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Abstract. Realistic representations of geological complexity are important to 

address several engineering and environmental challenges. The spatial distribution of 

properties controlling physical and geochemical processes can be effectively described by 

the geological structure of the subsurface. In this work, we present an approach to account 

for geological structure in geostatistical simulations of categorical variables. The approach 

is based on the extraction of information from a deterministic conceptualization of the 

subsurface, which is then used in the geostatistical analysis for the development of models 

of spatial correlation and as soft conditioning data. The approach was tested to simulate the 

distribution of four lithofacies in highly heterolithic Quaternary deposits. A transition 

probability-based stochastic model was implemented using hard borehole data and soft 

data extracted from a 3-D deterministic lithostratigraphic model. Simulated lithofacies 

distributions were also used as input in a flow model for numerical simulation of hydraulic 

head and groundwater flux.  The outputs from these models were compared to 

corresponding values from models based exclusively on borehole data. Results show that 

soft lithostratigraphic information increases the accuracy and reduces the uncertainty of 

these predictions. The representation of the geological structure also allows a more precise 

definition of the spatial distribution of prediction uncertainty, here quantified with a metric 

based on Shannon information entropy. Correlations between prediction uncertainties for 

lithofacies, hydraulic heads and groundwater fluxes were also investigated. The results 

from this analysis provide useful insights about the incorporation of soft geological data 

into stochastic realizations of subsurface heterogeneity, and emphasize the critical 

importance of this type of information for reducing the uncertainty of simulations 

considering flux-dependent processes.  
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1 Introduction and background 

Realistic representations of geological complexity are essential to address 

environmental challenges concerning utilisation, conservation, and management of natural 

resources, as well as long term geological disposal of CO2 and radioactive waste. 

Architectural and textural characteristics of the facies across different scales control the 

distribution of physical (e.g., hydraulic conductivity, porosity, grain size, bulk density) and 

geochemical (e.g., mineralogical composition, effective diffusion coefficient, retardation 

factor, surface area) properties. These in turn influence fluid flow and solute transport 

processes. For example, in alluvial aquifers misrepresenting or ignoring connectivity of 

highly permeable sediments can lead to flawed interpretations of groundwater circulation 

and contaminant migration (Fogg, 1986; Webb and Anderson, 1996; Schiebe and 

Yabusaky, 1998; Labolle and Fogg, 2001; Proce et al., 2004; Bianchi et al., 2011; Bianchi 

and Zheng, 2015).  

The distribution of geological units or facies can be modelled with numerous 

approaches (see Kolterman and Gorelick, 1996 and de Marsily et al., 2005 for 

comprehensive reviews), which generally fall into two categories: deterministic or 

stochastic approaches. Deterministic approaches combine direct and/or indirect geological 

observations with expert insight and interpretation to produce unique models of geological 

heterogeneity. These have the advantage of being consistent with known geological 

relationships (stratigraphic, chronological, lithological etc.) and/or with established 

conceptualizations of the geological system of interest (e.g., a certain depositional system). 

Because of the development of computer based 3-D geological modelling tools (Mallet, 
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2002; Turner, 2006; Turner and Gable, 2007; Kessler et al., 2009; Zanchi et al., 2009; 

Royse, 2010), deterministic models have become increasingly popular not only in the oil 

and mining industry (e.g, Xu and Dowd, 2003; Perrin et al., 2005), but also to support 

water resources assessment and management (Artimo et al., 2003; Ross et al., 2005; 

Campbell et al., 2010; Nury et al., 2010; Gill et al., 2011; Raiber et al., 2012; Carreño et 

al., 2014), and numerical simulation of hydrogeological processes (D’Agnese et al., 1999; 

Robins et al., 2005; Wycisk et al., 2009; Bonomi, 2009; Blessent et al., 2009; 

Giambastiani et al., 2012; Turner et al., 2014). In flow and solute transport modelling, in 

particular, deterministic 3-D geological models are considered valuable in the preparatory 

stage of the numerical modelling implementation to establish a sound geological 

framework for the development of the conceptual model (Robins et al., 2005; Bredehoft, 

2005). In later stages, hydraulic properties are assigned to convert geological units, which 

are most commonly identified on the basis of lithostratigraphic criteria, into 

hydrostratigraphic units. It is common, however, that initially assigned values will need to 

be calibrated to achieve a match between simulated and observed values of the state 

variables (i.e., hydraulic heads, discharge rates, fluxes, concentrations, etc.). A potential 

drawback of this process is a reduction in the ability of the numerical model to extrapolate 

beyond the data used for calibration. Another potential limitation for the use of 

deterministic 3-D geological models in flow and transport modelling applications is the 

fact that the parameterisation of hydrogeological properties in lithostratigraphic units for 

various reasons is not a trivial task (e.g., Watson et al., 2015). For instance, 

hydrostratigraphic and lithostratigraphic boundaries do not necessarily match. Difficulties 

arise when the deterministic conceptual model is based on direct or indirect geological 

observations that have different resolution, extent and/or support scale compared to 

hydrogeological properties. Parameter upscaling (e.g., Blöschl and Sivaplan, 1995; Wen 



  

5 
 

and Gómez‐Hernandez, 1996; Renard and de Marsily, 1997; Sanchez‐Vila et al., 2006) 

then becomes a necessary and sometimes problematic step to transfer information between 

different scales.  

Stochastic approaches for modelling geological heterogeneity, which generate 

models consisting of multiple, equally probable realizations of the subsurface, provide an 

alternative to deterministic models. For hydrogeological modelling, one obvious advantage 

of stochastic models is that they provide information about geological structure uncertainty 

which, together with parameter uncertainty, is considered a major source of uncertainty for 

flow and transport simulations (Neuman, 2003; Poeter and Anderson, 2005; Refsgaard et 

al., 2012; Gupta et al., 2012; Tsai and Elshall, 2013; He et al., 2014a; Chitsan et al., 2014). 

Here, as in several previous studies (e.g., Kolterman and Gorelick, 1996; Webb and 

Anderson, 1996; Ramanathan et al., 2010; Ronayne et al., 2010; Huang et al., 2012; 

Bianchi et al., 2015), the term “geological structure” refers to a spatial organization of 

geological properties that is consistent with arrangements or patterns created by geological 

processes. Although multiple geological models can be generated manually (e.g., 

Troldborg et al., 2010; Seifert et al., 2012; Courrioux et al., 2015; Lark et al., 2015), our 

focus in this study is on automated generation with geostatistical methods.  

Traditional geostatistical methods for categorical variables (e.g., Journel, 1983) can 

produce realizations of facies assemblages honouring observations and a covariance model 

representing the spatial structure of the data. However, the inability of these methods to 

reproduce complex, curvilinear and interconnected structures, which are common 

especially in deltaic, fluvial and fluvio-glacial depositional systems, has motivated the 

development of alternative techniques such as multiple-point statistics (MPS) (Guardiano 

and Srivastava, 1993; Strebelle, 2002; Hu and Chugunova, 2008) and the transition 

probability approach (Carle and Fogg, 1996, 1997). Compared to traditional variogram-
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based methods, these methods also allow the inclusion of subjective geological 

interpretations in the geostatistical analysis. For MPS, this is achieved by selecting an 

appropriate training image as the representative conceptualization of geological 

heterogeneity for the system of interest. However, this selection is a critical and often 

challenging step especially for three-dimensional analyses (e.g., Le Coz et al., 2011; 

Comunian et al., 2012; Huysmans and Dassargues, 2012; Dell’Arciprete et al., 2012; Bluin 

et al., 2013; He et al., 2014b). With the transition probability approach, the spatial 

structure of geological data is modelled by mathematical functions (i.e., Markov chain 

models) relating transition probabilities to distance. Although this is a two-point 

geostatistical method, geological knowledge can be taken into account in the determination 

of the coefficients of these functions, which can be directly related to interpretable 

geological properties including proportions of each facies, mean lengths, connectivity, and 

juxtapositional tendencies (e.g., Carle et al., 1998; Weissmann and Fogg, 1999; Ritzi, 

2000; Lee et al., 2007; He et al., 2014a; Bianchi et al., 2015). 

Geostatistical models of subsurface heterogeneity are typically developed on the 

basis of “hard” data consisting of direct observations of lithology or other measureable 

properties. Since these data are usually collected in boreholes, the information required to 

characterize the geological system of interest is often adequate in the vertical direction, but 

not horizontally. The use of additional “soft” data consisting of indirect observations of 

geological properties, as well as qualitative and interpretative information (e.g., 

geophysical surveys or conceptualizations of the depositional system) has been shown to 

be effective to overcome limitations due to the lack of direct observations (Elfeki et 

al.,1995; Copty and Rubin, 1995; Hyndman and Gorelick, 1996; Liu et al, 2004; Elfeki, 

2006; Emery and Robles, 2009; Ye and Khaleel, 2008; Engdal et al., 2010; He et al., 

2014a). He et al. (2014a), for example, developed a stochastic model of the distribution of 
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sand and clay in glacial deposits based on both soft geophysical data from airborne 

electromagnetic surveys and hard borehole observations. Validation analysis conducted on 

a subset of the borehole data showed that soft conditioning (i.e., conditioning to the soft 

data) significantly improved the accuracy of lithology predictions for the sand units, for 

which there was a scarcity of direct observations.  

The majority of geostatistical methods, including the transition probability 

approach, assume that the probability distribution of the random variable is stationary, i.e., 

invariant under any translation in space. This assumption may not hold for geological 

properties due to the presence of trends, highly connected features, variations in the 

depositional conditions within the stratigraphic sequence, and/or discontinuities such as 

unconformities and faults. Non-stationarity can be effectively addressed with the 

incorporation of soft information into the geostatistical analysis. Weissmann and Fogg 

(1999), for example, present a stochastic model of facies distribution where sequence 

stratigraphic boundaries (i.e., soft interpretative data) are used to avoid unrealistic cross 

correlation across major unconformities in an alluvial fan. A similar approach has also 

been used in a point bar/channel system to simulate facies distributions into two distinct 

depositional units (Dell’Arciprete et al., 2002), and also in the recent study by Kearsey et 

al. (2015) to simulate lithological variations in glacial and post-glacial Quaternary 

deposits. In these previous studies, however, soft information is not directly incorporated 

in the geostatistical analysis, but it provides a conceptualization of the geological system 

for the identification of areas where stationarity may be assumed, thus allowing the 

appropriate application of geostatistical methods.  

In this study we present an approach for full integration of deterministic geological 

models into geostatistical simulations of subsurface heterogeneity. The approach is applied 

to simulate the distribution of lithofacies in the complex glacial and post-glacial 
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environment underlying the city of Glasgow (UK). One objective of the present study is to 

test the hypotheses that the geological structure inherited from a deterministic 

lithostratigraphic model can effectively improve the accuracy of the predictions of 

lithofacies distribution. Other important objectives of this work are: (1) to quantify 

variations in prediction uncertainty when the additional soft geological information is used 

in the stochastic simulations of lithofacies distributions; (2) to quantify correspondent 

variations in prediction uncertainty for hydraulic head and groundwater fluxes; (3) to 

analyse correlations between these variations. Although this analysis is focused on a 

specific site, it provides useful insights to understand the impact of geological uncertainty 

on groundwater flow modelling. 

 

2 Materials and methods 

2.1 Methodology outline  

The methodology adopted in this study can be summarized as follows: 

1) Two 3-D stochastic models of the distribution of four lithofacies in an area of 

100 km2 covering central Glasgow are generated. Both models are developed with the 

transition probability approach, but differ with respect to data used for transition 

probabilities estimations, fitted Markov chain models, and conditioning data. One model is 

solely based on hard lithological observations from boreholes, while the second model was 

developed using both hard data and soft data. Soft information was extracted from a 3-D 

lithostratigraphic model of the superficial deposits in the study area.  

2) A split sample validation test is performed to assess the accuracy of both 

models.  
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3) Prediction uncertainties of the two stochastic models are quantified with a 

normalized metric based on Shannon information entropy (Shannon, 1948) and then 

compared. 

4) Stochastic realizations of lithofacies assemblages derived from the two models 

are used as inputs for a groundwater flow numerical model. The predicted  uncertainties of  

calculated hydraulic heads and fluxes are quantified with the same normalized metric used 

for the lithological stochastic models.    

5) Scatter plots are constructed to investigate correlations between prediction 

uncertainties for the different models.  

2.2 Study area and geological setting 

An area of 10 km × 10 km, covering central Glasgow (west central Scotland) 

alongside the River Clyde, was selected as the study area (Figure 1). Comprehensive 

descriptions of the geological and hydrogeological settings can be found in previous 

publications (e.g., Campbell et al., 2010; Finlayson et al., 2010; Finlayson, 2012; Turner et 

al., 2014; Kearsey et al., 2015) and reports published by the British Geological Survey 

(e.g., Browne and McMillan, 1989; Hall et al., 1998; McMillan et al., 2005; Merrit et al., 

2007; Bonsor and Ó Dochartaigh, 2010; Merrit et al., 2012). Here, we present a synthetic 

description of main stratigraphic and hydrogeological features that are relevant for this 

study.  

The stratigraphic setting of the study area is characterized by a sequence of 

Quaternary deposits. These were deposited during and after the last Late Devensian 

glaciation, and overlie a bedrock consisting of Carboniferous sedimentary rocks. Among 

the glacial lithostratigraphic units, the most widespread is the Wilderness Till Formation 

(Figure 1), a heavily compacted diamicton of glacial origin consisting of massive to locally 

stratified mixtures of pebbles, cobbles, and boulders in a sandy, silty, clayey matrix. This 
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unit directly rests on top of the Carboniferous bedrock in most of the study area, and is 

particularly abundant across areas of higher ground on either side of the River Clyde 

valley. The Wildeness Till Formation is overlain by post-glacial lithostratigraphic units 

consisting of highly heterolithic deposits of glacio-fluvial, glacio-marine, glacio-lacustrine, 

and shallow, fluvially influenced, estuarine environments. The most common post-glacial 

units outcropping in the River Clyde valley are the Paisley Clay Member, generally 

consisting of laminated clay and silt, and the Gourock Sand Member, including fine- to 

coarse-grain sand, as well as silt, clay and gravel beds. Anthropogenic deposits of different 

lithology are also widespread in the study area, but they were not considered.  

Groundwater circulation in the study area is poorly understood and still subject to 

investigation (Bonsor et al., 2010). Available data supported by modelling analysis (Turner 

et al., 2014) suggest a general flow direction from elevated areas toward the Clyde River 

valley where river stage oscillations are the main controlling factor for groundwater levels 

in the Quaternary deposits. Transmissivity values (50 m2/d -100 m2/d) also indicate a 

likely contribution of the Carboniferous bedrock to the regional hydrogeological system 

(Ball et al., 2006). However, the connection between the bedrock and the Quaternary 

deposits is still not fully understood (Turner et al., 2014). A limited number of hydraulic 

conductivity measurements in the unconsolidated deposits are reported by Bonsor et al. 

(2010). These data, derived mainly from permeameter tests, indicate high heterogeneity, 

which is to be expected given the highly heterolithic nature of the deposits. For example, 

variations up to 5 orders of magnitude are observed in deposits from the Gourock Sand 

Member. The geometric mean of the observations in samples from the Paisley Clay 

Member is equal to 0.11 m/d, although values range from a minimum of 0.07 m/d to a 

maximum value in excess of 150 m/d. This demonstrates a relatively more uniform 
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distribution of hydraulic conductivity than is observed in the Wilderness Till Formation 

(geometric mean equal to 0.05 m/d).  

2.3 Hard borehole data  

The borehole data set consists of 21,320 descriptions of lithology at specific depths 

in 4391 geotechnical boreholes (Figure 2). Since these data were collected over several 

decades by different investigators, the dataset required an extensive process of 

homogenization (Kearsey et al., 2015). At the end of this process six lithofacies were 

identified based on textural analysis of borehole log descriptions supported using grain 

size analysis data (Williams and Dobbs, 2012). In contrast to previous work we have 

further reduced the number of lithofacies to four, namely “soft clay” (sftC), “stiff clay 

diamicton” (stCD), “silt and sand” (SZ), and “sand and gravel” (SG). The “organic” 

lithofacies observed in the original dataset was not considered in the present study because 

it was observed in a very limited number of boreholes (see Figures 4 and 5 in Kearsey et 

al., 2015). Observations for lithofacies SZ in this work were defined by merging the 

originally distinct lithofacies “silt” and “sand”.  

The totality of these lithofacies observations was split into two subsets, one for 

model training and hard conditioning, while the second subset was used for model 

validation (Figure 2). Since the boreholes are highly clustered around specific areas, and in 

particular distributed along the road network, data selection for these subsets was not 

random. Instead, 52 clusters of boreholes were manually chosen to represent the model 

validation data, while the remaining boreholes were used for model training and as hard 

conditioning data. Validation clusters consist of a variable number of boreholes, ranging 

from a minimum of 2 (cluster #35) up to 14 (cluster #46). Before being used in the 

geostatistical analysis, both subsets were further processed by calculating the most 

frequent lithofacies that was found within each cell of the 3-D grid used for the 
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geostatistical simulations. By the completion of this declustering process, hard 

conditioning data consist of 6684 lithofacies observations, while 2453 observations were 

used for model validation.  

2.4 Soft lithostratigraphic information 

A 3-D deterministic geological model of the lithostratigraphic setting of the 

superficial deposits has been made available for central Glasgow (Merrit et al., 2012). The 

model was developed using the GSI3D software (Kessler et al., 2009), and it is based on 

interpolation through triangulation of the boundaries between 13 lithostratigraphic units. 

These boundaries were defined using 101 interpreted cross-sections, which were 

constructed after considering several sources of geological data including borehole logs, 

digital elevation models, current and historical geological maps, and scanned geological 

cross-sections. The geotechnical boreholes considered in this work and the boreholes used 

for the development of the lithostratigraphic model constitute two different datasets, albeit 

a limited intersection between the two groups of data cannot be completely ruled out. A 3-

D view of this model showing the lithostratigraphic units considered in this study is shown 

in Figure 1b.  

Conversion of the 3-D deterministic lithostratigraphic model into usable 

information for the geostatistical simulations began with the estimation of the marginal 

probabilities of the four lithofacies within each lithostratigraphic unit. For this estimation, 

borehole data was initially assigned to groups according to the spatial distribution of the 

lithostratigraphic units in the deterministic model. Then, marginal probabilities were 

estimated with the following equation: 

,
,

,

i j
i j

i ji

n
p

n
=

∑
        (1) 
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where ni,j is number of occurrences of lithofacies i within each lithostratigraphic unit j. 

Soft lithostratigraphic data were then produced by sampling the distribution of 

lithostratigraphic units in the model with a 3-D grid, and by assigning correspondent 

marginal probabilities to the nodes of this grid. Several resolution values were tested 

before choosing a sampling grid with a resolution of four times larger than that of the grid 

used for geostatistical simulations. This value was chosen because it allows a sufficiently 

accurate representation of the geological structure in the geostatistical simulations with a 

reasonable number of soft conditioning points. 

Estimated marginal probabilities for the considered lithofacies within each 

lithostratigraphic unit are presented in Table 1. Values indicate a unimodal distribution of 

lithofacies in most of units except for the Gourock Sand Member and the Cadder Sand and 

Gravel Formation, which are characterized by two equally frequent lithofacies. The 

occurrence of  lithofacies stCD is highly likely to be found in the glacial units, in particular 

in the Wilderness Till Formation, but it is much less likely in the post-glacial units in the 

River Clyde valley where other lithofacies are significantly more frequent. For instance, 

lithofacies sftC is the most common lithofacies in the Paisley Clay Member and also in the 

Law Sand and Gravel Member. The probability of lithofacies SG is generally low in all the 

units except in the Broomhouse Sand and Gravel Member, while the probabilities of 

lithofacies SZ and sftC are very variable in the post-glacial units. 

Values presented in Table 1 also confirm the inadequacy of the 3-D 

lithostratigraphic model in accounting for small scale lithological variability. This has also 

been previously demonstrated in the work of Kearsey et al. (2015) by comparisons 

between lithological observations in the boreholes and the main lithotypes (i.e., gravel, 

sand, etc.) in the published lithostratigraphic description of each unit. A similar assessment 

has been conducted in the present study by comparing the most probable lithofacies for 
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each lithostratigraphic unit against the considered clusters of validation data. Results show 

that there is approximately one match in every three observations within each cluster. The 

poor performance of the deterministic lithostratigraphic model in predicting small scale 

lithological variability is not surprising given the highly heterogeneous nature of the 

deposits, and the fact that lithostratigraphic variability in the model and lithological 

variations in the borehole data are defined over two different scales. It is very likely that 

this inaccuracy is observed also for other hydrogeological properties, particularly for 

hydraulic conductivity. The question then is not if we can use this type of models to make 

inferences about properties and processes at scales that are smaller than those over which 

they are defined. Rather it is how we can address if it is possible to use their geological 

realism to inform smaller scale models of the subsurface, and how much such additional 

information affects the uncertainty of predictions of properties and processes. 

2.5 Geostatistical modelling  

Equally probable realizations of the distribution of the lithofacies were generated 

with the transition probability approach with the T-PROGS code (Carle and Fogg, 1996, 

1997; Carle, 1999). With this approach, the spatial structure of the data is represented by 

transition probabilities rather than by the variogram or the covariance as in traditional 

geostatistical methods. The transition probability ti,k from a category (e.g., lithofacies) i to 

another category k is defined in terms of the conditional probability: 

{ }, ( ) Pr ( ) | ( )i kt k i= +h x h x       (2) 

where x and h are two vectors indicating spatial location and lag distance, respectively. 

From the definition of transition probability in Equation (2), this approach can be seen as a 

Markovian approach since the occurrence of category k at location x + h is only dependent 

on the occurrence of category i at location x. Therefore, a three-dimensional continuous-

lag Markov Chain model can be developed to model discrete transition probabilities 
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observed in the data. These models consist of linear combinations of mathematical 

functions, one for each direction in space and are generally in the form of exponentials, 

relating the transition probabilities to the lag h.  

Markov chain models can be computed from knowledge of the entries in the 

embedded transition probability matrix, as well as of values of volumetric fraction, mean 

length and thickness of each category. The entries in the embedded transition probability 

matrix represent the conditional probabilities of a certain category to occur adjacent to the 

others along particular directions. As with a variogram-based geostatistical analysis, these 

input parameters are estimated by fitting a model to the transition probabilities observed in 

the data. A background category is also chosen such that its entries in the embedded 

transition probability matrix are calculated by difference from the entries of the other 

categories. The developed Markov chain model is then used as input for the generation of 

conditional realizations of the distribution of the categories. This is a two-step procedure 

that includes an initial step to generate a preliminary configuration based on Sequential 

Indicator Simulation (Deutsch and Journel, 1992), and a successive optimization step 

based on the simulated quenching algorithm, which is performed to improve the agreement 

between measured and modeled transition probabilities (Carle, 1999).  

Two different transition probability-based stochastic models were implemented to 

generate three-dimensional conditional simulations of the spatial assemblage of the 

lithofacies in the study area. One model (thereafter referred to as M1) is entirely based on 

hard borehole data, which were used to calculate the transition probabilities and as 

conditioning data in the simulations. In particular, the Markov chain model, which was 

calibrated to match observed transition probabilities, assumes isotropic behavior in the 

horizontal plane (Kearsey et al., 2015) with lithofacies stCD as the background category. 

Volumetric proportions of the lithological categories in the model M1 are also consistent 
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with correspondent values in the borehole hard data. The second model (thereafter referred 

to as M2) uses both hard borehole data and generated soft lithostratigraphic information in 

the transition probability calculation, Markov chain model development, as well as for 

conditioning. Therefore, the Markov chain model in model M2 differs from model M1 in 

terms of volumetric proportions, mean lengths, and embedded transition probabilities in 

the horizontal plane. However embedded transition probabilities in the vertical direction 

are the same for both models since the high resolution of the borehole data in the vertical 

direction allowed a sufficiently accurate calibration of the model without additional soft 

data. Lithofacies sfCD was also chosen as background category for model M2. 

As shown in Figure 3, conditioning data for M1 and M2 are represented by the 

probability of occurrence of each lithofacies at points in the 3-D domain. Hard 

conditioning points representing to the boreholes are defined by indicators defined as (e.g., 

Weissmann and Fogg, 1999): 

 
1, lithofacies  occurs at  

( )
0,  otherwisek

k⎧
= ⎨

⎩

x
I x      (3) 

These hard points are used by both models M1 and M2. For soft conditioning points, 

which were considered only in model M2, corresponding indicator values were replaced 

by the marginal probabilities pi (Equation 1) of each lithofacies derived from the 

lithostratigraphic model.  

Stochastic realizations of lithofacies distributions were generated using a regular 3-

D grid with a resolution of 50 m in the horizontal directions (x and y) and 2 m in the 

vertical direction (z). On the horizontal plane, the grid covers an area of 9.5 km × 9.5 km. 

The top surface of the grid was defined by the NEXTMap® Britain Digital elevation model 

(50 m resolution), which had been modified to remove anthropogenic ground, whilst the 
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bottom surface corresponds to the top surface of the pre-Quaternary bedrock in the 

lithostratigraphic model by Merritt et al. (2012).  

2.6 Groundwater flow modelling 

Groundwater flow was simulated by solving the equation of steady-state flow in 

porous media, which can be written as: 

0x y z

h h h
K K K f

x x y y z z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
   (4) 

where Kx, Ky, and Kz are the principal components of the hydraulic conductivity tensor K 

in the respective coordinate directions, h is hydraulic head, and f  is a volumetric 

sink/source term. For a volume element centered about any point (x, y, z), Equation (4) can 

be derived by combining a fluid conservation condition and Darcy’s law, which defines 

the fluxes into and out of the element in directions perpendicular to its faces. Accordingly, 

these fluxes can be written as:  

,  ,  ,x x y y z z

h h h
q K q K q K

x y z

∂ ∂ ∂= − = − = −
∂ ∂ ∂

    (5) 

where qx, qy, and qz are the scalar components of the Darcy flux (specific discharge) vector 

q in the respective coordinate directions. It is implied in Equations (4) and (5) that the 

principal components of K are aligned with the x, y, and z coordinate axes. 

A numerical solution of Equation (4) was calculated with a finite-difference model 

implemented with MODFLOW-2005 (Harbaugh, 2005). The objective of this model is to 

provide a basic representation of groundwater system in order to understand the impact of 

soft lithostratigraphic conditioning on predictions of groundwater heads and fluxes. 

Accordingly, input parameters and boundary conditions were not calibrated against 

measured head values, but they were simply defined on the basis of available data or taken 

from literature (Turner et al., 2014). Therefore, model outputs should only be considered 
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as generic and interpretative. Extensions of the finite-difference numerical grid in the x and 

y directions, as well as grid resolution and location of the cell centers, match the 

correspondent values of the grid used for geostatistical simulations. However, the base of 

the numerical grid corresponds to the horizontal plane at elevation z = -36.87 m above sea 

level (a.s.l.), which is the lowest elevation of the bedrock in the study area, while the top 

surface corresponds to the horizontal plane at elevation z = 1.13 m (a.s.l.). This value was 

chosen because measured groundwater levels indicate that most of the saturated zone 

within the Clyde valley sediments lies below sea level (Turner et al., 2014). With these 

assumptions, the numerical grid consists of 192 rows, 192 columns, and 19 layers. As 

shown in Figure 4, the modelled domain comprises both Quaternary deposits alongside the 

Clyde River and the bedrock. However, only the cells representing the deposits were 

considered in the analysis of prediction uncertainty.  

Head-dependent flux boundary conditions were assigned to grid cells at the four 

lateral boundaries of the domain (GHB in Figure 4). Reference head and conductance 

values for the assignation of these boundary conditions were taken from the results of a 

previous groundwater flow model, whose domain encapsulates the whole Glasgow urban 

area (Turner et al. 2014). Non-uniform recharge rates assigned to the top layer of the 

numerical grid were also derived from estimated values of distributed recharge within this 

model. The bottom surface of the domain was considered a no-flux boundary. To simulate 

groundwater/surface water interactions, head-dependent flux boundary conditions were 

also assigned to the cells corresponding to the position of River Clyde in the numerical 

grid (RIV in Figure 4). To define these conditions, a river bed elevation of 2 m below 

ground surface and a uniform river bed conductance of 10 m2/d were assumed, while river 

stage elevations were estimated from the NEXTMap® Britain Digital elevation model.  
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Hydraulic conductivity fields in the flow simulations are directly linked to the 

stochastic realizations from models M1 and M2. For each realization, the link was 

established through the assignment of appropriate K values in the numerical grid in parallel 

with corresponding simulated lithofacies distribution. A uniform K value was assumed for 

each lithofacies, with values ranging from 0.01 m/d for lithofacies sftC to 150 m/d for 

lithofacies SG. Intermediate values were assumed for lithofacies sftCD and SZ (0.1 m/d 

and 15 m/d, respectively), while a value of 1 m/d was assigned to the bedrock. These 

values were chosen to be consistent both with experimental data (Ball et al., 2006; Bonsor 

et al., 2010) and also with calibrated values from the previous large-scale model (Turner et 

al., 2014). 

For each cell of the numerical grid, the components qx, qy, and qz of the Darcy flux 

vector were estimated with a finite-difference approximation of Equation (5). For instance, 

the component qx at the interface between two cells ( , 1, )i j k− and ( , , )i j k  along the x 

direction was initially calculated with the following: 

, , , 1,
, 1/ 2 ,

i j k i j k
x i j k

h h
q K

x
−

−

−
= −

Δ
      (6) 

where 
, ,i j kh  and 

, 1 ,i j kh −
are the simulated hydraulic heads at the centers of the cells, xΔ is the 

grid spacing along x, and 
, 1 / 2 ,i j kK −

is the harmonic mean of hydraulic conductivity between 

the two cells. A similar expression was then used to estimate the flux component at the 

other interface between between ( , , )i j k and ( , 1, )i j k+ . Finally the value of qx at the 

center of the cell was calculated as the average between the fluxes at the two interfaces. 

This procedure was repeated for all the cells of the grid and for the other components qy 

and qz in the other directions.  
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2.7 Information entropy as a measure of prediction uncertainty 

The concept of information entropy, introduced by Shannon (1948), was applied to 

quantify the prediction uncertainty of the implemented models. For a system with a 

discrete number of probable outcomes, information entropy is a measure of “missing 

information” i.e., the amount of information required for a complete probabilistic 

description of the system. The concept is appealing because it is based on a metric that is 

equal to 0 when no uncertainty exists (i.e., there is only one possible outcome) and to a 

maximum when there is the greatest uncertainty (i.e., all outcomes are equally likely). 

Moreover, it does not change when an additional outcome with null probability is added. 

This metric is the information entropy H, which is defined as: 

1

log
N

i i
i

H p p
=

= −∑        (7) 

where pi is the probability of the outcome i out of N  possible outcomes. The base of the 

logarithm in Equation (7), which is important for establishing units of H (e.g., bits, nats, 

etc.), is irrelevant here. As previously stated, H reaches the absolute maximum when 

1/ip N= for every outcome i. Therefore, the maximum (HMAX) is given by: 

1

1 1
log log

N

MAX
i

H N
N N=

= − =∑      (8) 

Accordingly, we can define a relative measure of uncertainty, with values between 0 (i.e., 

no uncertainty) and 1 (i.e., highest uncertainty), as the normalized metric (HNORM): 

1

log
N

i i
i

NORM
MAX

p p
H

H
=

−
=

∑
      (9) 

Additional details on the theoretical aspects of information entropy can be found in the 

original work of Shannon and in several textbooks on Information Theory (e.g., Stone, 

2015). 
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While the concept of information entropy has been applied to various problems in 

hydrology (e.g., Singh, 2011), its potential as a measure of uncertainty for geological 

models as well as in groundwater flow and solute transport modelling has received less 

attention. Woodbury and Ulrych (1996), for instance, applied entropy concepts to recover 

the release history of a contaminant plume in a 1-D system with constant flow velocity. 

Mays et al. (2002) used a metric similar to the one defined in Equation (9) to evaluate the 

complexity of numerical simulations of infiltration through unsaturated heterogeneous 

soils. Information entropy has also been applied to quantify uncertainty in the context of 

structural geological models (Wellmann and Regenauer-Lieb, 2012) and geological maps 

(Wellmann, 2013; Stafleu et al., 2014), as well as to estimate spatial disorder in synthetic 

aquifers (Scheibe, 1993; Scheibe and Murray, 1998) and in three-dimensional realizations 

of distributions of sand and clay (Huang et al., 2012). 

In this work, spatial distributions of the values of HNORM for models M1 and M2 

were generated by calculating the relative frequencies of the lithofacies at each node of the 

simulation grid. These frequencies were estimated on the basis of 90 realizations since it 

was observed a stabilization in the estimated values of HNORM after about 80 realizations. 

Relative frequencies were then considered as pi in Equation (9), where the maximum 

entropy HMAX is equal to log(4) being four the number of lithofacies considered. A similar 

approach, based on the same number of realizations, was used to calculate HNORM in the 

cells representing Quaternary deposits in the numerical grid of the flow model (Figure 4). 

In particular, two values of HNORM were calculated, one for groundwater head predictions 

and another for predictions of the magnitude of Darcy flux vector ( 2 2 2
x y zq q q+ + ). In 

both cases, the distributions of simulated values were binned over 0.5 unit intervals, and 

their relative frequencies were considered for the calculation of HNORM. Log transformed 

(base = 10) values were considered for the magnitude of Darcy flux. The information 
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entropy of a uniform distribution of values binned over the same intervals was considered 

as HMAX for normalization. 

 

3 Results  

3.1 Transition probability and Markov chain models  

Values of volumetric fraction, mean length and mean thickness of each lithofacies 

are presented in Table 2 while transiograms showing observed transition probabilities and 

fitted Markov chain models for models M1 and M2 are shown in Figure 5. Horizontal 

transition probabilities were measured from data with a lag spacing of 100 m and a 

tolerance of 50 m, while a lag spacing of 1.5 m and a tolerance of 0.75 m were considered 

for calculating transition probabilities in the vertical direction. Developed Markov chain 

models honour transition probability data at the first lag. This condition, which is a 

suggested modelling practice given the large amount of training data (Carle, 1999), was 

also chosen because it allowed unbiased comparison between the two models, which 

would have been difficult if a manual calibration of the input parameters had been 

performed. With this approach, mean lengths for the lithofacies are also defined by the 

interception of the first lag transition rate (i.e. the slope of the Markov chain model as it 

approaches lag zero) to the horizontal axis of plots of auto-transition probabilities 

(diagonal elements in Figure 5).  

The volumetric fraction for each lithofacies was estimated from hard borehole data 

for model M1 and from both hard and soft data for model M2. Values for the two models 

are in general agreement for all the lithofacies except for lithofacies stCD. In particular, 

the addition of soft conditioning data resulted in a about 10% increment in the volumetric 

fraction of this lithofacies compared to the value from the hard borehole data alone. For all 

the other lithofacies, the difference in estimated volumetric fractions in the two models is 
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within a 6% to 9% range. The low volumetric fraction of lithofacies stCD in the hard 

borehole data is an effect of data clustering (Figure 2). This lithofacies is in fact 

particularly frequent in the Wilderness Till Formation (Table 1), which is the prevalent 

lithostratigraphic unit in the northern and southern sectors of the study area (Figure 1), 

where hard borehole data are more scattered. The addition of soft data in model M2 also 

allowed a more realistic estimation of the spatial continuity of this lithofacies as indicated 

by the value of the mean length for model M2, which is almost three times larger than the 

value estimated for model M1. Mean lengths for lithofacies sftC and SZ in the two models 

are practically identical, while the mean length of lithofacies SG in model M2 is about one 

third lower than the value estimated for M1. From the comparison of transiograms for this 

lithofacies in Figure 5a with those in Figure 5b, it is evident that the addition of soft 

information reduced the uncertainty in the transition probability estimations, as shown by a 

less scattered distribution of points in Figure 5b. This allowed a more accurate fitting of a 

Markov chain model.  

3.2 Simulated lithofacies distributions 

Statistical analysis of the stochastic realizations generated with model M1 indicate 

that the clayey lithofacies sftC is expected to be the most frequently occurring lithofacies 

in the studied area. However, as shown in Figure 6a and 6c, the spatial distribution of the 

all lithofacies in areas far from borehole data is very indistinct especially across sectors of 

higher ground on either side of the River Clyde valley. Here, according to the geological 

interpretation provided by the lithostratigraphic model and the estimated marginal 

probabilities (Table 1) we should expect a higher frequency of lithofacies stCD. The 

relatively frequent occurrence of this lithofacies at the ground surface in the River Clyde 

valley is also not consistent with the lithostratigraphic interpretation. These geological 

inconsistencies disappear with the addition of the soft lithostratigraphic information 
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considered in model M2. In fact the distribution of lithofacies for model M2 shown in 

Figures 6c is in agreement with the distribution of the Wildeness Till Formation in the 

lithostratigraphic model, as well as the estimated frequency of lithofacies stCD with depth 

(Figure 6d) is in agreement with the interpreted lithostratigraphic unconformity between 

glacial and post-glacial deposits. Compared to model M1, the occurrence of lithofacies SZ 

and sftC in model M2 is also more consistent with a realistic conceptualization of a fluvial 

depositional system, with sand and silt deposited in point bars and natural levees along the 

river channel and finer sediments deposited on the floodplain.  

The high uncertainty in the simulated probability distributions for model M1 is 

reflected in the distributions of HNORM (Figure 6e-g), which is ubiquitously high (> 0.90) 

except in areas around hard conditioning points. The shape of histogram of the estimated 

values (Figure 7a) is in fact skewed toward the right with average and modal values equal 

to 0.883 and 0.947, respectively. The interpretation of these values according to the 

concept of information entropy indicates that two or more lithofacies are equally likely in 

the vast majority of the nodes of the domain. Conversely, in the spatial distribution of 

HNORM for model M2 (Figure 6f-h) it is possible to identify areas where the occurrence of a 

particular lithofacies is significantly more likely than other. Although areas of high 

uncertainty remain, the average value of HNORM for model M2 (0.705) is about 20% lower 

than the correspondent values for model M1.  

Spatial distributions of estimated occurrence probabilities for the lithofacies 

(Figure 8) indicate that while in model M1 the location of areas with high (or low) 

probability is only controlled by the borehole hard data, in model M2 this location is also 

influenced by the geological structure imparted by the soft conditioning data. As a result, 

model M2 allows a more precise definition of the spatial distribution of occurrence 

probability for the lithofacies. For instance, the map of probability for lithofacies sftC 
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calculated with model M2 (Figure 8b) indicates likely occurrence (> 0.40) in the valley 

deposits, especially in more distal areas from the River Clyde, as well as in depressions 

and tributary valleys on either side of the main valley. In all the other sectors of the studied 

area, probability is very low (pi < 0.10). On the other hand, the probability distribution of 

this lithofacies from model M1 (Figure 8a) is characterized by a predominance of 

intermediate values (0.25 < pi < 0.35) indicating high uncertainty except in proximity of 

the borehole locations. The same considerations apply for all the considered lithofacies.  

Results of the validation test to estimate the accuracy of the two implemented 

models in predicting lithofacies occurrence at specific depths in 52 clusters of boreholes 

are presented in in Figure 9. The accuracy is expressed in terms of percentage of correct 

predictions in each cluster, while the uncertainty of the predictions is represented by the 

average of HNORM values for each cluster. Results indicate that the addition of soft 

information increased the percentage of correct predictions in the clusters by 10% on 

average (47% for M1 vs. 57% for M2). This is a significant improvement given the high 

heterogeneity of the deposits in the study area and their complex depositional history. The 

number of clusters with a 100% of accurate predictions also increased (6 for model M2 vs. 

1 in model M1). Four of these clusters (#43; #45; 50, #52) and, in general, the clusters 

where we observed a more significant improvement in accuracy are located in the north-

western sector of the study area where the influence of soft conditioning on simulated 

lithofacies distributions is more evident (Figure 7b). A reduction in accuracy was observed 

in four clusters (#11, #23, #29 #35). However, three of these clusters have the lowest 

number of boreholes and therefore calculated accuracy values may not be significant. On 

the other hand, a 40% increment was measured in the percentage of accurate predictions in 

the cluster with the highest number of boreholes (#46). As expected, predictions from 

model M2 are also less uncertain than those from model M1, as indicated by lower values 
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of HNORM in all the clusters. The average normalized entropy of the predictions for model 

M2 is about 16% lower than the corresponding value for model M1. 

3.3 Groundwater flow model results 

Simulated hydraulic heads distributions indicate a convergent flow field with flow 

paths moving groundwater from both sides of the valley toward the River Clyde. 

Calculated magnitude values of the Darcy flux reflect the high heterogeneity of the K 

fields derived from the lithofacies distributions. For simulations considering realizations of 

the M1 model, the distribution of the ensemble mean values of the log-transformed 

magnitudes is characterized a mean of -2.07 and a variance of 0.25 (base = 10; values in 

m/d). Similar values were estimated for the simulations considering model M2. The 

variability of simulated values in a single cell of the modelled domain is much higher 

compared to variability of the distribution of the ensamble mean values. For example, the 

variance of the magnitudes of the Darcy flux estimated in a single cell is about 1.3 on 

average for both modelling scenarios.  

Two-dimensional maps showing the distribution of calculated HNORM values on the 

top surface of the numerical grid for model M1 and M2 are compared in Figure 10, while 

the histograms of all the calculated values for head and flux predictions are presented in 

Figure 7b and 7c. For both models, normalized entropy values for head predictions are 

about one third of the corresponding values for Darcy flux predictions. As expected, 

spatial distributions of HNORM for head predictions are influenced by the boundary 

conditions in flow model in particular in the cells representing the River Clyde (Figures 10 

and 10b). On the other hand, spatial distributions of low HNORM values for flux predictions 

are only marginally influenced by boundary conditions in the flow model while they are 

more strongly affected by the positions of hard conditioning points in the lithofacies 

models (Figures 10c and 10d). As for the lithofacies models, the uncertainty of the 
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predictions from the groundwater flow model is also generally lower when soft 

lithostratigraphic information is taken into account in the definition of the K fields. In fact 

the average value HNORM for groundwater head predictions based on realizations of the M2 

model is about 37% lower than the correspondent value for model M1 (0.238 vs. 0.327). 

Normalized entropy values are particularly low (< 0.25) in the western sector of the 

domain for the scenario considering model M2. Low values in both scenarios were also 

calculated in the eastern sector in an area between the meanders of the Clyde River, but 

these are the effect of the head-dependent boundary condition used to simulate the river. 

For flux predictions, the average HNORM for the scenario considering model M2 is about 

11% lower than the value estimated in simulations considering model M1 (0.753 vs. 

0.688). However, as shown in the Figure 7c, more than 70% of the estimated values for the 

scenario considering model M1 are between 0.75 and 0.85, while less than 20% of values 

falls in that range for the scenario considering model M2. The higher prediction 

uncertainty for the simulations considering model M1 is also evident from the comparison 

of spatial distributions of HNORM  (Figure 10c and 10d). As for lithofacies predictions, the 

comparison also indicates that the incorporation of soft information in model M2 allows a 

more precise identification of areas with different levels of uncertainty. 

 

4 Discussion 

The comparisons of the results of the validation test and of spatial distributions of 

normalized entropy indicate an improved predictability and a reduction in uncertainty 

when soft information is integrated into stochastic simulations of lithofacies distribution. 

Similar reductions in prediction uncertainty of groundwater heads and fluxes were 

observed when the geological structure derived from the lithostratigraphic model was 

taken into account in the definition of the hydraulic conductivity fields in the groundwater 
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flow model. Note that since the groundwater flow model was not calibrated against 

observations, our results regarding groundwater heads and fluxes predictions indicate an 

improvement in precision. This does not necessarily correspond to an improvement in 

prediction accuracy, which was not tested in the present work.   

A more quantitative analysis of the impact of soft lithostratigraphic information on 

the uncertainty of the implemented models was conducted by calculating the following 

difference: 

1 2M M
NORM NORM NORMH H HΔ = −      (10) 

For both lithofacies and flow models, NORMHΔ represent changes in normalized entropy 

between the modelling scenario considering only borehole hard data and the scenario 

considering both soft lithostratigraphic information and hard data. Values of NORMHΔ were 

calculated for the cells of the groundwater flow model grid representing Quaternary 

deposits (Figure 5), and for the corresponding nodes of the simulation grid used in models 

M1 and M2. Although the spatial distributions of NORMHΔ indicate a predominance of 

positive values, negative values were also observed. For lithofacies predictions (Figure 

11a), these negative values are located around the boreholes indicating that the addition of 

soft conditioning points in the stochastic simulation have the effect of increasing entropy 

around the hard conditioning locations. This is a significant result because, on the basis of 

the principle of maximum entropy, it shows that model M2 provides the best 

representation of lithofacies distribution around the hard conditioning points. For the same 

principle, model M2 also provides the best predictions of groundwater heads in sectors of 

the numerical grid that are in proximity of boundary conditions, especially for areas 

between meanders of the Clyde River in the eastern sector of modelled domain where 

there is a concentration of negative NORMHΔ values (Figure 11b). For flux predictions 
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(Figure 11c), negative values of NORMHΔ  are also clustered around the hard conditioning 

points of lithofacies realizations. This result indicates that model M2 is the least biased for 

making predictions around model constraints (i.e., hard conditioning boreholes and/or 

boundary conditions), and therefore it best represents the current state of knowledge. 

Scatter plots of NORMHΔ values for lithofacies predictions vs. the correspondent 

values for groundwater head and flux predictions provide indications about the relationship 

between prediction uncertainties from the different models (Figure 12). Since these plots 

can be seen as a sensitivity analysis of the uncertainties in the outputs of the groundwater 

flow model with respect to the uncertainty in the lithological model, the slopes of the 

linear least-square models fitted to the data provide an indication of the sensitivity 

coefficients. Note that boundary-condition cells in groundwater model, as well as hard 

conditioning points in the lithofacies models, were not considered in this analysis. The 

comparison of these scatter plots indicates that, with respect to the uncertainty in 

lithofacies predictions, the uncertainty in groundwater flux predictions is almost four times 

more sensitive than the uncertainty in groundwater head predictions. This result has 

important practical implications for groundwater modelling because it shows that adding 

geological information to better characterize subsurface heterogeneity may be a very 

effective way to reduce the uncertainty of predictions based on groundwater fluxes. 

However, if the objective of the model is a simple reconstruction of the hydraulic head 

distribution in a certain area, adding geological information may not be as an effective 

approach in reducing the model prediction uncertainty as the calibration of input 

parameters and boundary conditions, or the collection of additional head observations. 
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5 Summary and conclusions 

We have proposed an approach to generate conditional stochastic realizations of 

the spatial distribution of geological categories that account for geological structure. The 

approach is based on the extraction of information from a deterministic conceptualization 

of the subsurface to be used in geostatistical analysis for establishing models of spatial 

correlation, as well as for conditioning stochastic simulations. This information is provided 

by a grid of soft data points representing marginal probabilities of the categories in the 

units of the deterministic model. As a result, the realistic geological structure of the 

deterministic model is imprinted in the realizations of the stochastic model. Although this 

study focused on the transition probability method, the proposed approach can also be 

applied to variogram-based indicator algorithms, and generally to any other geostatistical 

method capable of taking into account soft information as conditioning data.  

The approach was tested to simulate the distribution of four lithofacies in highly 

heterolithic Quaternary deposits. A transition probability-based stochastic model (M2) was 

implemented using both hard borehole data and soft data extracted from a 3-D 

deterministic lithostratigraphic model. Another model (M1) considering only hard 

borehole data was also implemented. Lithofacies distributions for the two models were 

then used to define hydraulic conductivity fields for prediction groundwater head 

distribution and Darcy fluxes. Comparisons between predicted results from the two models 

permit the following conclusions regarding the proposed methodology to be made. These 

also provide general insights about the incorporation of soft geological information into 

stochastic realizations of subsurface heterogeneity and its impact on groundwater flow 

modelling.  

1) Soft lithostratigraphic information increased the predictability of the stochastic 

lithofacies model. The number of correct predictions in 52 clusters of validation boreholes 



  

31 
 

increased by 10% on average, with values up to 80%. A potential limitation of the 

approach is the risk of introducing systematic errors in the definition of the geological 

structure due to flaws and uncertainty in the deterministic model. However, in our case 

study we measured a reduction in accuracy in a very limited number of validation clusters 

notwithstanding a very low accuracy of the lithostratigraphic model and high associated 

uncertainty.  

2) An overall reduction (about 20% on average) in prediction uncertainty measured 

with a metric based on Shannon information entropy was observed in the stochastic model 

that considered geological structure. This reduction in spatial entropy confirms the 

conclusions of two previous studies (Scheibe, 1993; Huang et al. 2012). These studies 

however considered synthetic representations of geological systems characterized by a 

binomial distribution of facies, while in this work we have investigated spatial entropy in a 

real site with four lithofacies.  

3) Compared to the results of the model based on hard data exclusively, increased 

entropy around the hard conditioning points was observed in the model considering soft 

conditioning data. According to the principle of maximum entropy, this indicates that 

incorporation of soft information allows a better representation of the stochastic 

distribution of the lithofacies in those areas. When these realizations were used as input for 

groundwater flow simulations, a similarly positive increment in entropy was observed in 

areas where values of predicted hydraulic heads were mostly influenced by boundary 

conditions.  

4) The representation of the geological structure in the spatial distribution of 

lithofacies allows a more precise definition of spatial uncertainty. This can be particularly 

useful to support the design of geological investigations because it provides a geological 

basis for the identifications of areas where further exploration is required to further reduce 
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uncertainty, as well as of unsampled areas where this is not necessary because there is 

sufficient indirect information for making informed predictions about the property of 

interest. 

5) A general reduction in prediction uncertainty for heads and fluxes was observed 

when soft lithostratigraphic information was taken into account into the definition of the K 

fields in the flow model. In particular, a 37% reduction was observed in the average 

normalized entropy for head predictions and about 11% for predicted fluxes.  

6) Scatter plots of variations in normalized entropy for the implemented models 

indicate that there is a correlation between variations in prediction uncertainties. For the 

particular case considered in this study, flux predictions are about 4 times more sensitive to 

variations in lithofacies uncertainty than the head predictions. This result emphasizes the 

critical importance of geological information for reducing prediction uncertainty in models 

that simulate flux-dependent processes such as advective transport, multiphase flow, and 

groundwater recharge/discharge. 

In statistical sciences, the concept of information entropy provides an established 

framework for the analysis of the uncertainty of categorical data (e.g., Wilcox, 1967). 

However, before the present study, a relatively small number of studies applied this 

concept to quantify uncertainty in the context of geological and groundwater flow 

modeling. Our results indicate that information entropy is an ideal metric to quantify 

uncertainty in spatially distributed stochastic models of properties and processes, and to 

compare and correlate uncertainty or variations in uncertainty between different models.  
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Table 1. Marginal probabilities of the lithofacies in each lithostratigraphic unit of the 3-D 

deterministic model. The four lithofacies are: “soft clay” (sftC), “stiff clay diamicton” 

(stCD), “silt and sand” (SZ), and “sand and gravel” (SG). 

 

Table 2. Parameters for the Markov chain models shown in Figure 5. 
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Figure 1. (a) Map of the studied area showing the main lithostratigraphic units. Gray lines 

represent the road network. (b) The 3-D lithostratigraphic model by Merritt et al. 2012. 

Coordinates refer to the British National grid (m). 

 

Figure 2. Map showing the location of the boreholes used in this study as hard 

conditioning data (in red) or as validation data (in blue). Blue labels indicate the 

identification number used to identify clusters validation boreholes. Road network is 

represented by the gray lines. The River Clyde, tributaries, and minor water bodies are 

shown in light blue. Coordinates refer to the British National grid (m). 

 

Figure 3. Example of conditioning points for the two stochastic models M1 (a) and M2 (b). 

Colors correspond to probability values for lithofacies stfC. 

 

Figure 4. Groundwater flow model setup and boundary conditions (general head boundary 

GHB; river RIV). 

 

Figure 5. Observed transition probabilities and fitted Markov chain models. (a) Lateral 

transition probabilities for hard borehole data (model M1). (b) Lateral transition 

probabilities for a combination of hard borehole data and soft lithostratigraphic data 

(model M2). (c) Vertical transition probabilities for hard borehole data (models M1 and 

M2).   

 

Figure 6. Lithofacies modelling results. Most frequently occurring lithofacies estimated by 

model M1 (a, c) and model M2 (b, d). Traces of the cross-sections are represented by 
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white dashed lines. Correspondent normalized entropy distributions for model M1 (e, g) 

and model M2 (f, h). Black dots indicate borehole data locations. Light grey areas indicate 

where the bedrock is at the surface. 

 

Figure 7. Histograms of normalized entropy values for models M1 and M2. (a) lithofacies 

predictions; (b) groundwater head predictions; (c) flux predictions. 

 

Figure 8. Occurrence probability maps for the different lithofacies calculated with model 

M1 (a, c, e, g) and model M2 (b, d, f, h). Black dots indicate borehole data locations. Light 

grey areas indicate where the bedrock is at the surface. 

 

Figure 9. Validation test results for models M1 (a) and M2 (b). Red lines indicate the 

average percentage on correct predictions. 

 

Figure 10. Two-dimensional normalized entropy distributions for groundwater flow model 

predictions over the top surface of the 3-D grid. The black line indicates the River Clyde. 

(a) Groundwater head predictions based on model M1. (b) Groundwater head predictions 

based on model M2. (c) Groundwater flux predictions based on model M1. (d) 

Groundwater flux predictions based on model M2. 

 

Figure 11. Spatial distributions of variations in normalized entropy between models M1 

and M2 for lithofacies predictions (a), groundwater head predictions (b), and flux 

predictions (c). The black line indicates the River Clyde. Black dots indicate the hard 

conditioning data. 
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Figure 12. Scatter plots comparing variations in normalized entropy for lithofacies 

predictions with correspondent variations for groundwater head predictions (a) and flux 

predictions (b). Red dashed lines indicate linear least squares models fitted to the data 

points. The equation of the line in (a) is 0.082 0.078 0.005)(y x±= + . The equation of 

the line in (b) is 0.305 0.020 0.003)(y x±= + .  
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Parameter 

sftC stCD SZ SG 
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Vol. fraction 
.31 .29 .31 .35 .27 .26 .11 

0

.10 

Mean length 

(m) 20 18 10 94 0 3 00 7 

Mean 

thickness (m) .7 .7 .9 .9 .6 .6 .1 .1 
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Highlights 

Novel approach to account for geological structure in stochastic models of subsurface 
heterogeneity. 
 
Approach tested in a highly heterogeneous environment.  
 
Accounting for geological structure reduces model uncertainty, here quantified with a 
metric based on Shannon information entropy. 
 
Correlations found between prediction uncertainties for lithofacies, hydraulic heads and 
groundwater fluxes. 
  
Insights regarding the impact of geological information in fluid flow and solute transport 
models. 
 

 

 




