

pplied geoscience for our changing Earth

The impacts of historical agricultural landuse on the nitrate concentration trend in the major aquifers in England and Wales

Lei Wang, Marianne Stuart, Milly Lewis, Rob Ward

British Geological Survey (BGS)

^{17th} September 2015

Background: Agricultural diffuse water pollution – nitrate

- Nitrate water pollution, the biggest remaining problem of water pollution in many countries, has been identified as a major threat to water quality and the implementation of the EU WFD (EHS, 2000; DoE & DARD UK, 2003; Torrecilla et al., 2005)
- Agricultural land is the major source of nitrate water pollution (Ferrier et al., 2004; Thorburn et al., 2003; Torrecilla et al., 2005).
- Nitrate water pollution is not only an environmental issue but also a threat to economics and human health (Defra, 2002)
 - \blacktriangleright Eutrophication in rivers, lakes and estuaries;
 - \blacktriangleright The annual costs for nitrate water treatment in the UK: £16 million;
 - \blacktriangleright Nitrate (>10mg N/I) in drinking water may cause blue baby syndrome;
 - A potential cancer risk from high nitrate/nitrite in water and food has been reported;

Background: Nitrate in UK groundwater

- Average nitrate concentrations in the UK groundwater have been rising with a rate of 0.35 – 0.53 mg NO3 L⁻¹ year⁻¹ (European Environment Agency, 1999; Roy et al., 2007; Stuart et al., 2007)
- In England, over one third of the sites exceeded the 50 mg NO3 L⁻¹ EU drinking water standard (Stuart et al., 2007). It is estimated that ~60% of all groundwater bodies will fail to achieve good status by 2015 (Defra, 2006; Rivett *et al.*, 2007).

Background: The aim of the research

It could take decades for nitrate to transport in unsaturated zones (USZs) and saturated zones. <u>*Historical nitrate*</u> <u>storage and lag-time</u> in groundwater system, however, have <u>rarely been considered</u> in the <u>current water</u> <u>resource management in many countries including the</u> <u>UK</u>.

It is necessary to address this issue to help regulators and water companies in making sound decisions in water resource management.

To develop a feasible method to simulate the impacts of historical nitrate loadings from agricultural landuse on the nitrate concentration trend in aquifers

Methodologies- nitrate time bomb (NTB) conceptual model

Flow chart of the spatial-temporal NTB model used in this study

Methodologies – single background nitrate input function

Nitrate input function – the time-varying nitrate loading at the bottom of the soil zone

Peak nitrate loading (around 1983)

-**Red line:** the derived nitrate input function from literature data.

-Black dots: observed porewater nitrate concentrations from BGS database.

-Blue crosses: the average observed value.

Methodologies – Introducing spatio-temporal nitrate input functions (1925 – 2050)

 NEAP-N (Anthony *et al.*, 1996; Environment Agency, 2007, Lord and Anthony, 2000) predicts the total annual nitrate loss from agricultural land across England and Wales.
 NEAP-N 1980, 1995, 2000, 2004 and 2010 was used
 BGS NIE function (pre-1980 and

BGS NIF function (pre-1980 and forwards)

Interpolated NIF maps (1950-2020)

Methodologies – groundwater transport and dilution in aquifers

Hydrogeological conceptual model

An island system;

Reach dynamic balance;

➢ Nitrate travel speed in aquifer; ◎ NERC All rights reserved

- > Nitrate travel time;
- Active groundwater volume

Other components in the NTB model

- Estimating nitrate transport velocity in the USZ using recharge, aquifer porosity and storage coefficient
- ✤ Calculating groundwater available for nitrate dilution
- Calculating the velocity of nitrate transport in aquifers
- Simulating nitrate concentration in groundwater

Fixed / Monte Carlo Calibration	Parameter (units)	Description
Fixed	A_i (m ²)	The area for cell i
	q_i (m year-1)	The recharge value for cell i
	The nitrate-input- functions (kg/ha)	-
	Rp_q (year)	The water table response time to recharge events
	$GWL_i(m)$	The groundwater level for cell \dot{i}
	RL_{i} (m)	The river level for cell i
	ATT (-)	the nitrate attenuation factor in the USZ
	$Thickness_{USZ,i}$	The thickness of USZ at cell i
Monte Carlo Calibration	$\Phi_{\it aquifer}$ (-)	The porosity for an aquifer zone
	Sy _{aquifer} (-)	The specific yield for an aquifer zone
	Rf _{aquifer} (-)	The retardation factor for calculating the nitrate velocity in USZs
	$T_{aquifer}~(\mathrm{m^2~day^{-1}})$	The transmissivity for an aquifer zone
	$D_{aquifer} \left(\mathrm{m} ight)$	Depth of active groundwater for an aquifer zone

Model construction

- 28 aquifer zones (1 km x 1 km)
- ✤ DEM
- Groundwater levels
- Long term average recharge
- ✤ Aquifer prosperities
- Observed datasets of nitrate velocity in USZs and groundwater nitrate concentrations

Model calibration

Two sets of MC simulations were conducted to calibrate the model against:

- the nitrate velocity values in USZs derived from measurements of porewaters from drill cores (Wang *et al.*, 2012)
- 2) the observed average nitrate concentrations for each aquifer zone calculated from monitoring data

Sensitivity analysis

- Sensitivity scatter plots for parameter values in estimating the nitrate velocity in USZs of some aquifer zones.
- Grey dots are individual parameters from Monte Carlo simulations and the black dots denote the optimum parameter value

Sensitivity analysis

- Sensitivity scatter plots for parameter values in estimating the nitrate velocity in USZs of some aquifer zones.
- Grey dots are individual parameters from Monte Carlo simulations and the black dots denote the optimum parameter value

The changing trend of nitrate concentrations

The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining

The changing trend of nitrate concentrations

The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining

Catchment-scale application in the Eden Valley, England

Glacial till covers 54 % of the sandstones in the area; and 59 % of them has the thickness of less than 2 m. It is necessary consider the nitrate transport in low permeable glacial till.

Catchment-scale application in the Eden Valley, England

© NERC All rights reserved

Catchment-scale application in the Eden Valley, England

© NERC All rights reserved

Conclusions

- The NTB model requires relatively modest parameterisation and runs on an annual time-step
- It provides useful estimates of present and future average groundwater nitrate concentrations in aquifers
- It help decision makers to evaluate the long-term impact and timescale of land-management scenarios introduced to help deliver water-quality compliance
- It is readily transferable to other areas
- It can be integrated with others models in freshwater cycle

Thanks for your attention

Questions, comments and suggestions?

lei.wang@bgs.ac.uk

© NERC All rights reserved