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Abstract We use a new exploratory model that simulates the evolution of sandy coastlines over
decadal to centennial timescales to examine the behavior of crenulate-shaped bays forced by differing
directional wave climates. The model represents the coastline as a vector in a Cartesian reference
frame, and the shoreface evolves relative to its local orientation, allowing simulation of coasts with
high planform-curvature. Shoreline change is driven by gradients in alongshore transport following
newly developed algorithms that facilitate dealing with high planform-curvature coastlines. We simulated
the evolution of bays from a straight coast between two fixed headlands with no external sediment inputs
to an equilibrium condition (zero net alongshore sediment flux) under an ensemble of directional wave
climate conditions. We find that planform bay relief increases with obliquity of the mean wave direction,
and decreases with the spread of wave directions. Varying bay size over 2 orders of magnitude (0.1–16 km),
the model predicts bay shape to be independent of bay size. The time taken for modeled bays to attain
equilibrium was found to scale with the square of the distance between headlands, so that, all else being
equal, small bays are likely to respond to and recover from perturbations more rapidly (over just a few years)
compared to large bays (hundreds of years). Empirical expressions predicting bay shape may be misleading
if used to predict their behavior over planning timescales.

1. Introduction

In this contribution we explore how wave conditions influence the morphology of embayed beaches using a
new one-line model for coastline evolution. One-line models are coastal evolution models in which the coast
is represented by a single line. They are built around a central assumption that the cross-shore beach profile
maintains some average morphology, which is only temporarily perturbed by storm events [cf. Masselink et al.,
2015], and therefore, a single shoreline contour is sufficient to describe the planform morphology of the coast.

The curved planform morphology of embayed beaches can be observed at various length-scales at coast-
lines, from a few hundred meters to several kilometers (Figure 1). These log spiral-shaped [LeBlond, 1972],
crenulate-shaped [Silvester and Ho, 1972], hook-shaped [Rea and Komar, 1975], or zeta-shaped [Zenkovich,
1967] bays occur in the lee of headlands or man-made coastal structures where erosion and/or littoral drift
is inhibited in the face of a dominant direction of wave incidence [Yasso, 1965]. A highly concave portion of
shoreline forms on the downdrift side of the headland where the coastline is shadowed from the dominant
wave direction and subject to waves that diffract around the headland [e.g., Yasso, 1965; LeBlond, 1972; Rea
and Komar, 1975; Hsu et al., 2010].

Embayed beaches tend toward an equilibrium form under a prevailing wave climate. The planform
morphology will adjust until gradients in alongshore sediment flux are minimized (net alongshore sediment
flux is constant). Alongshore sediment flux will be negligible on an equilibrium coastline when there are no
external sediment inputs [Tanner, 1958; LeBlond, 1979; Komar, 1998; Hsu et al., 2010]. Subsequent changes in
planform morphology may occur such as beach rotation, driven by changes in wave climate characteristics
that alter alongshore [e.g., Turki et al., 2013; Ratliff and Murray, 2014] or cross-shore [e.g., Harley et al., 2011]
sediment transport.

One-line models of shoreline evolution can reproduce embayed beach morphology in the lee of a headland
or promontory [LeBlond, 1972; Rea and Komar, 1975; Hanson, 1989; Littlewood et al., 2007; Iglesias et al., 2009;
Weesakul et al., 2010; Barkwith et al., 2014a, 2014b]. Rea and Komar [1975] used simple rules to describe the
adjustment in wave height and direction due to diffraction in the shadow of a promontory and demonstrated
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Figure 1. Examples of crenulated bay shapes at different scales. (a) Hathead Bay, Eastern Australia. (b) Flamborough
Head and the Holderness Coastline, East Yorkshire, UK. (c) Half Moon Bay, California, USA.

that the resulting bay forms were similar in form to a logarithmic spiral. Weesakul et al. [2010] presented a
similar model that found good agreement when compared to experimental data and the empirical parabolic
model for bay morphology [Hsu and Evans, 1989]. Both of these studies examined the formation of bays
under the influence of a single dominant wave direction, with the morphology of the highly curved por-
tion of the bay controlled by diffraction of waves into the shadowed region. The study by Littlewood et al.
[2007] neglected wave diffraction in the shadow zone yet demonstrated that a crenulate-shaped bay can still
develop when there is variation in the approaching wave angles. Sediment transport in the shadow of the
dominant wave direction only occurs when waves approach from the leeside of the crenulate bay. Daly et al.
[2014] explored the sensitivity of embayment morphology to variation in wave climate using the Delft3D
hydrodynamic and morphodynamic model. Starting with an idealized straight coastline between two coastal
structures, the model was evolved long enough for a stable bathymetric condition to emerge. The simula-
tions demonstrated that variation in wave approach angles exerts a significant control on bay morphology
and that wave diffraction in the shadow of coastal structures or headlands is only an important control on
bay morphology when the spread of wave approach angles are narrow and strongly oblique to the bay
orientation.

Empirical models have been derived to approximate the shape of crenulate bay beaches, including the log-
arithmic spiral [Krumbein, 1944; Yasso, 1965] and the parabolic bay [Hsu and Evans, 1989] described further
below. The parabolic model applies specifically to predicting the static equilibrium form of a bay beach behind
a specified diffraction point given a predominant wave direction. Oliveira and Barreiro [2010] fitted these mod-
els to 42 bay beaches along the Portuguese coast in order to assess whether the beaches were stable and had
reached static equilibrium. The authors found that both the logarithmic spiral and parabolic bay equations
provided good fits to observed beach planforms. Fitted parabolic bay equations were consistent with these
beaches being in static equilibrium, despite empirical evidence that some bays are open systems and there-
fore may have attained dynamic equilibrium [Hsu et al., 2010]. The logarithmic spiral performed well in the
curved region in the lee of an adjacent headland but cannot fit straight sections of coastline.

The logarithmic spiral was first observed to be a good fit to the planform geometry of Half Moon Bay,
California, USA, by Krumbein [1944] (Figure 1c). The logarithmic spiral empirical model is in polar coordinates
and takes the following form:

r = r0 e 𝜓 cot 𝜆 (1)

where r [L] is the radius from the beach to the center of the spiral, r0 [L] is the minimum value for r, 𝜓 [∘] is the
angle around the spiral (between r and r0), and 𝜆 [∘] is the spiral angle (i.e., the constant angle to the tangent
of the spiral). Dimensions are given as [M]ass, [L]ength, [T]ime, and angles [∘] throughout (see the notation
section). The origin does not necessarily coincide with the point of diffraction [e.g., Yasso, 1965; Hsu et al., 2010]
nor does it include factors to account for, or indicate, the dominant wave conditions. The log spiral model
applies only to the shadow zone [Oliveira and Barreiro, 2010] and is not limited to equilibrium bay shapes.
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Hsu et al. [2010] were critical of this model because the diffraction point (i.e., the headland) is not specified.
The coordinate origin is not required to coincide with the headland tip which is the point of diffraction, and
the method does not take into account beach stability, nor does it provide an explicit relationship to incoming
waves [Hsu et al., 2010].

The parabolic bay equation developed by Hsu and Evans [1989] predicts the static equilibrium planform of a
beach in relation to a specific control point (headland) in the face of particular dominant wave conditions. The
expression takes the form of a second-order polynomial:

R = R0

(
C1 + C2(𝜅∕𝜓) + C3(𝜅∕𝜓)2

)
(2)

C1, C2, and C3 (dimensionless) are empirical coefficients [see Hsu and Evans, 1989], 𝜅 [∘] is the angle between
incoming dominant wave crests and the reference line R0 [L] which describes the line to a downcoast reference
point beyond which the shoreline is linear. R [L] is the distance to the shoreline at radial angle 𝜓 [∘] to the
control line.

The ability to predict the final form of the beach has applications in understanding the future distribution and
timescales over which coastal erosion will occur, or in planning for the influence of coastal interventions on
downdrift coastal morphology. Indeed the induction of a crenulate bay morphology may itself be a success-
ful strategy for stabilizing a coastline [González and Medina, 2001; González et al., 2010; Hardaway and Gunn,
2010]. Yet these empirical expressions are decoupled from the physical processes that drive bay formation
and evolution.

Exploratory numerical models provide a means to test the predictions of these empirical relationships. Daly
et al. [2014] apply the Delft3D model to a bay formed between two fixed structures just ∼150 m apart over a
3 year time period. Even at these scales, the authors note that the computational time required to carry out
multiple simulations can be “discouraging,” despite the use of a morphological acceleration factor to reduce
computation time. Empirical models for bay morphology assume that the bay has achieved equilibrium, yet
little is known about how long it takes for bays to attain equilibrium and what controls this response time.
Daly et al. [2015] found that the progression to equilibrium from an initially straight coast between two head-
lands could be well described by an exponential function, with a rapid initial response increasing bay size,
and the rate of change in bay size declining through time. However, for large bays (600 m headland separa-
tion) they were not able to run simulations long enough for equilibrium conditions to emerge. Exploratory,
behavioral modeling such as the use of one-line models facilitates predicting coastal evolution at larger spa-
tial and temporal scales (mesoscales, kilometers—tens of kilometers, tens to thousands of years) [Murray,
2007; Larsen et al., 2014]. In this study we took a systematic approach in seeking to understand the influence
of wave climate and wave transformation on the development of large embayments toward an equilibrium
form. We also investigated the influence of spatial scale on the timescale to attain equilibrium. We show that
coastal morphology is sensitive to both dominant wave direction and the spread of wave directions imping-
ing the coastline and that the timescale to attain equilibrium scales diffusively with the length of separation
between headlands. To do so, we developed a Coastal One-line Vector Evolution (COVE) model that simulates
the evolution of high planform-curvature coastlines.

2. One-Line Coastal Evolution Models

One-line coastal models make a number of simplifying assumptions in order to conceptualize the coast.
First, short-term variations due to storms or rip currents, which tend to act in the cross-shore direction [e.g.,
Masselink et al., 2015], are considered as temporary perturbations to the long-term trend of coastal change,
causing fluctuations in shoreline position. As such the beach profile is assumed to maintain a constant
time-averaged form, implying that depth contours are shore-parallel [cf. van den Berg et al., 2012; Kaergaard
and Fredsoe, 2013a]. Alongshore sediment transport occurs primarily in the surf zone, and it is assumed that
cross-shore sediment transport acts to maintain the equilibrium shoreface as it advances or retreats. Finally, it
is assumed that alongshore sediment transport is driven by the delivery of energy to the surf zone, param-
eterized by the height and angle of incidence of breaking waves [Longuet-Higgins, 1970; Komar and Inman,
1970]. Waves that impinge obliquely on the coastline will cause downdrift transport, and a variety of formu-
lations are available to describe the relationship between wave conditions and the magnitude of alongshore
sediment flux [e.g., U.S. Army Corps of Engineers (USACE), 1984; Bailard, 1984; Deigaard et al., 1986; Kamphuis,
1991; Soulsby and Damgaard, 2005; Bayram et al., 2007]. One-line modeling of the evolution of sandy and
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“soft sediment” coastlines has proved an excellent exploratory tool to examine the dynamics of coastline evo-
lution at mesoscales [e.g., Pelnard-Considere, 1956; Hanson, 1989; Falqués, 2003; Ashton and Murray, 2006a;
Weesakul et al., 2010; Limber and Murray, 2011; van den Berg et al., 2012; Kaergaard and Fredsoe, 2013a].

Alongshore transport is predicted to be maximized when offshore waves (waves at the seaward limit of the
shoreface) approach the coastline from an angle of ∼45∘ relative to the coastline orientation. The peak in
the magnitude of alongshore transport with approaching wave angle leads to shoreline instability when
wave approach angles are high, allowing shoreline perturbations to grow as sand waves or even spits,
while low-angle wave approach drives diffuse behavior [e.g., Ashton et al., 2001; Ashton and Murray, 2006a,
2006b; Falqués and Calvete, 2005; van den Berg et al., 2012; Kaergaard and Fredsoe, 2013b]. The nature of this
high-angle wave instability (HAWI) is dependent on how nearshore bathymetry is treated within the models,
which modifies wave transformation to breaking. Ashton and Murray [2006a] assumed shore-parallel contours
extend down to the shoreface depth, which results in strong HAWI facilitating the formation of flying spits,
cusps and sand waves that grow continuously through time. Falqués and Calvete [2005] relaxed the assump-
tion of shore-parallel contours, instead using contours that parallel the local shoreline in shallow depths,
grading smoothly offshore into contours that parallel the global coastline trend. They found that HAWI was
reduced when shoreline perturbations only modify contours near the coastline. van den Berg et al. [2012]
extended the model of Falqués and Calvete [2005] to a quasi 2-D morphodynamic model which includes
cross-shore dynamics and showed that cross-shore sediment transport is important for HAWI with more effi-
cient cross-shore transport leading to higher instability and more rapid growth of shoreline sand waves. This
suggests that counterintuitively, the assumption of an equilibrium cross-shore profile may be the optimal con-
dition for the occurrence of HAWI in coastline evolution models, effectively requiring efficient (instantaneous)
cross-shore sediment redistribution.

Until recently, most one-line models for coastal evolution have worked with relatively straight sections of
coastline in which the coastline evolves perpendicular to the regional trend of the coastline. The coastline is
composed of rectilinear cells [Pelnard-Considere, 1956; Hanson, 1989]. Such an approach is not capable of han-
dling coastlines with variable orientation without violating the principal model assumptions. Rea and Komar
[1975] circumvented this problem by using two-cell arrays oriented perpendicular to one another to allow the
coastline to evolve in either the x or y direction, demonstrating that such a model could predict the formation
of crenulate-shaped bays. This framework has persisted with the GENESIS model [Hanson, 1989] and cellular
Coastal Evolution Model of Ashton and Murray [2006a, 2006b]. This results in mass conservation difficulties
when transporting material between cells oriented in x and y since the area in between is not accounted for.
Cellular one-line formulations of recurved coastlines become difficult to manage computationally, since a par-
ticular alongshore position may have multiple coastline intersections in the cross-shore direction, as shown
in the schematic model diagram in Figure 2a. Where two sections of coastline might face each other, their
associated shorefaces might intersect. Weesakul et al. [2010] successfully applied a polar coordinate system
to model the high-curvature section of crenulate-shaped bays forming downdrift of a seawall or headland
and the traditional one-line approach to model the rest of the coastline. However, for more generic coastline
modeling it would be nontrivial to seed and abandon radial coordinate systems in the appropriate places as
the model evolves.

An alternative approach uses an innovative method to coastline modeling with local coordinate systems
[LeBlond, 1972]. A local coordinate system dictates that the shoreline evolves perpendicular to its local
orientation and as such different parts of the coast can evolve in different directions, unlike in the Cartesian
framework. For example, a local coordinate method is used in the MIKE21 software suite [Kaergaard and
Fredsoe, 2013a, 2013b, 2013c]. The coastline is represented as a series of nodes, and an idealized shoreface
profile is projected seaward in order to generate a bathymetry. Offshore wave conditions can then be
transformed across this bathymetry in order to give breaking wave conditions that drive alongshore sediment
transport. However, as noted by LeBlond [1972] and subsequently by Kaergaard and Fredsoe [2013a],
if shoreline cells are considered rectangular, extending orthogonally offshore, use of a local coordinate system
will violate the principle of mass conservation when the shoreline is convex or concave. Shoreface cells
overlap at concave shorelines and diverge so that there are areas of the shoreface unaccounted for at
convex shorelines (Figure 2b). Kaergaard and Fredsoe [2013a] used generated polygonal cells to circumvent
this problem, but still required an iterative scheme to correct for mass balance errors when the modeled
shoreface retreated or prograded.
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Figure 2. Schematic model domains for one-line model of coastlines
with high planform-curvature. (a) Crenulate-shaped bay following a
cell-based approach. Red cells highlight locations where the coastline
has multiple positions in the y direction for the same x coordinate.
(b) A flying spit in a local coordinate system in which rectilinear cells
would result in gaps at convex seaward locations (e.g., spit tip) and
overlapping cells at concave-seaward shorelines.

The COVE model, presented below, con-
serves mass while still allowing high
planform-curvature shorelines to be
modeled, using a novel conceptualization
of coastal geometry and solution scheme.
We demonstrate the model through
application to the evolution of embayed
beaches proximal to fixed headlands,
similar to Weesakul et al. [2010], in order
to explore the influence of a variable
wave climate on predicted bay morphol-
ogy and stability at a range of spatial
scales. We compare model predictions
to empirical formulae commonly used to
predict equilibrium bay morphology to
test their ability to predict bay form.

Documentation and source code for
COVE can be found at http://mdhurst1.
github.io/COVE/index.html.

3. The COVE Model

The approach we have taken in the devel-
opment of COVE differs from previous
similar models in that it is not restricted
to a Cartesian reference frame [e.g.,
Hanson, 1989; Falqués, 2003; Ashton and
Murray, 2006a]. The governing mass bal-
ance equation for the evolution of the
shoreline position 𝜂 [L] through time t [T]
under a local coordinate system [e.g.,
LeBlond, 1972; Kaergaard and Fredsoe,

2013a] is a function of the divergence of alongshore sediment transport Qls [L3T−1] in the alongshore
direction s [L]:

d𝜂
dt

= f

(
dQls

ds

)
(3)

3.1. Alongshore Transport
Various expressions for alongshore sediment have been proposed and tested [see Mil-Homens et al., 2013 and
Van Wellen et al., 2000, for reviews]. In particular, the Coastal Engineering Research Center (CERC) equation
[Komar and Inman, 1970; USACE, 1984] is commonly implemented in one-line coastal models [e.g., Hanson,
1989; Ashton et al., 2001; Ashton and Murray, 2006a; van den Berg et al., 2012], in which the depth-integrated
alongshore volumetric sediment transport is a function of breaking wave height Hb [L] and angle 𝛼b [∘]:

Qls = Kls H5∕2
b sin 2𝛼b (4)

where Kls [L0.5 T−1] is a transport coefficient. For details of how breaking waves conditions are calculated, see
section 4 and Appendix A. For the transport of quartz density sand-sized material Kls = 0.4 is used [Komar,
1998] but reported values vary widely [cf. Pilkey et al., 2002]. This equation describes the immersive weight
transport of sand (i.e., sand transport in suspension).
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Figure 3. (a) Profile view of the shoreface showing planar equilibrium
beach profile assumed to be maintained by the model. Change in
shoreline position d𝜂 results in the shoreline advancing over or
retreating across a flat bottom at Dsf. (b) Detailed plan view of the
geometry of an evolving cell. The change in shoreline position is
perpendicular to the cell orientation defined by the line connecting
two adjacent nodes. Cell boundaries at the upper shoreface are
perpendicular to the line connecting the cell node to each adjacent
node (black dots). (c) Example plot of coastal cells and their
boundaries. Coastal cells are built by projecting cell boundaries
seaward, starting with the most concave coastal cells. Boundaries are
projected until they intersect or until Dsf is reached (numbered cells
show the order in which the cells were built). When boundaries
intersect the mean orientation of contributing cell edges determines
the direction in which the projection is continued. This method results
in two possible cell types, trapezoids (e.g., unnumbered cells), and
polygons (e.g., cells numbered 1–10).

3.2. Shoreline Geometry
The cross-shore profile is assumed to
maintain a constant time-averaged form
(Figure 3a). Shoreline position evolves
perpendicular to the local orientation
of the shoreline 𝜙 [∘] (Figure 3b). Use of
such a local coordinate system was pro-
posed by LeBlond [1972] and recently
implemented in the numerical model
developed by Kaergaard and Fredsoe
[2013a] [see also Kaergaard and Fredsoe,
2013b, 2013c]. Similar to Kaergaard
and Fredsoe [2013a], we represent the
coastline using a vector-based approach
(the coastline is represented as a series
of points in Cartesian space x and y with
subscripts i = 0, 1, 2, .., n). For each node
the local orientation of the coastline
𝜙 is defined as the azimuthal direction
of the vector connecting the two nodes
adjacent to the node of interest (dashed
line in Figure 3b). The cell width W0 [L]
is measured at the shoreface parallel to
𝜙. For each node in the shoreline model
the local shoreface has a constant slope
𝛽 [∘] extending down to the shoreface
depth Dsf [L] (Figure 3a). Coastal cell
boundaries are established perpendicular
to lines connecting two adjacent nodes
and relate to 𝜙 by angles 𝜖1 and 𝜖2 [∘]
(Figure 3b). These angles are negative
when the shoreline is convergent and
positive when divergent. Cells that occur
at convex-out headlands widen offshore,
and cells in concave embayments nar-
row offshore (Figure 3c). When a convex
shoreline cell extends to Dsf the cell
geometry is trapezoidal in planform.
Conversely, when the coast is highly con-
cave the cell boundaries may intersect
at a depth shallower than Dsf resulting
in triangular cells and overlapping non-
adjacent cells. We developed a simple
cell-building algorithm that generates
the planform geometry of all cells in the
coastline to accommodate variable cell
geometry. A discretization scheme is
implemented that divides the shoreline
into a series of triangular, trapezoidal,

and polygonal cells with known surface area A [L2] that allows us to conserve mass, and we develop
expressions for volume change as a function of d𝜂 in order to solve for the positional change at the coast.

The algorithm uses a priority queue ordered by the cell water depth Dc [L] to which the cell extends to process
the most concave cells first (i.e., the most acute triangular cells which have the lowest Dc). For each node i
in the priority queue the intersection point of the cell boundaries is found and the equivalent depth on the
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Figure 4. Coastal cell geometry for a model instance at (a) the beginning of a model run starting with a straight
coastline with superimposed low amplitude noise in the coastline position and (b) the end of a model run when an
equilibrium form spiral-shaped bay has formed.

shoreface Dc is calculated; the intersection becomes a vertex for the shoreline cell. The nearest unprocessed
cells up and down the coastline (cells a and b) are then found and the intersection for node i also become
a vertex for cells a and b. A new vector describing the cell boundary can then be described extending from
the intersection point offshore at an orientation perpendicular to the mean orientation of all contributing
nodes 𝜙c. The intersections between this cell boundary and the edge of nodes a and b are found and their Dc

is calculated. The cell with the shallowest Dc is then added to the priority queue such that the cell-building
algorithm builds outward from the most concave cell consistent with the order numbered in Figure 3c.

Alongshore sediment flux is calculated using equation (4) for each node, with breaking wave angles 𝛼b taken
relative to the local shoreline orientation between the node of interest and its adjacent downcoast neigh-
bor (where downcoast refers to cells further along the vector, with the sea always to the left when facing
down-vector, the direction in which vector index i increases). Positive angles for 𝛼b result in positive along-
shore transport directed downcoast (i.e., from cell i to cell i+1), while a negative 𝛼b drives negative alongshore
transport upcoast (i.e., from cell i + 1 to cell i). For nodes where the changing shoreline orientation resulted in
concomitant change in approaching wave angle from high (𝛼0 < −45∘; 𝛼0 > 45∘) to low (−45∘ < 𝛼0 < 45∘) or
vice versa, the flux maximizing angle 𝛼0 = ±45∘ is used. The scheme for moving sediment necessitates track-
ing neighboring cells in concave sections of coastline such that sediment bypassing may occur. For example,
in Figure 3c cell 8 is bordered on its southern side by cells 6, 7, and 9. In such a scenario, alongshore sedi-
ment transport from cell 8 would be distributed to all three of these cells. The relative amounts of sediment
delivered to these cells are proportional to the length of their shared border. In the example in Figure 3c cell
8 would pass the vast majority of its alongshore flux to cell 6, with cell 7 and cell 9 only receiving small con-
tributions. Such a scheme is required since cells that do not extend to the shoreface depth are not permitted
to prograde/retrograde but rather fill up or empty in order to conserve mass (see section 3.3 below). The ten-
dency for progradation or erosion should therefore be communicated to adjacent cells down the shoreface,
so that they too advance or retreat in response to flux gradients.

As the coastline evolves, new nodes may be added by linear interpolation if the spacing between any node
exceeds 1.5 times the specified initial node spacing. Similarly, nodes are deleted from the vector if the spacing
drops below 0.66 times the specified spacing. The appropriate specified initial node spacing will depend on
the application but should be relatively coarse (e.g., 50 m or greater) due to the simplifications inherent in
the governing physics and to allow the cell-building algorithm to function efficiently (though it is possible to
use node spacing as small as 5 m as was done for simulating smaller bays; see section 5.3). For illustration,
Figure 4 shows the cell configuration at the beginning (Figure 4a) and end (Figure 4b) of a model run for a
bay with headland separation lb = 2 km for an offshore wave climate with mean and standard deviation wave
directions of 𝜃mean = 025∘ and 𝜃std = 035∘, respectively (see section 5 below).

3.3. Changes in Shoreline Position
In order to solve for the change in shoreline position we need an expression for the volume change in tri-
angular, trapezoidal, and polygonal cells that are generated by the cell-building algorithm. Since triangular
and polygonal cells are not allowed to advance or retreat at their seaward extent (in order to avoid mass
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Figure 5. Geometric diagrams of the volume of change within a coastal cell for (a) trapezoidal cells, which can advance
and retreat across the shoreface and (b) polygonal or triangular cells whose position at their seaward tip or boundary is
fixed to prevent mass balance difficulties. The volumes of these shapes can be solved to be a function of d𝜂. Thus, if
volume change is known, we can solve for d𝜂 following equation (5) or equation (8).

conservation errors), they have a common solution, whereas trapezoidal cells can advance or retreat across
the shelf (see Figure 5). Were triangular or polygonal cells allowed to prograde, they would build out over
the top of adjacent cells and sediment would be required to spill into adjacent cells. This seems to be the
reason that Kaergaard and Fredsoe [2013a] required an iterative scheme to conserve mass in their model.
Our discretization of the coast avoids this problem.
3.3.1. Low-Curvature Shorelines: Trapezoidal Cells
Figure 5a shows the volume change ∇V associated with a trapezoidal cell. Basic trigonometry allows us to
formulate a quadratic solution for this volume as a function of the change in shoreline position d𝜂:

∇V = a1 d𝜂2 + b1 d𝜂 (5)

where coefficients a1 [L] and b1 [L2] are described by the geometric properties of the cell (see Figure 3b):

a1 =
Dsf

2
(tan 𝜖1 + tan 𝜖2) (6)

b1 = W0 Dsf +
Dsf

2

2 tan 𝛽
(tan 𝜖1 + tan 𝜖2) (7)

Equation (5) is inverted for d𝜂 using the quadratic formula with a negative solution indicating shoreline retreat
and positive shoreline advance.
3.3.2. High Planform-Curvature Shorelines: Polygonal/Triangular Cells
Figure 5b shows a schematic volume of change ∇V for a triangular cell. Again we derived a solution for this
volume as a function of the change in shoreline position d𝜂 using trigonometry, resulting in a cubic expression
for triangular or polygonal cells:

∇V = a2 d𝜂3 + b2 d𝜂2 + c2 d𝜂 (8)

where the coefficients a2 [dimensionless], b2 [L], and c2 [L2] are again functions of the cell geometry
(see Figure 3b):

a2 = −1
6
(tan 𝜖1 + tan 𝜖2) tan 𝛽 (9)

b2 = 1
2

W0 tan 𝛽 (10)

c2 = A tan 𝛽 (11)

Equation (8) is inverted for d𝜂 following methods presented in Press et al. [1992] with a negative solution
indicating shoreline retreat and positive shoreline advance.
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Figure 6. Schematic diagram of an embayment to demonstrate
shadowing and wave adjustment in the shadowed region. The
shadow zone is generated with respect to the offshore wave
direction 𝜃0. The angle within the shadow zone is defined by 𝜔. The
length of coast affected by rules for diffraction is twice the length of
the shadow zone as shown by the length of coast highlighted in
blue. (a) Adjustment of wave approach angle by factor 1.5 times the
angle within the shadow zone 𝜔 (equation (12)). The adjustment
only proceeds up to 𝜔 = 90 since wave heights are zero beyond this
value. (b) Reduction in wave height due to wave crest spreading,
which is defined by a sinusoidal function (equation (13)) with the
wave height at the edge of the shadow zone assumed to be reduced
by a factor of 0.5 with that factor increasing to 1 at 𝜔 = 90. Wave
heights outside the shadow zone are also reduced to conserve wave
energy following equation (14).

4. Wave Transformation

Expressions for alongshore sediment trans-
port such as equation (4) require pre-
dictions of the breaking wave height and
angle. We drive the model with an offshore
wave distribution and transform waves to
the coast using linear wave theory, simi-
lar to previous modeling approaches [e.g.,
Ashton and Murray, 2006a] (see Appendix A).
These simplifications are appropriate for
low planform-curvature, open coasts but
additional modifications are required to
account for diffraction and refraction in
shadowed regions where these assump-
tions may not be appropriate. Therefore, in
addition, we include simple rules for the
diffraction and refraction of waves when
the coast is shadowed from incoming waves
(Figure 6).

We do not explicitly model the diffraction
of waves in the shadow zone but instead
rely on simple rules to modify the wave
angle and wave power approaching the
coast guided by the work of Rea and Komar
[1975], Kraus [1984], and Weesakul et al.
[2010]. The wave approach angle in the
shadow zone 𝜃s [∘] (Figure 6a) is pre-
scribed following [Kraus, 1984; Weesakul
et al., 2010]:

𝜃s = 1.5
(||𝜔 − 𝜃0

||) (12)

where 𝜔 [∘] is the angle between the shad-
owing and shadowed cell with respect to
the wave approach angle and 𝜃0 is the
offshore wave approach angle (Figure 6).
The approaching wave height within the
shadow zone Hs is calculated by modifying
the offshore wave height using a diffrac-
tion coefficient KD [dimensionless] which is
a function of𝜔 [Rea and Komar, 1975; Kraus,

1984] (Figure 6b). When a wave travels past a structure or headland it will be truncated, and the wave crest
will spread into the shadow zone behind the obstruction. Simplifying from Kraus [1984], we approximate the
resulting diffraction by assuming that along the edge line of the shadow zone, the wave height is reduced by
a factor of 2 (i.e., KD = 0.5). This implies that half of the wave energy has been lost due to wave crest spread-
ing into the shadow zone. The diffraction coefficient is then modified as a function of the angle in the shadow
zone (Figure 6b):

KD = 0.5 cos 𝜔 (13)

In order that wave energy is conserved, the length of the coast in the shadow zone ls [L] is determined and
wave energy is also reduced downdrift of the shadow zone over the same distance. While the distance back
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to the shadow zone xs < ls, where xs = 0 at the tip of the shadow zone (i.e., where 𝜔 = 0o; see Figure 6b),
wave energy outside the shadowed zone is reduced following:

KD = 1
2

(
1 − sin

[
90

xs

ls

])
; (14)

The diffracted wave properties were subsequently further refracted during shoaling in the same manner as
waves approaching the open coast in order to predict breaking wave height and angle which drive alongshore
transport (see Appendix A for description of wave transformation procedure).

5. Model Setup
5.1. Initial and Boundary Conditions
Initial model coastlines were straight and 2 km in length with an initial node spacing of 50 m. Modeled shore-
lines were insensitive to this initial node spacing providing it was not too coarse (more than 20 nodes were
required; maximum of 100 m node spacing). The bounding ends of the coastline were fixed to represent head-
lands or fixed structures such as sea walls. Should the coastline erode in behind these fixed boundaries, it
also becomes fixed to the landward side of the boundaries. No sediment transport was permitted into the
model domain across these boundaries, but sediment was permitted to escape out of the model domain by
alongshore transport. The offshore boundary is the bottom of the shoreface Dsf as shown in Figure 3a. For
all simulations the shoreface depth was fixed to Dsf =10 m and the shoreface slope was fixed to 𝛽=0.02. The
model time step is adaptive such that if no solution to equation (5) or equation (8) is found (e.g., due to pass-
ing too much sediment and overfilling a cell), the prescribed time step (0.1 days here) is halved iteratively
until a solution is achieved, and this reduced time step persists (using the same wave conditions) until it has
satisfied the length of the prescribed time step, whereupon the model returns to the prescribed time step.

5.2. Wave Climates
We test two different approaches to representing an idealized wave climate. In the first, offshore wave direc-
tions 𝜃0 [∘] are drawn from Gaussian functions defined by mean 𝜃mean and standard deviation 𝜃std. Offshore
wave height H0 [L] and period T [T] were also described using a narrow Gaussian function with Hmean=1 m
and standard deviation Hstd = 0.1 m, and Tmean= 6 s and Tstd =1 s. Second, we follow the approach of
Ashton and Murray [2006b] using a wave climate defined by two parameters: As, the asymmetry (the fraction
of waves approaching from left relative to the orientation of the whole coastline), and Uh, the proportion of
waves which are high angle (i.e.,> 45∘relative to the general trend of the coastline). In this case H0 = 1 m, and
T = 6 s. Wave heights, angles, and periods were then drawn from these distributions using a random number
generator at each model time step.

5.3. Model Ensembles
We ran COVE using ensembles of each type of wave climate, in which the controlling parameters (𝜃mean and
𝜃std, Uh, and As, respectively) were varied systematically in order to explore wave climate control on bay
morphology. The range of parameter values are shown in Figures 8 and 14. The experiments were run on
bays with lb = 2 km and we simulated 100 years in order that all model runs attain a morphological steady
state, defined by the condition that the coastal length tends to a constant value and mean change in coast-
line position d𝜂 fluctuates about zero. We ran these ensembles for the condition where wave properties in
the shadow zone were diffracted following equations (13) and (14), or where there was no diffraction so that
shadowed regions of the coast were not subject to sediment transport for a particular wave approach angle
(similar to Littlewood et al. [2007]). Additionally, we ran an ensemble of experiments in which the wave climate
was held constant (𝜃mean = 025∘ and 𝜃std = 30∘, respectively), and lb was varied over 2 orders of magnitude
to explore the influence of spatial scale on bay evolution and morphology. In these experiments, the node
spacing was reduced where necessary to ensure a minimum of 20 nodes representing the coastline. Model
results are insensitive to node spacing smaller than this threshold.

6. Results

Model simulations evolved the coastline toward a steady equilibrium form, driven by obliquely incident
waves, as demonstrated in Figure 7. Evacuation of sediment from the bay proceeds from the upcoast end

HURST ET AL. SENSITIVITY OF CRENULATE BAYS 10



Journal of Geophysical Research: Earth Surface 10.1002/2015JF003704

Figure 7. Evolution of bay morphology toward an equilibrium
morphology between two fixed headlands/sea walls (thick black lines).
Wave conditions are 𝜃mean = 20∘ and 𝜃std = 25∘ , as shown by the wave
rose. Model evolution starts from a straight coastline and the boundary
conditions allow sediment to exit the model domain at either boundary
by alongshore transport but sediment is not permitted to enter the bay
from outside the domain.

since there is no sediment provided at
this model boundary and alongshore
transport carries sediment downcoast
(similar to initial “rotation” observed
by Daly et al. [2015]). Rules for diffrac-
tion allowed wave energy into the
shadow zone behind the northern sea-
wall/headland allowing the coastline
to cut back behind this structure. Once
the spiral shape has developed the
shoreline is translated landward, per-
pendicular to the local orientation.

6.1. Modeled Equilibrium Bay
Morphology
Ensemble modeling of a range of sim-
ulated wave conditions, represented
by varying 𝜃mean and 𝜃std for condi-
tions where simple rules for refraction
and diffraction in the shadow zone
have been included (equations (13)
and (14)) are shown in Figure 8. Bay
morphology is sensitive to both the
dominant wave direction 𝜃0 and the

spread of wave directions 𝜃std. Note that the bottom left portion of the plot, colored gray, is labeled for
high-angle wave instability (HAWI) since this phenomenon leads to the formation of flying spits in this part of
the wave climate domain, which extend from the leading end of the modeled coast, thus these results have
not been included in subsequent analyses. Figure 9a shows the equilibrium coastal morphology for a transect
through the wave climate space for 𝜃mean=−30∘. The planform relief of the bay cut into the updrift section
of the coast increases with reduced wave climate variability. With low wave climate variability the majority of
wave directions during the evolution to equilibrium act to transport sediment toward the southeast and out of
the model domain. With increasing wave climate variability there are more waves that reverse the alongshore
sediment transport direction, toward the northwest, therefore pushing sediment back into the embayment,

Figure 8. Final bay morphologies as a function of wave climate for normally distributed offshore wave directions
described by a dominant wave direction 𝜃mean and standard deviation wave direction 𝜃std. Wave approach angles are
relative to the overall orientation of the coastline (i.e., the line connecting the two headlands). For high-angle wave
directions and low wave spreading high-angle wave instability (HAWI) prevents a bay from forming between the two
headlands, resulting in a spit forming of the tip of the southeastern boundary.
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Figure 9. Variation in bay morphology as a function of (a) spread of wave angles (𝜃mean = 30∘) and (b) variation of the
dominant wave direction 𝜃mean (𝜃std = 35∘). Increasing the spread of wave directions decreases the embayment depth
at the shadowed end of the bay since with increasing wave spread there are more waves acting to reverse alongshore
transport and move sediment back into the bay. Increasing the obliquity of wave approach angles results in deeper bays
for similar reasons, since less waves act to reverse alongshore transport and move sediment back into the bay.

altering the local shoreline orientation until net alongshore sediment flux is zero. Figure 9b shows the equi-
librium coastal morphology for a transect through the wave climate space for 𝜃std = 30. These result holds
across all values of 𝜃mean and 𝜃std as shown by plots of the aspect ratio (distance between headlands divided
by planform bay relief ) of the modeled bays (Figure 10).

The shoreline in the unshadowed portions of the modeled embayments (southeast end of the model domain)
tends toward an orientation perpendicular to 𝜃0 such that the coast is “swash aligned,” and the net along-
shore sediment flux approaches zero. For wave climates with a narrow spread of directions this section of
coastline tends to be very straight, since the extent of the shadow zone updrift varies little. However, for wave
climates with higher 𝜃std the downdrift end of the bay tends to be curved, as the shadowing effect reduces
wave heights outside of the shadow zone due to wave crest spreading (Figure 9a). We illustrate this further by
plotting histograms of shoreline curvature (calculated as the inverse of the radius of a circle passing through
three adjacent nodes) as a function of 𝜃std (Figure 11). For low 𝜃std the histograms are strongly bimodal with
the coastline well described by a highly curved section and straight section, but as 𝜃std increases the strength
of this bimodality decreases and curvatures become more distributed.

6.2. Evolution to Equilibrium
For a 2000 m headland separation, the coastlines shown in Figure 8 approached an equilibrium form in < 40
years in all cases. Figure 12 summarizes the evolution of several model runs with lb = 2000 m and 𝜃mean = 025∘

Figure 10. Variation in the aspect ratio of equilibrium bays as a function
of wave climate. Aspect ratio increases under more shore-normal wave
approach angles and with a greater spread in wave directions as the
depth of the bay decreases.

toward equilibrium by showing the
change in length of the bay through
time (Figure 12a). The coastline was
characterized as having attained equi-
librium once its length had attained
99% of the mean value over the last
10 years of simulation. Figure 12b
shows the time to equilibrium T as
a function of the variability in wave
climate. The kinked nature of this plot
likely reflects competition between
two main factors: increased variability
delivering more wave energy to shad-
owed regions encouraging more rapid
evolution 𝜃std=15–30; more frequent
occurrence of waves that act to push
sediment back into the bay when
𝜃std=30–40∘. Figure 12c shows the
mean change in coastline position
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Figure 11. Histograms of shoreline planform-curvature as a function of the variability of the wave climate 𝜃std for
𝜃mean = 015∘ . Where the variation in the wave climate is low, the bays have a strongly bimodal distribution of curvature,
with a high-curvature hooked zone and a low-curvature straight section. With increasing wave angle variability this
bimodality becomes more spread and these zones merge.

through time, which fluctuates about zero once equilibrium has been attained. For more variable wave cli-
mates (large 𝜃std) the mean change in coastal position through time can be more variable, as reversals in the
direction of alongshore sediment transport occur more frequently (Figure 12d), with waves directed from the
southeast able to push sediment back into the bay. If these changes were more persistent (e.g., due to sea-
sonal variations) such conditions would be expected to lead to bay rotation [e.g., Harley et al., 2011; Turki et al.,
2013; Ratliff and Murray, 2014].

Figure 13 illustrates the evolution of embayed beaches toward equilibrium for different lengths of bay lb.
We nondimensionalize the horizontal coordinate system by dividing through by lb to give nondimensional
coordinates X ∗ and Y ∗ and allow comparison of bay morphology for different spatial scales subject to the
same wave climate. Figure 13a shows dimensionless equilibrium bay morphology forced by a wave climate
characterized by 𝜃mean = 025∘ 𝜃std= 20∘. There is no systematic variation in planform morphology with
lb and thus the predicted morphologies in Figure 8 are expected to scale with lb. We stress that the simplified
representation of physical processes may be inappropriate for modeling where lb<1 km but include these
scales for comparison to the results of [Daly et al., 2014]. Figure 13b shows the evolution of bay length for these
simulations in logarithmic space. Bay length eventually asymptotes as an equilibrium morphology emerges.
The timescale T taken to attain equilibrium during these simulations is plotted against lb in Figure 13c. We
find that this timescale scales with the square of the distance between the headlands, such that a 1 km bay
would take ∼10 years to reach equilibrium yet a 16 km bay takes ∼2560 years. This implies that the size of a

Figure 12. (a) The evolution of bay length through time for 𝜃mean = 25 as a result of changing 𝜃std. (b) Time required to
attain morphological steady state for model runs shown in Figure 12a), where steady state is defined as the time
required to attain 99% of the final coastline length, which is <40 years in all cases. (c) Mean change in coastline position
through time for the simulations shown in Figure 12a. (d) Standard deviation of mean coastline position change
between 60 and 100 years (after attainment of steady state) showing that fluctuations along the coastline are driven by
the variability of the wave climate (𝜃std).
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Figure 13. (a) Nondimensional equilibrium form of modeled
bays varying the length between the headlands subjected to
identical wave climates (𝜃mean = 025∘ , 𝜃std = 20∘).
Nondimensional coordinates were calculated by dividing
coordinates by the length between the headlands (X ∗= X∕lb ,
Y ∗= Y∕lb). (b) Coastline length through time for different bay
sizes showing that length tends toward a constant value when
equilibrium has been attained. (c) Time to equilibrium as a
function of bay size. Dashed line represents a linear regression
of log-transformed values showing that the time to equilibrium
scales with the square of bay size.

bay is important in determining its response to
and recovery from perturbations such as storms
or prolonged changes in wave climate.

6.3. Characterization of Wave Climate
Figure 14 shows the morphological predictions
using wave climates parameterized following
Ashton and Murray [2006a] (see section 5.2).
For the highest combination of As > 0.85 and
Uh > 0.8, high-angle wave instability led to
the formation of flying spits hanging from
the model domain, so these results are not
included. The formation of crenulate-shaped
bays is favored by a strongly asymmetric wave
climate, so that there are fewer waves that
reverse the dominant direction of alongshore
transport. Increasing the fraction of high-angle
waves Uh tends to lead to higher-relief bays
which are more symmetric in planform. Simula-
tions with high asymmetry and a low fraction of
high-angle waves resulted in crenulate-shaped
bays. Due to the high spread of wave angles
inherent to this characterization of wave climate,
bay morphologies are similar to those character-
ized by high 𝜃std in Figure 8.

6.4. Influence of Wave Diffraction on
Bay Morphology
Modeling experiments were carried out both
with and without rules for diffraction in the
shadow zone. In the absence of diffraction, no
sediment transport occurs at all in the shadow
zone. Figure 15 compares equilibrium coast-
lines when diffraction is included (solid line)
and ignored (dashed line) for various values of
𝜃std and 𝜃mean = 20∘. Comparing the dashed
and solid lines, we can see that some unrealis-
tic embayment shapes emerge when diffraction
is neglected. This is true for narrow ranges in
wave angle, which may result in acute angles
in the coastline, since only a small proportion
of waves are able to influence the region that
is usually shadowed, and these waves tend to
be highly oblique to the shadowed coast. Such
restricted, high-angle wave climates are unlikely
in nature. For broader ranges in wave angles
(high 𝜃std) diffraction appears less important and
modeled coastlines with and without diffrac-
tion are similar; the main difference being the
straightness of the coast outside the shadowed
region. Diffraction reduces wave heights outside
of the shadow zone due to wave crest spread-
ing. The results concur with the recent study by
Daly et al. [2014], who demonstrated that wave
diffraction is a dominant control on bay mor-
phology only for wave climates with restricted
approach angles.
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Figure 14. Bay morphologies predicted by wave climates defined by asymmetry and highness (proportion of waves that
are high angle). Crenulate-shaped bays develop with high wave climate asymmetry and for all but the highest fraction
of high-angle waves. A high fraction of high angle waves tends to produce more symmetric bay shapes. Note again that
high angle wave instability (HAWI) prevented some model runs from achieving as stable bay morphology due to the
formation of spits at the downdrift boundary.

7. Discussion

Our results above show that the planform morphology of embayments is sensitive to both the dominant wave
direction and the spread of wave directions impinging on the coast. For a given dominant wave direction, the
morphology of the bay can vary depending on the spread of wave directions (𝜃std), tending toward a morpho-
logical steady state in which there is little variation in shoreline position through time, and zero net alongshore
sediment flux. We demonstrate that the time for a bay to evolve to its equilibrium condition scales with the
square of the distance between the two headlands. This diffusion-like scaling suggests that small bays may
respond to and recover from perturbations in wave conditions rapidly, while larger bays may take substan-
tially longer. Using the Delft3D model, Daly et al. [2015] performed comparative simulations with bay lengths
of 140, 300, and 600 m, and estimated response times of 2, 15, and 1200 years, respectively. This generally
supports our finding that there is nonlinear dependence of response time to bay size. For similar bay lengths

Figure 15. Comparison of bay morphology between model runs with
rules for diffraction included (solid lines) or omitted (dashed lines).
𝜃mean was 20∘ . Bay morphologies are similar for high values of 𝜃std but
not for low 𝜃std where unrealistic sharp angles in the coastline develop
when diffraction is not included.

simulated in this study and plotted in
Figure 13c, we predict response times
of approximately 0.2, 0.8, and 3.5 years,
respectively, significantly shorter than
those of Daly et al. [2015]. These differ-
ences likely relate to the parameterization
of sediment transport formula, which
carry significant uncertainties. Calibra-
tions of the transport coefficient Kls in
equation (4) have shown it to be quite
variable on sandy beaches but may cor-
relate to grain size, beach slope, or wave
characteristics [Van Wellen et al., 2000].
Indeed, the simulations by Daly et al.
[2015] demonstrate a strong dependence
of response time on grain size. The use of
alternative transport formulae has been
demonstrated to produce broadly similar
results to the CERC equation used in this
study [Ashton and Murray, 2006b]. The
choice of alongshore sediment transport
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Figure 16. Predicted steady state bay morphology for 𝜃mean = 20∘
and 𝜃std = 30∘ . Dashed lines show the prediction of the parabolic bay
equation [Hsu and Evans, 1989] using the dominant wave approach
angle taken from the model parameters 𝜃mean =20∘ (black) and the
best fit parabolic bay treating dominant wave approach angle as a
free parameter (red; best fit 𝜃0 = 28∘).

formula (e.g., equation (4)), its calibra-
tion parameters, as well as other fac-
tors in the model such as the choice of
shoreface depth Dsf, slope 𝛽 and varia-
tions in wave height H0 will influence the
time taken to reach equilibrium but we
would not expect them to change the
quadratic dependence of time to equilib-
rium on bay size. Sediment fluxes depend
on shoreline orientation, and the plan-
form configuration of the bays are con-
sistent between scales, in a self-similar
sense. What changes is the alongshore
distance over which erosion (or prograda-
tion) occurs and the cross-shore distance
over which shoreline position needs to
change to produce the same propor-
tional change in bay morphology. Both of
those factors scale with lb, therefore the
amount of sediment transport needed
to approach equilibrium (by any given
amount) scales as lb2 , while the fluxes do
not vary with lb. This leads to T propor-
tional to lb2 robustly. Our model results are
consistent with this.

The shoreline may still fluctuate about an average state in response to fluctuations in the wave climate
and reversals in alongshore sediment transport direction, with sediment shifted from one end of the model
domain to the other causing beach rotation [e.g., Harley et al., 2011; Turki et al., 2013]. Additionally, Ratliff
and Murray [2014] identified “breathing” in time series of embayment shoreline positions due to sediment
exchanges between the central part of the bay and the edges. They interpreted this mode as the result of
stochastic variation in the occurrence of high-angle waves for a particular wave climate, modifying its diffusiv-
ity. Variations in beach planform morphology have previously been attributed to changes in external forcing
(e.g., shifting wave climates at seasonal to decadal timescales [e.g., Harley et al., 2011; Thomas et al., 2011]), yet
interestingly, Ratliff and Murray [2014] identified that similar timescales for morphological fluctuation emerge
from internal dynamics of coastline models forced by a constant wave climate. Similar to our study, Ratliff and
Murray [2014] explore beach rotation in response to alongshore sediment transport, but shoreline rotation
can also be caused by alongshore gradients in cross-shore sediment transport [Harley et al., 2011]. Indeed
cross-shore sediment dynamics may play an important role in the evolution of nearshore bathymetry, which
in turn influences the delivery of wave energy to the shoreface. The relative influence of these two transport
modes in controlling shoreline rotation could be further explored by coupling cross-shore and alongshore
sediment transport [e.g., van den Berg et al., 2012]. We do not explore seasonal changes in wave forcing in this
study and as such fluctuations about the average equilibrium state are relatively small. Future work could con-
sider rotation and recovery of embayments in response to storms and storm sequences, and seasonal changes
in wave climate.

Empirical formulae for bay morphology are cast as a function of the dominant wave angle only and there-
fore are unable to account for wave climate variability. Here we compare the model predictions to these
empirical formulae to try to understand how their parameters may be controlled by the nature of the wave
climate. We go on to discuss model limitations and future work.

7.1. Empirical Formulations for Embayment Morphology
7.1.1. Parabolic Bay Equation
The parabolic bay equation (equation (2)) predicts the static equilibrium bay morphology in reference to
a specified diffraction point. Figure 16 shows the predicted bay morphology generated by the numerical
model for a Gaussian distributed wave climate with 𝜃mean=20∘ and 𝜃std =30∘, and the corresponding empirical
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Figure 17. Predicted steady state bay morphology for 𝜃mean = 10∘ and
𝜃std = 20∘ . Dashed line shows the best fit logarithmic spiral, fitted to
the curved part of the coastline only. A straight line is used outside of
the shadowed region. Logarithmic spirals are extremely versatile and
able to provide a reasonable fit to all bay shapes for model simulations
where diffraction rules are included.

predictions based on equation (2). The
black dashed line shows the parabolic bay
prediction for the dominant wave direc-
tion 𝜃0 = 20∘, which predicts a deeper
set bay than generated by the numeri-
cal model. We find that if we allow the
dominant wave direction 𝜃0 to be a free
parameter, we can find a best fit parabolic
bay (using residual sum of squares regres-
sion) with an apparent dominant wave
direction of 𝜃0 = 28∘ (note that the
position of the downcoast control point
is also a free parameter). The discrep-
ancy is likely the result of the diffrac-
tion rules, which reduce wave heights
downcoast of the shadow zone due to
wave crest spreading, while wave heights
for waves approaching from the east to
southeast cause reversal in alongshore
sediment transport. Hence, the approach-
ing wave direction that results in zero net
alongshore flux will not be normal to the
local shoreline orientation. Discrepancies

between numerical model results and parabolic bay predictions due to wave climate variability have also
been noted by Daly et al. [2014].

7.1.2. Logarithmic Spiral Bay Equation
We fit logarithmic spirals (equation (1)) to the modeled coastlines for model runs in which rules for diffraction
were included and wave directions had a Gaussian distribution. Equation (1) was fitted using least absolute
deviation to the curved portion of the bay, defined using a threshold gradient in the orientation of the coast.
The logarithmic spiral is much more versatile than the parabolic bay. It is possible to generate good fits of
the logarithmic spiral to most modeled bays (e.g., Figure 17). However, this flexibility limits the use of loga-
rithmic spirals as a predictor of embayed coastal morphologies, because there is no satisfactory relationship
between wave climate and logarithmic spiral parameters. Furthermore, Hsu et al. [2010] note that a difficulty
with the logarithmic spiral model is that the origin does not coincide with a diffraction point (i.e., the tip of the
headland) and Oliveira and Barreiro [2010] found that origins of the logarithmic spiral fitted to beaches on the
coast of Portugal did not coincide with the diffraction point. We find that from our simulations the origin of
the best fit logarithmic spiral varies depending on the wave climate (Figure 18a). Defining the position of the
origin (black dots) relative to the diffraction point (white circle; Figure 18a) as a vector characterized by dis-
tance and azimuth, it can be seen that the position of the origin varies systematically with the wave climate. In
Figure 18b the distance to the origin (vertical axis) as a function of wave climate parameters was fitted with a
six-term quadratic equation by least squares regression (R2= 0.72), this is the plotted surface (points are the
raw data). The color shading shows the azimuth angle from the diffraction point to the origin. As 𝜃mean

increases, the distance between the diffraction point and the headland or sea wall increases and the ori-
gin tends to move seaward. As 𝜃std decreases, the origin tends to move landward and the distance to the
diffraction point increases. Additionally, the other parameters of the log spiral also vary with wave climate
(Figures 18c and 18d).

7.2. Model Limitations
The model setup used in the experiments presented here assume that the headlands/sea walls are entirely
fixed in order to evolve adjacent bays to a state of equilibrium. Therefore, the planform relief (distance that
headlands protrude out to sea relative to beaches [e.g., Limber et al., 2014]) is limited by the ability of the
wave climate to evacuate sediment around the headlands. The planform morphology may be expected to dif-
fer when the headlands and bay are eroding back, such that headland-bay planform relief will be controlled
by both the relative resistivities of coastal material to erosion, and the nature of the wave climate driving
alongshore sediment transport [Limber et al., 2014; Limber and Murray, 2014]. The results presented here
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Figure 18. Variation in parameters of the log spiral as a function of wave climate. (a) Location of the origin for the best
fit log spiral for all simulations plotted in Figure 8. Each is parameterized by its distance and azimuth from the diffraction
point (black circle). (b) Variation in the position of the log spiral origin as a function of wave climate. Surface is a best fit
six-term quadratic through the data points shown (R2 = 0.72) showing the variation in the distance to the origin as a
function of 𝜃std and 𝜃mean. The surface is shaded according to the azimuth from the diffraction point to the origin. The
origin tends to move seaward, from the diffraction point for a combination of low-angle 𝜃mean = 20–40∘ and high 𝜃std,
and moves landward for high angle approaching waves 𝜃mean = −20–0∘ and low 𝜃std. (c) Variation in the initial radius R0
of the logarithmic spiral as a function of wave climate. R0 generally decreases with increasing 𝜃mean and 𝜃std, reflecting
that the model predicts deeper bays with decreasing 𝜃std and 𝜃mean (see also Figure 9). (d) Variation in the angle
parameter 𝛼 with wave climate. 𝛼 shows limited sensitivity to varying 𝜃mean but tends to increase with decreasing 𝜃std.

assume there is no provision of sediment from the model boundaries, and we expect the equilibrium plan-
form morphology of a bay will change when there is sediment flux into the bay around the headlands.
The planform morphology will adjust to an equilibrium form in which it conveys sediment inputs through
the bay such that time-averaged alongshore transport is approximately equal everywhere to the rate of
sediment input.

We have made simple representations of wave climates, using either Gaussian distributions or a four part
probability density function to represent a variety of offshore wave conditions. Wave transformation assumes
linear wave theory and shore-parallel bathymetric contours, and in highly concave planform shorelines the
use of simple rules for wave transformation in the shadow zone. These results are intended to explore the
potential influence of variable wave climates on the morphology of crenulate-shaped bays in order to high-
light that some understanding of the temporal variation of wave conditions will be important in governing
the morphology of crenulate-shaped bays. Efforts to predict the morphology for specific sites would be well
advised to consider collecting field data for real wave conditions and modeling wave transformation to the
nearshore using a hydrodynamic model such as SWAN [Booij et al., 1999] (which could be coupled to machine
learning techniques [e.g., Limber et al., 2014]). These could serve as input to a one-line coastal model for coastal
intervention planning. These results highlight the advantages of carrying out exploratory one-line modeling
to test the stability of an engineering design that was based on an empirical equation such as the parabolic
bay equation [Hsu and Evans, 1989; Hsu et al., 2010].
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8. Conclusions

We present a new vector-based one-line model for the evolution of sandy coastlines which uses a local coor-
dinate approach in order to evolve the coast relative to its local morphology and orientation. The model
solves for the change in coastline position as a function of gradients in alongshore sediment transport, and
uses irregularly shaped coastal cells (triangles, polygons, and trapezoids) which facilitate mass conservation.
We apply the model to simulate the evolution of embayments between two fixed headlands/sea walls and
find that the model is capable of successfully producing realistic bay shapes across a range of offshore wave
conditions, which tend toward a condition of equilibrium. Dominant wave direction and the spread of wave
directions dictate the morphology of equilibrium bay shapes, with more oblique wave directions and narrow
wave direction spread encouraging bays that are cut deeper into the coast. The time taken for bays to attain
equilibrium morphology is found to scale with the square of the distance between the headlands. Our results
show that in the limit of narrow distributions of wave direction, including diffraction rules in a numerical
model is required to produce realistic crenulate bay shapes (consistent with the findings of Daly et al. [2014]).
Outwith this limit, diffraction still influences the morphology of the bay, resulting in bays that are more curved
along their length, yet in contrast to previous studies [Rea and Komar, 1975; Weesakul et al., 2010], diffraction
is not essential to understand the formation of crenulate bays (consistent with the findings of Littlewood et al.
[2007]). Comparison to empirical formulations for static bay morphology reveal differences in predicted bay
planform morphology driven primarily by the spread of wave approach angles, suggesting that engineering
solutions based on the static bay concept should consider the variability of waves impinging on the coast
within a modeling framework when designing coastal interventions.

Appendix A: Wave Transformation

A1. Airy Wave Theory
Similar to previous one-line modeling studies [e.g., Hanson, 1989; Ashton and Murray, 2006a; van den Berg et al.,
2012; Kaergaard and Fredsoe, 2013a] waves are transformed following Airy/linear wave theory. The energy
density of a single gravity wave is the summation of potential and kinetic components, expressed as [e.g.,
Sunamura, 1992; Komar, 1998]:

E = 1
8
𝜌wgH2 (A1)

where E [M T−2] is wave energy density (this is N m−2), 𝜌w [M L−3] is the density of water, g [L T−2] is acceleration
due to gravity and H [L] is wave height. Assuming zero energy loss during shoaling, increasing wave height as
the wave approaches the shore is balanced by a reduction in the wave speed C [L T−1], so that wave power P
[M L T−3] is conserved:

P = ECn = 1
8
𝜌wgCnH2 (A2)

The coefficient n relates wave velocity to the velocity of a group of waves (CG = Cn) describing the evolution
of wave shape with shoaling (varying between 0.5 in deep water and 1.0 in shallow) and is defined

n =
1
2
(1 + 2kh)

sinh(2kh)
(A3)

where k is the wave number [L−1] (k = 2𝜋∕L; where L [L] is wavelength) and h [L] is water depth. The model is
provided with offshore wave conditions as inputs, wave period T [T], offshore wave height H0 [L] and offshore
wave direction 𝜃0 [∘]. These waves are then transformed from deep to shallow water assuming shore-parallel
depth contours. Following Airy wave theory [e.g., Sunamura, 1992; Komar, 1998], the deep water wave velocity
C0 [L T−1] and wavelength L0 [L] are set by wave period T :

C0 =
gT
2𝜋

(A4)

L0 =
g

2𝜋T 2
(A5)
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Fenton and McKee [1990] presented an approximation for wavelength as a function of wave period and water
depth for waves that have not reached breaking height:

L = L0

⎛⎜⎜⎜⎝tanh

[√
2𝜋h

L0

] 3
2
⎞⎟⎟⎟⎠

2
3

(A6)

Subsequently, wave velocity is related to the deep water velocity and the wavelength at a given water depth:

C = C0 tanh
2𝜋h

L
(A7)

A2. Wave Shoaling
Assuming no refraction or loss of energy due to bottom friction, wave power P is conserved from deep to
shallow water. The associated change in wave height can be described using a shoaling coefficient KS found
by equating the power of deep water waves P0 to that of shallow waves P:

KS =
√

1
2n

(A8)

Shoaling results in a slight reduction in wave height as a wave enters intermediate water depths, but
approaching shallow water, wave height increases.

A3. Wave Refraction
As waves approach the coast they start interacting with the seabed (once within the depth of wave base
hwb ≈ L∕2). Wave velocity decreases as water depth h decreases (equation (A7)). Because of wave shoaling,
an obliquely approaching wave slows at the shoreward end. This refracts the wave crest progressively toward
the coast. Following Snells law and assuming a straight shoreline with parallel contours, the angle of wave
incidence 𝜃 can be calculated as a function of the ratio of wave velocity offshore to nearshore:

sin 𝜃 = C
C0

sin 𝜃0 (A9)

As the wave refracts progressively, the crest also stretches, resulting in some loss of power [Adams et al.,
2002]. This effect can be expressed as a refraction coefficient KR, that is set by the offshore incidence angle of
incoming waves (𝛼0) and the wave incidence angle approaching the shore (𝛼):

KR =
√

cos 𝛼0

cos 𝛼b
(A10)

Therefore, wave height approaching the coast can be expressed as a function of deep water wave height and
shoaling, refraction, and diffraction (equation (13) and (14)) coefficients for a given water depth:

H = KSKRKDH0 (A11)

A4. Wave Breaking
Typically, the water depth for the initiation of a breaking wave hb [L] is related to breaking wave height Hb [L]
by the coefficient 𝛾 = 0.8 through the relationship:

Hb ≈ 𝛾hb (A12)

Therefore, by iterating from deep to shallow water and updating H the height of wave breaking can be esti-
mated and as well as the angle made by the breaking wave with the shoreline. These parameters can then be
used to calculate volumes of alongshore sediment transport.
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Notation

Dimensions of [M]ass, [L]ength and [T]ime denoted in square brackets.
𝛼b Angle between breaking wave crest and the local coastline orientation [∘].
𝛽 Shoreface Slope [∘].
𝛾 Wave breaking depth coefficient [dimensionless].

𝜖1, 𝜖1 Angles between local cell orientation 𝜙 and cell boundaries [∘].
𝜂 Shoreline position relative to local shoreline orientation [L].
𝜃 Wave approach direction [∘].
𝜃0 Offshore wave direction [∘].

𝜃mean Mean offshore wave direction [∘].
𝜃std Standard deviation of offshore wave directions [∘].
𝜃S Wave approach direction in the shadow zone [∘].
𝜆 The constant tangential angle in a logarithmic spiral [∘].
𝜅 Angle between incoming wave crests and parabolic bay equation reference line R0 [∘].
𝜌w Density of sea water [M L−3].
𝜌s Density of sediment [M L−3].
𝜙 Local shoreline orientation [∘].
𝜙c Cell-building orientation [∘].
𝜓 The angle around a fitted log spiral [∘].
𝜔 Radial angle within shadow zone [∘].
a Upcoast cell index.

a1 Coefficient of quadratic solution for shoreline change.
a2 Coefficient of cubic solution for shoreline change.

A Surface area of a coast line cell [L2].
As Proportion of waves approaching from left relative to coastline orientation.
b Downcoast cell index.

b1 Coefficient of quadratic solution for shoreline change.
b2 Coefficient of cubic solution for shoreline change.
C Wave velocity [L T−1].

CG Wave group velocity [L T−1].
C0 Offshore wave velocity [L T−1].

C1, C2, C3 Empirical coefficients for empirical parabolic bay equation [dimensionless].
Dsf Depth of the shoreface [L].
Dc Depth at seaward-most extent of an individual polygonal cell [L].

E Wave energy density [M T−2].
g Gravitational acceleration [L T−2].
H Wave height [L].

H0 Offshore wave height [L].
Hmean Mean offshore wave height [L].

Hstd Standard deviation offshore wave height [L].
Hb Breaking wave height [L].
HS Wave height in the shadow zone [L].

h Water depth [L].
hb Water depth at wave breaking [L].

i Indices for coastal cells.
k Wave number [L−1].

Kls Empirical transport coefficient [L0.5 T−1].
KR Refraction coefficient [dimensionless].
KS Shoaling coefficient [dimensionless].
KD Diffraction coefficient [dimensionless].

ls Length of coastline within shadow zone [L].
lb Length of bay between two headlands/sea walls [L].
L Wavelength [L].

L0 Offshore wavelength [L].
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n Wave shape coefficient [dimensionless].
P Wave power [M L T−3].

Qls Alongshore sediment transport rate [L3T−1].
r Radial distance from coastline to center of a fitted log spiral [L].

r0 Minimum radial distance from coastline to center of a fitted log spiral [L].
R0 Reference line to point downdrift of which the coastline is linear [L].

R Distance from control point to position of coast as a function of angle 𝜓 [L].
s Local alongshore coordinate [L].
t Time [T].

T Wave period [T] .
Tmean Mean wave period [T].

Tstd Standard deviation wave period [T].
Uh Proportion of waves that are high angle.

V Volume of sediment in a coastal cell [L3].
W0 Cell width perpendicular to 𝜙 at the shoreline [L].

x Abscissa of a coast line node in Cartesian reference frame [L].
xs Distance along coastline to edge of shadow zone [L].
y Ordinate of a coast line node in Cartesian reference frame [L].
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