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 25 

Abstract  26 

Aims The focus of the study was to determine the symbiotic and growth response of three Senegalia senegal 27 

(Syn. Acacia senegal, gum arabic tree) provenances, namely Dahra (Senegal), Tera (Niger) and Makueni 28 

(Kenya) to inoculation with selected S. senegal-nodulating rhizobia in soils from Dahra and Goudiry regions of 29 

Senegal, representing typical soil and enviromental conditions for establishing gum arabic production 30 

plantations. 31 

Methods A greenhouse experiment was performed to evaluate the effect of 11 rhizobial strains on nodulation and 32 

growth of three S. senegal provenances in two field soils, differing in nutrient status and indigenous rhizobia. 33 

After 4 months, plants were harvested for determination of nodulation, shoot and root dryweight.  34 

Results Nodulation and growth of S. senegal varied in relation to rhizobial strain, provenance, soil type, and their 35 

interactions. Generally, nodulation was higher in Dahra than Goudiry soils, while Makueni provenance was the 36 

most compatible host. Inoculation had a significant effect on all parameters measured in Dahra field soil. By 37 

contrast, inoculation had a significant effect on height (shoot length), and shoot, root and total dry matter but not 38 

on nodulation. In the two field soils, seed provenance effect was significant for all parameters measured. The 39 

interaction between inoculation and provenance showed a significant effect on all parameters measured except 40 

nodule number in Dahra field soil while in Goudiry, the interaction had a significant effect on seedling height 41 

and shoot, root, and total dry matter but this effect was not significant with nodulation parameters. 42 

Conclusions S. senegal is variable in its response to inoculation, it is therefore advantageous to select and match 43 

effective rhizobia-provenance symbionts for each site. 44 

 45 

46 
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Introduction 47 

In the arid and semi-arid lands of Africa, low and erratic rainfall, high temperatures and poor soil water and 48 

nutrient availability limit agricultural productivity (Mertz et al. 2012). Thus, multipurpose trees such as 49 

Senegalia (Acacia) species that provide a means to maximise agricultural potential and stabilise yields under 50 

stressful, unpredictable growing conditions are important for reforestation and reclamation of marginal lands, for 51 

fuel wood, timber, shelterbelts and soil improvement (Midgley and Bond 2001; Raddad and Luukkanen 2007). 52 

Previous phylogenetic studies indicated that Acacia Miller s.l. is polyphyletic. Recently, Kyalangalilwa et al. 53 

(2013) segregated genera for Acacia s.l. and proposed new combinations for the African species in Senegalia 54 

and Vachellia. The Senegalia clade is represented in Africa, Central and South America, and Asia with more 55 

than 60 species. S. senegal (L.) Britton & P. Wilson [Syn. Acacia senegal (L.) Willd.] is a complex group 56 

formed by closely related species widely distributed through the arid and semi-arid lands of sub-Saharan Africa 57 

(Odee et al. 2015). This tree is adapted to survive under harsh environmental conditions such as low and erratic 58 

rainfall, intense solar radiation, and high wind velocity (Cossalter 1991). 59 

S. senegal is a N2-fixing shrub or tree with considerable economic and ecological importance, producing a 60 

natural gum (gum arabic) widely used in the food and beverage industry, pharmaceuticals, other technical 61 

applications and provisioning of severalecosystem services in the drylands of tropical Africa (Ballal et al. 2005; 62 

Gaafar et al. 2006; Gray et al. 2013; Odee et al. 2011; Omondi et al. 2010) and a well-established traditional 63 

agroforestry tree component (Raddad et al. 2005). However, in Senegal the number of Senegalia (Acacia) 64 

species is believed to have reduced over the past years. The species remains under pressure as a result of its 65 

overexploitation by human population, shortage of rainfall in the Sahel, overgrazing. In addition, it is due to 66 

inappropriate agricultural practices, leading to the degradation and/or lack of regeneration of S. senegal 67 

parklands. Therefore, there is a need to conserve and sustainably manage the species if they are to meet the 68 

increased demand for fuelwood, fodder, soil improvement through N2 fixation, protection of the environment 69 

and to cater for gum production, which is an important source of cash (Fagg and Allison 2004). The N2-fixing 70 

capacity of a legume tree is often used to explain its ability to grow better on and restore the fertility of N-71 

depleted soil (Dommergues 1995).  72 

S. senegal is a promiscuous species that could be nodulated with various rhizobial taxa and strains 73 

(Bakhoum et al. 2014; de Lajudie et al. 1998; Fall et al. 2008; Nick et al. 1999; Njiti and Galiana 1996; Odee et 74 
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al. 1995; Odee et al. 1997; Sarr et al. 2005). Nevertheless, previous studies have shown that S. senegal is mainly 75 

nodulated in Senegal by rhizobial strains phylogeneticaly close to Mesorhizobium plurifarium (Bakhoum et al. 76 

2014; Fall et al. 2008; Sarr et al. 2005a). Recent studies showed that inoculation with Mesorhizobium strains 77 

significantly improved nodulation and S. senegal plant growth under water-limited conditions (Fall et al. 2011), 78 

and enhanced plant nutrient content and rhizospheric soil fertility of S. senegal plants (Bakhoum et al. 2012). 79 

While in another study, inoculation improved plant nodule number but not shoot N content (Ndoye et al. 2012). 80 

Like several other African acacias, S. senegal has the potential to fix N2 under a range of soil and environmental 81 

conditions if nodulated by effective rhizobia (Gray et al. 2013; Ndoye et al. 1995; Raddad et al. 2005). S. senegal 82 

is morphologically variable. It has four distinct varieties, namely vars. senegal, kerensis, leiorhachis and rostrata 83 

(Fagg and Allison 2004), of which three (senegal, leiorhachis and kerensis) are found in East Africa and one 84 

(senegal) in West Africa. Rangewide genetic studies of the species also show differentiations among varities and 85 

provenances across its native range, with clear genotypic distinction between west African and east and southern 86 

Africa (Chevallier and Borgel 1998; Odee et al. 2012; Odee et al. 2015). Therefore, there is an important need to 87 

select appropriate plant phenotypes/genotypes and rhizobia that are the most compatible to each other. The 88 

essential requirement to realize this objective is to increase understanding of the effect of abiotic factors such as 89 

soil characteristics and climatic conditions on nodulation and growth of different plant provenances. 90 

As part of an international consortium aimed at improving growth and sustainable production of gum arabic, we 91 

evaluated the symbiotic and growth response of S. senegal provenances (Dahra, Senegal; Tera, Niger and 92 

Makueni, Kenya) inoculated with 11 Mesorhizobium (rhizobial) strains and grown in two Senegalese (Dahra, 93 

arid and Goudiry, semiarid) soils under greenhouse conditions.  94 

Material and methods 95 

Sampling and analyses of soils 96 

Composite soil samples were collected from Dahra (15°21’ N, 15°29’ W) and Goudiry (14°11’ N, 12°43’ W), in 97 

the northern and the southern part of Senegal, respectively. The climate is influenced by a strong north-south 98 

dominated precipitation gradient, resulting in about 400-500 mm and 800-1200 mm per year at Dahra (arid) and 99 

Goudiry (semiarid), respectively (Bakhoum et al. 2012). Soil samples were collected in April 2008 from the top 100 

0 - 25-cm-deep of rhizosphere soil of S. senegal trees grown in plantations at Dahra and Goudiry. The soils were 101 

passed through a coarse sieve (2 mm mesh) to remove stones and large pieces of organic matter, and stored at 102 
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4°C. The physical and chemical soil properties were analyzed at LAMA (Laboratoire des Moyens Analytiques, 103 

IRD, Dakar, Senegal). The total amount of carbon and nitrogen was determined by the combustion system 104 

ThermoFinnigan Flash EA 1112 (ThermoFinnigan, France). The colorimetric determination of total and 105 

available phosphorus was performed according to the method of Dabin (1965). Soil pH was determined in 2 M 106 

KCl suspensions at a solid liquid ratio of 1:2.5. Soil physical characteristics were determined according to the 107 

method of Gee and Bauder (1986), and exchangeable cations followed the method of Thomas (1982). 108 

The most probable number (MPN, Brockwell 1980) method was used to estimate the number of S. senegal-109 

nodulating rhizobia (per g-1 soil ) indigenous to Dahra and Goudiry field soils. The seeds were then transferred in 110 

aseptic conditions into Gibson tubes (four replicates per soil) containing a sterile Jensen nitrogen-free medium 111 

(Vincent 1970). S. senegal seeds of the Dahra provenance were inoculated with soil samples and grown in a 112 

controlled environment (Easy-lighting, 200 W 8U 8500LM 6400K° blue – 2700K° red, Cis products, Paris, 113 

France) for three months with a photoperiod of 16 hours (under daylight) and eight hours (night), temperature of 114 

30 ± 1 °C (night), relative humidity of 70 ± 5% and a photosynthetically active radiation (PAR) of 120 µmol m2-1 115 

s-1. 116 

Rhizobial strains used  117 

Table 1 shows the 11 rhizobial strains strains used in this study. They were all isolated from S. senegal in 118 

Senegal and selected on the basis of their symbiotic infectivity and effectiveness (Bakhoum et al. 2012; Fall et 119 

al. 2008; Sarr et al. 2005b). S. senegal nodulating rhizobial strains used in this study have identical nodA, nodC, 120 

and nifH gene sequences, and are closely related to Mesorhizobium plurifarium (Bakhoum et al. 2015; Fall et al. 121 

2008). 122 

Plant test 123 

The three S. senegal provenances tested originated from Makueni County, Kenya (2° 9' S, 37° 46' E); Tera, 124 

Niger (14° 0' N, 0° 45' E), and Dahra, Senegal (15° 21’ N, 15° 29’ W). Germination of the seeds was done as 125 

described previously (Fall et al. 2008). Pre-germinated seedlings were transplanted into 12 cm x 8 cm ( height x 126 

diameter) plastic bags filled with 800 mL of field soil from Dahra or Goudiry. The eleven strains were grown in 127 

glass flasks containing liquid yeast extract mannitol (YEM) medium (Vincent 1970) at 28°C for 2 days on an 128 

orbital shaker. Seedlings were inoculated during transplanting with 5 ml of the rhizobial culture in YEM liquid 129 

containing approximately 109 cells ml-1. Non-inoculated treatments received 5 ml of autoclaved YEM medium. 130 
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Experimental design 131 

The experimental design was a randomized complete block at Bel Air Station, Senegal. Each block was divided 132 

into seven plots; two plots represented soil origins (Dahra and Goudiry); three plots represented seed 133 

provenances (Dahra, Senegal; Tera, Niger and Makueni, Kenya); two plots represented the inoculation treatment 134 

(inoculated separately with eleven rhizobial strains and non-inoculated control). Each plot had twelve replicates. 135 

All plants were grown in a greenhouse (daylight approximately 10 h, average daily temperature 25°C day, 20°C 136 

night) and watered regularly with tapwater. After 4 months of growth, seedling height measurements were taken, 137 

then plants were uprooted, their root systems gently washed with tap water and the nodules counted. The oven 138 

dry weight (80°C for 72 hours) of the shoots, roots, and nodules were recorded. 139 

Statistical analysis 140 

Data on seedling height, nodule number, and shoot, root and nodule dry matter were statistically analyzed using 141 

one - and two-way ANOVA with XLSAT software version 2010. Student-Newman-Keuls range test (P<0.05) 142 

was performed to indicate the level of differences between the means. The means of soil physical and cemical 143 

characteristics of the two soil sources were compared using unpaired t-test.The hierarchical classification 144 

associated with correlation matrix were done with R software (64 3.1.0) to show the clustering charateristics 145 

based on the correlation between nodulation (nodule number, nodule dry matter), shoot and root characteristics 146 

(root, shoot and total dry matter, and shoot length) parameters measured in each soil type. A principal 147 

component analysis (PCA) was carried out in each soil type to determine the correlation between inoculation 148 

treatment, plant provenance and soil parameters using XLSAT software version 2010. 149 

150 
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Results 151 

Soil characteristics 152 

Soils from the arid Dahra and semi-arid Goudiry regions of Senegal used in this study were both sandy (Table 153 

2). However, soil from the semi-arid Goudiry had a higher percentage of clay and silt than the soil from Dahra. 154 

Soils from Dahra can be characterised as poorly developed soils formed on sandy parent material of dunes or 155 

fluvial deposits (with less than 3 % clay). These soils are reddish and have previously been classified as 156 

Arenosols (Batjes 2001). The soils from Goudiry are classified as high in ferric lixisols, with clay-enriched lower 157 

horizon (FAO 1995, 2003). Soil pH was slightly acidic in both sites and did not vary significantly. Total C, N, P, 158 

contents, percentages of Ca, K were significantly higher in Goudiry than in Dahra field soil (P < 0.05). By 159 

contrast, the difference of  available P, percentage of Mg and Na were not significant between Dahra and 160 

Goudiry field soils.  161 

The number of rhizobia able to nodulate S. senegal (MPN) was also higher in Goudiry (4.02 x104 cells g-1) 162 

compared to Dahra (34 cells g-1) field soil  (Table 2).  163 

Effect of rhizobial inoculation on nodulation 164 

Uninoculated plants were nodulated except plants of S. senegal provenance grown in Goudiry field soil, and 165 

plants of Tera (Niger) provenace in Dahra field soil, thus reaffirming the  presence of compatible indigenous 166 

rhizobia (Table 3). Interestingly, S. senegal provenance from Makueni (Kenya) showed better nodulation than 167 

the West African provenances, Dahra (Senegal) and Tera (Niger), especially in Dahra field soil. Generally, for 168 

each provenance, the nodule number and nodule dry matter was higher in Dahra field soil than in Goudiry field 169 

soil. Thus, Dahra field soil was more responsive to rhizobial inoculation. Compared to uninoculated plants, 170 

significantly high (P<0.05) nodule dry matter were obtained by strains CiradF300 and ORS 3610 on Dahra 171 

(Senegal) provenance in Dahra and Goudiry field soils, respectively; strains ORS 3604 and ORS 3416 on Tera 172 

(Niger) provenance in Dahra field soil, and strain ORS 3607 on Makueni (Kenya) provenance in Dahra field soil. 173 

The highest mean nodule number and dry weight were recorded in Dahra field soil on Makueni (Kenya) 174 

provenance plants inoculated with strains ORS 3600 (8.25 nodules plant-1) and ORS 3607 (51.3 mg plant-1), 175 

respectively (Table 3). 176 

Effect of rhizobial inoculation on plant shoot and root dry weight 177 
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Makueni (Kenya) and Dahra (Senegal) provenances showed contrasting shoot and root dry matter accumulation 178 

in Dahra and Goudiry soils (Fig. 1A & B). Makueni provenance had better shoot than root growth, while Dahra 179 

provenance had better root than shoot growth in both soils. However, shoot and root growth of Tera (Niger) 180 

provenance did not show any differences between the two field soils.  181 

In Dahra soil, the best inoculation response was recorded with the strains ORS 3607 which showed the best 182 

nodule dry weight (Table 3). Strain CiradF 300 significantly (P<0.05) improved the root dry weight of Makueni 183 

provenance by 47% compared to uninoculated plants. In Goudiry soil, inoculation with rhizobial strains ORS 184 

3416, ORS 3607, and ORS 3593 signicantly (P<0.05) increased shoot dry weight of provenance Makueni 185 

(Kenya). These strains showed hagh nodule dry weight (Table 3). All rhizobial strains significantly increased 186 

root dry weight in Makueni (Kenya) provenance. In Dahra soil, rhizobial strains ORS 3574, ORS 3593, ORS 187 

3604, ORS 3607, CIRAD F300 and ORS 3616 significantly (P<0.05) increased shoot dry weight of Dahra 188 

(Senegal) provenance plants compared to uninoculated plants (Fig. 1A). All of them showed high nodule dry 189 

weight (Table 3). Nevertheless, no significant effect of inoculation was observed on root dry weight. In Goudiry 190 

soil (Fig. 1B), all rhizobial inoculation treatments significantly increased the shoot and root dry weight of Dahra 191 

provenance (Senegal) plants, except the strain ORS 3628. In Dahra soil, inoculation with rhizobial strains ORS 192 

3573, ORS 3574, ORS 3588, ORS 3604, ORS 3610, ORS 3628 and ORS 3588, ORS 3604 to Tera (Niger) 193 

provenance, significantly improved shoot and root dry weight, respectively, in comparison with uninoculated 194 

plants (Fig. 1A & B). In Goudiry soil, inoculation with the strains ORS 3604 and ORS 3610 increased 195 

significantly (P<0.05) the shoot dry weigth of plants by 40% and 32%, respectively. In contrast, strains ORS 196 

3604 and ORS 3610 showed low nodule dry weight (Table 3). Only the root dry weight of plants inoculated with 197 

the strains ORS 3604 was significantly increased by 82% compared to uninoculated plants. 198 

Interactions and correlations between factors tested  199 

The two-way interaction of plant provenances and strain were significant (P < 0.05) for most parameters, except 200 

nodule number in Dahra soil, and both nodule and nodule number in Goudiry soil (Table 4). For Dahra soil, 201 

ANOVA test with two factors showed that inoculation had a significant effect on height (shoot length), 202 

nodulation, root, shoot and total dry matter of seedlings (Table 4). Provenance also had a significant effect on all 203 

parameters measured. The interaction between inoculation and provenance showed a significant effect on all 204 

parameters measured except nodule number. Regarding Goudiry soil, inoculation had a significant effect on the 205 

seedling height, and shoot, root and total dry matter. However, inoculation had no effect on nodulation. Seed 206 
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provenance effect was significant for all parameters measured. The interaction between inoculation and plant 207 

provenance had a significant effect on the height and shoot, root, and total dry matter but this effect was not 208 

significant with nodulation parameters. 209 

Hierarchical classification and correlation between inoculation and plant growth parameters 210 

Hierarchical classification associated with correlation matrix are represented in Fig 2. A and B. In our study, we 211 

used this method to identify the impact of field soil on the hierarchichal clustering and the correlation of plant 212 

parameters measured. Results of Dahra soil showed two clusters in relation to the correlation of parameters: the 213 

first comprises correlation between root dry matter (RDM) and total dry matter (TDM), and the second formed 214 

by nodule dry matter (NDM), nodule number (NN), shoot dry matter (SDM) and seedlings height (shoot length) 215 

which were correlated. Three clusters were revealed in Goudiry (Fig. 2 B): correlation between total dry matter 216 

(TDM), shoot dry matter (SDM) and seedlings height (shoot length); among nodule number (NN) and nodule 217 

dry matter (NDM); and root dry matter (RDM). In Dahra field soil, the improvement of TDM was linked to 218 

RDM; however, in Goudiry field soil, it was correlated to SDM and height (shoot length). There is an influence 219 

of the soil type on plant growth parameters.  220 

PCA distribution of inoculation and provenance treatments, and plant growth parameters 221 

To reveal the similarities and differences between samples and to assess the relationships between the observed 222 

variables, principal component analysis was performed. We used this method to identify which rhizobial strain 223 

inocultated to a S. senegal provenance is able to improve plant parameters measured in relation to the soil type. 224 

PCA showed that variables were condensed into two principal components that together were extracted and 225 

accounted for 90% and 82% variance for Dahra (Fig. 3) and Goudiry (Fig. 4) soils, respectively, suggesting that 226 

rhizobial inoculation and provenance treatments had positive effect on nodulation and plants growth parameters 227 

measured. Inoculation effects changed significantly depending on soil type and S. senegal provenance. However, 228 

the provenance impact was most pronounced in Dahra than in Goudiry soil. 229 

In Dahra soil, three major clusters were clearly separated: Cluster A represented by nodule number (NN), nodule 230 

and shoot dry weight (NDM and SDM) and the height (shoot length) values correlated with the Makueni 231 

(Kenya) provenance inoculated with ORS 3573, ORS 3574, ORS 3588, ORS 3593, ORS 3600, ORS 3604, ORS 232 

3607, ORS 3610, CiradF 300 and ORS 3416 in the positive values of F1. Cluster B consisted inoculated plants 233 

from Dahra (Senegal) provenance with ORS 3573, ORS 3588, ORS 3600, ORS 3610, ORS 3628, ORS 3416 and 234 
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inoculated plants from Tera (Niger) provenance with ORS 3574, ORS 3588, ORS 3593, ORS 3600, ORS 3607, 235 

ORS 3610, ORS 3628, ORS 3416  wich were linked to root dry matter (RDM) in the negative values of F1. The 236 

plants of  provenance Dahra (Senegal) inoculated with ORS 3574, ORS 3593, ORS 3604, ORS 3607, CiradF 237 

300 and plants of provenance Tera (Niger) inoculated with ORS 3573, ORS 3604 constitued the Cluster C, 238 

which is correlated to total dry matter (TDM) in the positive values of F2. 239 

In Goudiry soil two clearly distinct clusters can be identified: The cluster A is represented by an association of 240 

TDM,  SDM, NDM, NN and height with treatments of provenance Makueni (Kenya) inoculated with ORS 3573, 241 

ORS 3588, ORS 3593, ORS 3607, ORS 3610, CiradF 300, ORS 3416 and treatment of provenance Tera (Niger) 242 

inoculated with ORS 3604 in the positive values of F1 axis. The cluster B was formed with treatments of 243 

provenance Dahra (Senegal) inoculated with  ORS 3573, ORS 3588, ORS 3593, ORS 3604, CiradF 300, 244 

treatments of provenance Tera (Niger) inoculated with ORS 3607, ORS 3610, CiradF 300 and treatment of 245 

provenance Makueni (Kenya) inoculated with ORS 3604, associated with RDM in the positive values of F2 axis. 246 

 247 

Discussion 248 

Our results demonstrate provenance variation in symbiotic association with selected Mesorhizobium strains as 249 

influenced by soil characteristics (nutrient status and indigenous rhizobia). Several authors have shown similar 250 

results, for example, in the common bean, Phaseolus vulgaris (Cardoso et al. 2009) and several woody legumes 251 

(Elbanna et al. 2009; Mnasri et al. 2007; Odee et al. 1995; Sanginga et al. 1991). In our study, Makueni 252 

provenance had the best nodulation response when inoculated seedlings were grown in arid Dahra soils that had 253 

low nutrients status and number of indigenous S. senegal-nodulating rhizobia (Table2). These results also 254 

suggest that Makueni provenance has a higher N demand compared to the West African provenances. This is 255 

also corroborated by a previous study that reported higher shoot N contents of the Makueni provenance 256 

(Kenyan) than the West African demostrating differences in their N requirements (Bakhoum et al. 2012). Thus, 257 

high nodulation capacity may indicate higher N-demand in the Makueni than Dahra and Tera provenances.  258 

Nodulation tended to be higher in Dahra soils poor in nutrients compared to fertile Goudiry soils. This was 259 

probably due to the differences in level of available N in the soils, which was higher in Goudiry  than Dahra 260 

(Table 2). These results showed that nodulation was inversely related to soil N. This could be attributed to that 261 

the act that nodule number and N2 fixation are regulated in response to the N status of the plant as described by 262 
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Ruffel et al. (2008).  Dart (1974) showed that N compounds like nitrates may affect nodulation regardless of 263 

plant age, size or prior to inoculation status. Plants use the available nitrogen in soil and form nodules to 264 

complement the quantity of nitrogen required, thus the observed nodulation may also reflect differences in the 265 

relative N-limiting status between the soils. However, indigenous rhizobia could also be responsible for the 266 

observed diffierence in nodulation of S. senegal plants grown in Dahra and Goudiry soils. Singleton and Tavares 267 

(1986) and Turk et al. (1993) indicated that the response of rhizobial inoculation mostly occurs when the 268 

indigenous population densities are <50 rhizobia g-1 of soil; Dahra soil rhizobial MPN (Table 2) was within this 269 

threshold. On the other hand, MPN of rhizobia was high in Goudiry soil (4.02 x 104 g-1 of soil), a large number 270 

which could also outcompete the inoculant strain. In studies solely dependent on indigenous rhizobia, it has been 271 

shown that low rhizobia counts in the soil reduce nodule numbers and biomass while high rhizobial counts in 272 

soil enhance nodulation, for example cowpea (Kimiti and Odee 2010), Acacia saligna (Benbrahim et al. 1998) 273 

and Cajanas cajan (Mapfumo et al. 2000). Therefore, the inoculation response in Goudiry soil cannot only be 274 

explained by available N in soil, but also the number of competitive indigenous rhizobia in soil. Notwithstanding 275 

the difference in MPN estimates of indigenous rhizobia capable of nodulating S. senegal in Dahra and Goudiry 276 

soils, inoculation in most cases improved nodulation. In addition, indigenous rhizobial strains originally isolated 277 

from Goudiry generally performed better than exogenous strains in Goudiry soil despite high indigenous 278 

populations, indicating the importance of selection and re-inoculation with an effective indigenous strain as 279 

previously demonstrated in Sesbania sesban by Makatiani and Odee (2007). Besides natural adaptation, the re-280 

inoculated strain is also expected to reduce competion for nodulation from other compatible indigenous soils. 281 

Another important finding of this work is that nodulation (nodules number and nodule dry matter) were 282 

correlated with shoot dry matter and seedlings height in Dahra and Goudiry soils indicating effectiveness of the 283 

symbioses and contribution of N2 fixation to the growth of S. senegal seedlings. Nodule dry weight and numbers 284 

were negatively correlated with  root dry matter in Dahra soil and not in Goudiry soil. These results suggested 285 

that the control and biomass partitioning for nodule development in S. senegal is driven by the soil available N, 286 

but other factors such as host provenance and rhizobial strain may also be equally important. Other workers (e.g. 287 

Laguerre et al. 2007; Rodiño et al. 2011) have reported variability of nodulation, root and shoot characteristics in 288 

relation to rhizobial strain and plant genotype. 289 

Our results showed that inoculation with rhizobial strains significantly improved growth of S. senegal seedlings. 290 

These results are in agreement with several previous studies in nursery conditions which reported enhanced 291 
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growth of S. senegal species due to inoculation with effective microsymbionts (Badji et al. 1988; Räsänen et al. 292 

2001). Nevertheless, there was high variability in plant development among the provenances studied. It is 293 

important to note that effectiveness of rhizobial strain on improving plant growth parameters varied according to 294 

provenance and soil source. This is also reflected in the variable interaction effects of inoculation  plant 295 

provenance on the various growth and nodulation parameters between Dahra and Goudiry soils (Table 4). 296 

Corollary to this result, PCA showed that in Goudiry soil, the rhizobial strain ORS 3604 inoculated to Tera 297 

(Niger) provenance seedlings had improved growth parameters except root dry matter. In contrast, the strain was 298 

only correlated with the total dry matter in Dahra soil. This reaffirms the importance of soil type, hence plant 299 

available N on the nodule development and functioning. In our study, Dahra provenance generally performed 300 

better in produced more roots biomass than other provenances, especially in Dahra soil, indicating its adaptation  301 

grow in poor soils, by growing an extensive  root system in order to get nutrient from wider soil area. Therefore, 302 

these results implied that nodulation and thus effectiveness of symbiosis is regulated by plant provenance, 303 

rhizobial strain and soil origin. 304 

Conclusions 305 

The nodulation and growth of S. senegal seedlings was variable and dependent on complex interactions of 306 

rhizobial strain inoculation, plant provenance and soil type. This study has shown that it would be advantageous 307 

to select effective combinations of rhizobia  provenances in relation to soil and environmental conditions where 308 

they are to be planted.  309 
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 449 

Table 1 List of Senegalese Mesorhizobium strains  originally isolated from rhizosphere soils of S. senegal and 450 

used in this study 451 

. 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

Rhizobial 

strain 

Genbank accession 

number (16S 

rRNA) 

Site in 

Senegal 

Climatic zone Reference 

ORS 3573 JQ039728 Dahra Arid Bakhoum et al. (2014) 

ORS 3574 JQ039729 Dahra Arid Bakhoum et al. (2014) 

ORS 3588 JQ039735 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3593 JQ039736 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3600 JQ039741 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3604 JQ039739 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3607 JQ039737 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3610 JQ039732 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3628 JQ039740 Goudiry Semiarid Bakhoum et al. (2014) 

ORS 3416 EU584256 Kamb Arid Fall et al. (2008) 

CiradF 300 Unknown Kebemer Semiarid Sarr et al. (2005) 
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Table 2 Physical and chemical characteristics of Senegalese Dahra (arid) and Goudiry (semiarid) soils used. For 466 

each parameter analyzed, means followed by the same letter on each row are not significantly different according to Newman-Keuls test at 467 

5% level. Means ± SE (n = 3) 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

* Most probable number (MPN) estimates of rhizobia (g soil-1) able to nodulate S. senegal Dahra provenance  477 

 478 

 479 

 480 

 481 

Soil characteristics Dahra soil Goudiry soil 

% Clay 3.57±0.50a 6.87±0.267b 

% Silt 10.30±1.14a 19.10±1.51b 

% Sand 85.30±1.00b 73.87±1.56a 

% Total C 0.52±0.06a 0.77±0.04b 

% Total N 0.05±0.01a 0.07±0.01b 

Available P (mg kg-1) 8.01±1.05a 8.29±0.01a 

Total P (mg kg-1) 49.00±7.55a 79.33±4.70b 

 % Ca (meq)  0.92±0.11a 1.33±0.07b 

% Mg (meq) 0.42±0.03a 0.42±0.07a 

% K (meq) 0.20±0.01a 0.28±0.02b 

% Na (meq) 0.11±0.05a 0.15±0.02a 

pH H2O 5.97 5.96 

MPN* 34 4.02x104 
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Table 3 Nodulation (mean nodule number, nodule dry matter plant-1) of S. senegal seedlings of three provenances (Dahra, Senegal; Tera, Niger and Makueni, Kenya) grown in two different non-sterilised soils (Dahra 482 

and Goudiry, Senegal) after four months in greenhouse conditions at Bel Air Station, Senegal. For each soil type, means of values (n = 10) with the same letter are not significantly different according to Student-483 

Newman-Keuls range test (P<0.05). Nod number: nodule number plant-1; NDM: nodule dry matter plant-1. 484 

485 
  Dahra provenance    Tera provenance     Makueni provenance 

 Dahra soil  Goudiry soil  Dahra soil  Goudiry soil   Dahra soil  Goudiry soil 

Treatments Nod 

number 

NDM (mg)  Nod 

number 

NDM  

(mg) 

  Nod 

number 

NDM 

(mg) 

 Nod 

number 

NDM 

(mg) 

  Nod 

number 

NDM 

(mg) 

 Nod 

number 

NDM (mg) 

Control 0.17a 1.55a  0a 0a   0a 0a  0.17a 2.06a  1.08a 12.85a  1.08a 3.48a 

ORS 3573 1.42a 3.26ab  0.33a 0.12a   2.58bc 3.36ab  0a 0a  5.33abc 18.36a  1.36a 6.76a  

ORS 3574 1.58a 3.75ab  1a 0.53a   0.91abc 4.46ab  0a 0a  4.25abc 18.6a  0a 0a 

ORS 3588 0.42a 0.65a  0.5a 2.53ab   2.92c 8.49b  0a 0a  5.7abc 25.04a  2.45a 8.54a 

ORS 3593 1.83a 5.25ab  0.42a 0.08a   0.58ab 3.4ab  0.1a 0.54a   5.08abc 22.05a  1.27a 8.67a 

ORS 3600 1.08a 3.18ab  0.83a 1.87ab   0.08a 0.08a  0.75ab 3.97a   8.25c 33.5ab  0.78a 0.48a 

ORS 3604 0.58a 3.39ab  0.42a 1.62ab   1.75abc 8.34b  1.08b 3.56a   2.73ab 13.34a  0.08a 0.31a 

ORS 3607 1.67a 6.81ab  1a 1.47ab   0.42ab 0.55a  0.09a 1.81a   7.5bc 51.65b  0.45a 5.76a 

ORS 3610 1.5a 3.9ab  0.64a 4.82b   0.67abc 1.85ab  0.17a 0.04a   5.09abc 28.77a  1.91a 8.78a 

ORS 3628 0.83a 1.24a  0.5a 0.35a   0a 0a  0a 0a   3.6abc 24.67a  0a 0a 

CiradF300 1.08a 8.7b  0.67a 1.22ab   2.42bc 7.2ab  0a 0a   5.55abc 16.5a  1.18a 4.07a 

ORS 3416 0.17a 0.7a  0.25a 0.29a   1.33abc 8.74b  0.1a 0.31a   4.14abc 26.37a  1.45a 7.65a 
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Table 4 Significance level obtained from two-way ANOVA testing the effects of inoculation and provenance 486 

level on different parameters measured on field soils, Dahra (arid) and Goudiry (semi-arid) inoculated with 487 

Mesorhizobium strains on three S. senegal provenances cultivated during four months at greenhouse conditions. 488 

 489 

 490 

Significant values are indicated: *P<0.05; **P<0.01; ***P<0.001; NS, not significant to student-Newman-Keuls 491 

test.  Inoc: inoculation treatments; Prov: provenances; Nod number: nodules number; NDM: nodules dry matter; 492 

SDM: shoot dry matter; RDM: root dry matter; TDM: total dry matter 493 

 494 

 495 

 496 

 497 

 498 

Soils Factors tested Nod numb NDM SDM RDM TDM Height (shoot length) 

Dahra Inoculation * * *** ** *** *** 

 Provenance *** *** *** *** *** *** 

 Inoc*Prov NS *** *** ** ** ** 

        

Goudiry Inoculation NS NS *** *** *** *** 

 Provenance ** ** *** *** *** *** 

 Inoc*Prov NS NS * ** ** *** 
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 499 

Fig. 1 Shoot and root dry matter yield of Dahra, Senegal; Tera, Niger and Makueni, Kenya S. senegal 500 

provenances grown in Dahra arid (A) and Goudiry semi-arid (B) Senegalese non-sterilised soils inoculated with 501 

selected rhizobial strains. For shoot and root dry matter taken separately, bars with the same letters are not 502 

significantly different according to Student-Newman-Keuls range test (P<0.05) for each S. senegal provenance. 503 

Error bars are standard errors of the mean (n=10). 504 
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 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

Fig. 2 Hierarchical classification associated with correlation matrix of nodulation (NN, NDW), shoot and root 525 

characteristics (RDM, SDM, TDM and Height (shoot length)) of three S. senegal provenances inoculated with 526 

selected rhizobial strains in Dahra (A) and Goudiry (B) Senegalese soils. The colour gradations from black to light shades 527 

correspond with high to low correlation between the parameters. The letters are defined as follows: NN, nodule number per plant, NDW, 528 

nodule dry weight per plant, RDM, root dry weight per plant, SDM, shoot dry weight per plant, TDM, total dry weight plant per plant 529 

A 

B 
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 530 

 531 

Fig. 3 Principal component analysis representing the relationships between nodulation (NN, NDW), shoot and 532 

root characteristics (RDM, SDM, TDM and Height (shoot length)) of three S. senegal provenances inoculated 533 

with selected rhizobial strains in Dahra soil. The % variance explained by each component is given in 534 

parenthesis.  The letters are defined as follows DS, Dahra soil associated to Dahra (Senegal) provenance; DN, Dahra soil associated to 535 

Tera (Niger) provenance; DK, Dahra soil associated to Makueni (Kenya) provenance, and C, control. 536 

 537 

 538 
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 543 

 544 

Fig. 4 Principal component analysis representing the relationships between nodulation (NN, NDW), shoot and 545 

root characteristics (RDM, SDM, TDM and Height (shoot length)) of three S. senegal provenances inoculated 546 

with selected rhizobial strains in Goudiry soil. The % variance explained by each component is given in 547 

parenthesis. The letters are defined as follows: GS, Goudiry soil associated to Dahra (Senegal) provenance; GN, Goudiry soil associated 548 

to Tera (Niger) provenance; GK, Goudiry soil associated to Makueni (Kenya) provenance and C, control. 549 

 550 
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