differences in soil parent material, which constrain the ranges
of possible soil pH. The largest change, induced by the appearance of
Chalk parent materials in one section of the transect, was identified by
both analyses. Differences between the analyses can be attributed to
the way in which the wavelet analysis examines different scales sepa-
rately, to the scale-dependent spatial resolution of the wavelet analysis,
to the fact that the variation attributed to the smooth component of the
wavelet MRA and the fixed effects of the LMM may not be exactly the
same and to the way that the wavelet analysis identifies change points
sequentially rather than simultaneously. Both analyses allow for formal
testing of the hypothesis of stationarity, and the complexity of the non-
stationary model. The main advantage of the wavelet transform is
its computational efficiency. The LMM with spectral tempering is com-
putationally demanding. However, the LMMwith spectral tempering al-
lows for a more flexible family of models to specify the non-stationary
variation of the random component than the discrete change points
identified by a wavelet analysis. It can also be more readily extended
to two dimensions, and to deal with irregularly sampled data.
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