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Abstract. All eddy-covariance flux measurements are asso-

ciated with random uncertainties which are a combination of

sampling error due to natural variability in turbulence and

sensor noise. The former is the principal error for systems

where the signal-to-noise ratio of the analyser is high, as

is usually the case when measuring fluxes of heat, CO2 or

H2O. Where signal is limited, which is often the case for

measurements of other trace gases and aerosols, instrument

uncertainties dominate. Here, we are applying a consistent

approach based on auto- and cross-covariance functions to

quantify the total random flux error and the random error due

to instrument noise separately. As with previous approaches,

the random error quantification assumes that the time lag be-

tween wind and concentration measurement is known. How-

ever, if combined with commonly used automated methods

that identify the individual time lag by looking for the max-

imum in the cross-covariance function of the two entities,

analyser noise additionally leads to a systematic bias in the

fluxes. Combining data sets from several analysers and us-

ing simulations, we show that the method of time-lag deter-

mination becomes increasingly important as the magnitude

of the instrument error approaches that of the sampling er-

ror. The flux bias can be particularly significant for disjunct

data, whereas using a prescribed time lag eliminates these

effects (provided the time lag does not fluctuate unduly over

time). We also demonstrate that when sampling at higher el-

evations, where low frequency turbulence dominates and co-

variance peaks are broader, both the probability and magni-

tude of bias are magnified. We show that the statistical sig-

nificance of noisy flux data can be increased (limit of detec-

tion can be decreased) by appropriate averaging of individual

fluxes, but only if systematic biases are avoided by using a

prescribed time lag. Finally, we make recommendations for

the analysis and reporting of data with low signal-to-noise

and their associated errors.

1 Introduction

1.1 Motivation

Surface layer fluxes of gases such as carbon dioxide (CO2)

and methane (CH4) are frequently determined using the

eddy-covariance (EC) technique. This approach has allowed

direct measurements of canopy-scale emission/deposition

rates which are routinely incorporated into models of the

carbon cycle and atmospheric chemistry. As with all mea-

surements, the reported flux has an associated error, which

should reflect both the systematic and random uncertainties

of the measurement system. Systematic uncertainties arise

e.g. from having an imperfect measurement system. For ex-

ample, bandwidth limitations confine our ability to capture

all the turbulent motions that contribute to the flux, and if

uncorrected will introduce a bias. Another obvious system-

atic error is introduced by the uncertainty in the calibration

standard. Identifying, minimising and correcting sources of

systematic bias in flux measurements has been an active area

of research (Businger, 1986; Lenschow and Raupach, 1991;

Lenschow et al., 1994; Mann and Lenschow, 1994; Mass-

man, 2000; Massman and Lee, 2002). In contrast, random

errors do not bias the flux but reduce the overall confidence

in an individual reported value. The main sources of ran-

dom uncertainties in EC flux measurements are widely ac-
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cepted as (i) the stochastic nature of turbulence sampling

and (ii) instrument noise and the resolution at which sam-

ples are recorded. Numerous studies have focused on quan-

tifying random uncertainties, ranging from rigorous theoret-

ical investigations (Lenschow and Kristensen, 1985) to more

practical approaches (Hollinger and Richardson, 2005). Usu-

ally these studies have addressed the problem from the per-

spective of an analytical system with fast-response time se-

ries and with good signal-to-noise ratio (SNR) e.g. fluxes of

sensible heat, CO2 or H2O, because for these measurements,

the uncertainty in the flux is typically dominated by natu-

ral turbulence variability. For example, Mauder et al. (2013)

demonstrated that for fluxes of CO2 and H2O, the uncer-

tainty associated with sensor noise was on the order of 1 %

as opposed to stochastic errors which ranged between 20

and 30 %. The meaning of SNR is different for flux mea-

surements than for concentration measurements. When mea-

suring concentrations, the information (or “signal”) is asso-

ciated with the mean, while for flux measurements it is as-

sociated with the variability in the time series that reflects

fluctuations induced by turbulence rather than by instrument

noise. It is in the spirit of this latter definition that SNR is

used throughout this paper.

Increasingly, eddy covariance is now being applied to

measure fluxes of pollutants which are more difficult to mea-

sure precisely. Examples include measurements of volatile

organic compounds (VOCs; Karl et al., 2002; Langford et

al., 2010; Park et al., 2013), ozone (O3; Coyle et al., 2009;

Muller et al., 2009; Stella et al., 2013), nitric oxide (NO;

Rummel et al., 2002), nitrogen dioxide (NO2; Stella et al.,

2013), nitrous oxide (N2O; Eugster et al., 2007; Famulari

et al., 2010; Jones et al., 2011) and aerosols (Nemitz et al.,

2008; Ahlm et al., 2009; Farmer et al., 2011, 2013). Measur-

ing these scalars at a rate sufficient to meet the requirements

for eddy covariance (i.e. several Hz) often results in a low

SNR and increases the overall uncertainty in the flux.

In addition, for many of these systems, co-location of

anemometer and sensor is not possible. Closed-path sensors

require inlet lines that create a time lag (τ) between the ver-

tical wind velocities (w) and measured scalar concentrations

(c). Correcting phase shifts between w and c by t data points

(where t = τ × sampling frequency) is a key step in the cal-

culation of fluxes and is routinely done by assessing the

cross-covariance function (i.e. the covariance as a function

of time lag – see Eq. 4) between c and w which should re-

veal a maximum (in absolute terms), when the data are fully

synchronised. Yet, when the random uncertainty is high, as is

the case for many of these analysers, the cross-covariance be-

comes noisy, confounding the identification of a clear maxi-

mum. Through this data treatment, the low SNR in the con-

centration measurement, although a random error, may ef-

fectively introduce a systematic bias towards more extreme

flux values. Recently, Taipale et al. (2010) reviewed the vari-

ous options for determining time lags with reference to VOC

fluxes which often have low SNR. Three commonly used ap-

proaches are the maximum (MAX), average (AVG) and pre-

scribed (PRES) methods, which are all well suited for the au-

tomated post-processing of eddy-covariance data. Briefly, the

PRES method involves using a constant time lag, predicted

on the basis of the physical characteristics of the sampling

system, i.e. sample flow rate and inner diameter and length

of the inlet. The MAX method systematically searches for

the absolute maximum value in the cross-covariance function

between w and c within a predefined time window. Finally,

the AVG method proposed by Taipale et al. (2010) applies

a centred running mean to the cross-covariance function and

then selects the flux from the unsmoothed cross-covariance

function that corresponds to the maximum of the absolute

running mean. The latter method was originally developed

for use with VOC data measured by a proton transfer reac-

tion mass spectrometer (PTR-MS), but is generically appli-

cable to any data set with low SNR. There are currently no

guidelines on the degree of smoothing that should be applied

(i.e. the length of the running mean). In their study, Taipale et

al. (2010) settle on a 5 s running mean, recognising that this

is an arbitrary length.

With so many options available, it is clear that the cal-

culated flux may differ depending on the chosen time-lag

method. For example, in their study Taipale et al. (2010)

confirm that using a prescribed time lag may result in a sys-

tematic underestimation of the flux, as the “true” time lag is

likely to vary over time due to fluctuations in pumping speed

but also due to the degree of absorption/desorption with the

inlet wall and its effect on the effective transport time through

the tube. Especially for the more water-soluble compounds

this may change with humidity and the aerosol coating of

the inlet. Similarly, systematically searching for a maximum

within a noisy cross-covariance with multiple local maxima

may well bias fluxes towards more extreme values (Laurila et

al., 2012). The AVG method offers something of a compro-

mise between the two approaches, but some systematic bias

may still remain.

We hypothesise that the bias induced by using methods

that search for a maximum in the cross-covariance is closely

linked to the random error in the flux, which is in part a func-

tion of the SNR of the analytical instrumentation and in some

cases may be greater than the systematic error induced from

using a prescribed time lag. In order to address this hypothe-

sis, an appropriate method is needed to quantify the random

error in the flux and separate it into sampling and instrument

error components.

1.2 Common approaches for quantifying random flux

errors

Assuming the time lag is known, the random error (RE) of an

eddy-covariance flux can be estimated in a variety of ways

(Lenschow and Kristensen, 1985). One traditional method is

mainly used to estimate the flux error due to the limited sam-

pling of the stochastic nature of turbulence. It is based on the
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variance of the instantaneous values of w′c′ and the integral

timescale and is estimated as (Lumley and Pafanofsky, 1964;

Wyngaard, 1973; Lenschow et al., 1994)

RE=

[
2σ 2
w′c′

τFc

L

]0.5

, (1)

where L is the length of the averaging period in seconds,

σ 2
w′c′

is the variance of the time series of instantaneous values

of w′c′ over a typical averaging period (∼ 30 min) and τFc is

the integral timescale, i.e. the average timescale over which

correlation persists. The integral timescale can be directly es-

timated by integrating the area under the auto-covariance of

w′c′ to the point of the first zero crossing. However, this gets

more difficult for cases with high noise levels, as the auto-

covariance becomes more scattered resulting in multiple zero

crossings, including some artificially close to the zero time

lag. This has the consequence that the integral timescale de-

rived by this method becomes physically meaningless. In the-

ory, additional sensor noise should increase the random er-

ror but in this case, the reduction in the estimate of τFc has

the knock-on effect of minimising the error estimate. Conse-

quently, this approach appears unsuitable in situations where

signal is limited. An alternative approach, for conditions of

neutral stability, is to approximate the integral timescale by

dividing the measurement height (z) above the zero plane

displacement (d), by the mean wind speed (ū). Yet, Rannik

et al. (2009) found this method to overestimate the integral

scale by a factor of 2 and consequently the random flux error

by a factor of 1.4.

Mahrt (1998) offered an alternative method that negates

the use of the integral timescale by splitting the time series

into sub-records and formulating the error as the standard er-

ror between sub-records (Mahrt, 1998; Rannik et al., 2009):

RE=

[
σ 2

Fc.sub

k

]0.5

, (2)

such that k is equal to the number of sub records and σ 2
Fc.sub

is the variance of the k different fluxes calculated for the k

different sub-records. This random error reflects a combina-

tion of the natural variability of the (genuine) atmospheric

concentration and instrument noise, but since it calculates

subsequent flux values, it appears likely that it is particularly

sensitive to low frequency changes.

Another, quite widely used, method to determine the ran-

dom uncertainty in eddy-covariance flux measurements was

devised by Finkelstein and Sims (2001). Their approach is

based on the variance of a covariance between two vari-

ables which are first auto- and cross-correlated. The ran-

dom error is approximated through the integration of the

auto-covariance and cross-covariance functions of the ver-

tical wind velocity and scalar concentration as

RE=

√√√√ 1

n

[
m∑

t=−m

fw′w′ (t)fc′c′ (t)+

m∑
t=−m

fw′c′ (t)fc′w′ (t)

]
, (3)

where fw′c′(t) is the cross-covariance function for a time lag

of t data points defined as

fw′c′(t)=
1

n− t

n−t∑
i=1

(wi − w̄)(ci+t − c̄) (4)

and the auto-covariance terms are calculated analogously

as the cross-covariance of an entity with itself. Here, n is

the number of samples in the flux averaging period and m

is the number of samples needed to capture at least the

integral timescale (Rannik et al., 2015). Due to the diffi-

culties of quantifying the integral timescale in noisy data

(see above), for such time series, it would be advisable to

choose a larger m. This mathematically rigorous estimate

of the random flux error is implemented in the commonly

used post-processing software EddyUH (https://www.atm.

helsinki.fi/Eddy_Covariance/EddyUHsoftware.php) and Ed-

dyPro (http://www.licor.com/env/products/eddy_covariance/

eddypro.html).

In cases where the time lag is unknown, random flux

errors are often assessed based on the statistical proper-

ties of the cross-covariance function used to identify the

time lag. This technique, first conceived by Wienhold et

al. (1995) and developed further by Spirig et al. (2005), in-

volves taking the standard deviation of the cross-covariance

function at a distance far from the zero time lag (typi-

cally several times the integral timescale). In theory, the

cross-covariance in this region reflects both random sen-

sor noise and variability of the (genuine) atmospheric sig-

nal/concentration; thus, multiples of the standard deviation

can yield a random flux error at a given confidence interval

(e.g. 1.96× σ = 95th; 3× σ = 99th). This technique is de-

scribed further in Sect. 2.2

While the cross-covariance method is widely used, few

studies have attempted to go beyond this and isolate the ef-

fects of random sensor noise, mainly due to its negligible in-

fluence in many conventional eddy-covariance systems. No-

ticeable exceptions include the work of Shurpali et al. (1993)

who proposed a new technique for estimating random instru-

ment uncertainty which was popularised in the mid-nineties

(Clement et al., 1995; Billesbach et al., 1998). In this ap-

proach the flux of a tracer is measured while sampling air

with a constant mixing ratio e.g. directly sampling from a

gas standard, and hence any observed flux, is purely a re-

flection of the random instrumental noise. This method has

proved extremely robust, but has the obvious disadvantage

of requiring routine data acquisition to stop while the ran-

dom instrument uncertainty is assessed.

Billesbach (2011) proposed a more practical approach for

quantifying random uncertainties from sensor noise. The so-

called “random shuffle approach” involves random reshuf-

fling of one of the variables in time and thereby removing any

covariance between source/sink terms and transport, leaving

only accidental correlations which can mostly be attributed

to instrument noise. This is an intriguing option, yet, if we

www.atmos-meas-tech.net/8/4197/2015/ Atmos. Meas. Tech., 8, 4197–4213, 2015

https://www.atm.helsinki.fi/Eddy_Covariance/EddyUHsoftware.php
https://www.atm.helsinki.fi/Eddy_Covariance/EddyUHsoftware.php
http://www.licor.com/env/products/eddy_covariance/eddypro.html
http://www.licor.com/env/products/eddy_covariance/eddypro.html


4200 B. Langford et al.: Eddy-covariance data with low signal-to-noise ratio

consider a measured time series c, which is made up of some

genuine signal (x) as well as instrumental noise (ε), then the

effective amplitude of a time-shuffled time series is still com-

posed of x+ ε and therefore the uncertainty is likely overes-

timated.

More recently, Mauder et al. (2013) approximated errors

associated with random instrument noise by first calculating

the signal-to-noise ratio of the concentration time series us-

ing an auto-covariance function and then using a basic error

propagation to estimate the contribution of that noise to the

uncertainty in the cross-covariance:

REnoise =

√(
σ noise

C

)2
σ 2
w

n
. (5)

In this approach, σ noise
C is the standard deviation of the instru-

ment noise, derived using an auto-covariance function (see

Sect. 2.1 for details), σ 2
w is the variance of the vertical wind

velocity and n is the number of data points in the flux aver-

aging period. This method, also implemented by Peltola et

al. (2014) and Rannik et al. (2015) is relatively simple to ap-

ply but as yet, its effectiveness has not been fully validated

for use with eddy-covariance and disjunct eddy-covariance

(DEC) data.

In this study we explore a further possibility for estimat-

ing the portion of the random error that is attributable to sen-

sor noise by combining the ideas of Billesbach (2011) and

Mauder et al. (2013), focusing in particular on the interplay

between random instrument uncertainty, cross-covariance

peak width and the systematic flux bias induced when deter-

mining the flux through the use of a cross-covariance func-

tion (Taipale et al., 2010; Laurila et al., 2012). In under-

standing this linkage, our aims are to (i) validate the use of

Eq. (5) for use with EC and DEC data sets, (ii) outline an

optimal strategy for calculating and reporting random errors,

(iii) identify the optimal strategy for determining time lags

for eddy-covariance data with low SNR and (iv) to draw con-

clusions on the validity of flux measurements made with low

SNR.

2 Methods

2.1 Quantifying random white noise from analysers

Instrumental noise comes in both structured and unstructured

forms. For example, the 50–60 Hz signal from a mains AC

power supply might introduce a structured noise into a time

series, and optical fringes often introduce periodic features

in optical spectroscopic approaches. By contrast, uncorre-

lated white noise can result from minor fluctuations in the

mechanics of instrument components, or fluctuations in tem-

perature, pressure or humidity. Here we focus our attention

on unstructured, white noise only, and define the SNR for a

given time series c as

SNR=
σ 2
x′

σ 2
ε′

, (6)

where σ 2
x′

is the variance of the genuine signal of a mea-

sured time series, c (c = x+ ε, where χ is genuine signal

and ε is noise) and σ 2
ε′

is the variance of the noise. In order to

establish the relative contributions of both signal and noise

components of c we consider the auto-covariance to c’ of the

form

fc′c′(t)=
1

n− t

n−t∑
i=1

((xi − x̄)+ εi)((xi+t − x̄)+ εi+t ) , (7)

where t is the number of data points associated with the time

lag, n is the number of data points in the time series and the

overbars denote averages. White noise can only contribute to

the auto-covariance at t = 0 (Lenschow et al., 2000; Mauder

et al., 2013) as it has no structure (i.e. the noise on an individ-

ual data point is uncorrelated to the noise of the adjacent data

points). As the auto-covariance function moves away from

zero, the contribution of instrument white noise is removed

and thus the difference between fc′c′ (0) and fc′c′ (1) gives an

estimate of random instrument noise. The underlying trend

in the auto-covariance function of the genuine signal de-

pends on the biophysical (source/sink strength) signature of

the compound being measured, and the structure within the

turbulence signal which is itself a function of atmospheric

stability. The presence of a trend or “structure” in the auto-

covariance is a sign of genuine signal in the data, whereas an

auto-covariance with no underlying trend is the definition of

white noise. Where a genuine signal is present, it is therefore

necessary to extrapolate the positive auto-covariance func-

tion back to the zero point. This is typically done using only

the first few points e.g. fc′c′ (1–5). The noise can then be es-

timated as the difference between fc′c′ (0) and fc′c′ (1–5 ex-

trapolated) and is depicted in Fig. 1a which shows the auto-

covariance applied to a time series of temperature measure-

ments. The auto-covariance should decrease following a 2/3

power law (Wulfmeyer et al., 2010), but we find a linear ex-

trapolation to be more appropriate. Lenschow et al. (2000)

and Mauder et al. (2013) also adopted a linear extrapolation

and suggest the deviation from the 2/3 power law to result

from the averaging effects of the analysers.

Using the auto-covariance function as opposed to the auto-

correlation function (i.e. the normalised auto-covariance)

means the calculated signal and noise are variances and retain

their original units. Taking the square root gives the standard

deviation of both the signal (σx) and noise components (σε).

The auto-covariance is a convenient method when work-

ing in the time domain, but alternatives are available when

analysing the data in the frequency domain. Figure 1b shows

the variance spectrum for a time series of temperature mea-

surements (T ). The red line shows the spectra of unmodified
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Figure 1. Illustration of the two methods for determination of anal-

yser (temperature measurements, T ) variance attributable to un-

structured white noise, through (a) the use of an auto-covariance

function in the time domain and (b) from the variance power spec-

tra in the frequency domain. Panel (a) shows how the first few points

(points 1 to 5 in this example) of the auto-covariance function can

be used to extrapolate the contributions of signal and noise compo-

nents at a lag of zero (red line).

temperature data from an ultrasonic anemometer and the blue

line shows the same temperature data deteriorated through

the addition of Gaussian white noise with a standard devia-

tion of 1 K. In the frequency domain, on this plot, the fall-off

towards higher frequencies in the inertial sub-range should

follow a−5/3 slope (dashed line), while white noise follows

a +1 slope (solid line). This enables the noise variance to

be quantified as the area between solid and dashed lines in

Fig. 1b. It should be noted that the auto-covariance method

is unsuitable if the measured time series (c) is not used with

the original time resolution, e.g. if it was first resampled to a

different sampling frequency in order to match the sonic time

resolution. Similarly, this technique does not apply to struc-

tured noise, because fc′c′ (1) would still be affected by such

noise. When using the frequency domain approach, struc-

tured noise may or may not show up as a departure from the

−5/3 slope at high frequencies.

Throughout this paper we utilise the auto-covariance

method in the time domain as it is readily applicable to both

eddy-covariance and disjunct eddy-covariance data sets.

2.2 Quantifying random flux errors and the limit of

detection

As discussed previously, the precision with which a flux

can be measured is commonly approximated from the prop-

erties of the cross-covariance function between w’ and c’

(fw′c′(t)).

For time lags much different from the true time lag (t),

the standard deviation of fw′c′(t) provides a measure of the

random error affecting the flux (Wienhold et al., 1995; Spirig

et al., 2005):

REσ = σfw′c′ [−0,+0], (8)

where 0 is a region of the cross-covariance function well

away from the point of zero time lag. Typically, 0 defines two

regions of the cross-covariance function, one covering the

positive time shifts and the other covering the negative time

shifts (e.g. −0 =−150 to −180 s and +0 = 150 to 180 s).

Multiplying this measure of the random error by α gives

an estimate of the measurement precision at a given confi-

dence interval (α = 1.96 for the 95th percentile; α = 3 for the

99th percentile) which can be used as the flux limit of detec-

tion (LoD) (i.e. LoDσ = α×REσ ). The flux detection limit

does not only depend on the SNR of the concentration mea-

surement, but also varies with wind speed and atmospheric

stability. Therefore, for each new averaging period it is nec-

essary to recalculate the LoD. Whilst this technique allows

for the separation of a “genuine” flux signature from the gen-

eral noise of the covariance, the determination of the standard

deviation is often done using somewhat arbitrary boundaries

(e.g. −150 to 180 s and +150 to 180 s, or defined as some

multiple of the integral timescale; Spirig et al., 2005), and

thus as the turbulence structure evolves throughout the day,

these limits may become more or less appropriate. Any corre-

lation between c′ and w′ within these bounds is either purely

accidental and reflects the random noise in the time series or

it is due to organised structures that persist over much longer

time intervals suggesting that turbulence is not stationary or

statistically not well covered in the measurement. Further-

more, a trend in scalar data can result in a cross-covariance

which remains positive or negative over wide ranges rather

than the expected fluctuation around zero. Figure 2a and b

show the calculation of the LoD via the standard deviation

(LoDσ ; blue dashed line) to sensible heat flux data from a

forest site, for cases where the cross-covariance oscillates

around zero and is offset from zero, respectively. In the latter

case (Fig. 2b), many points of the cross-covariance function

are above the limit of detection.

A modification of the LoDσ approach is to calculate the

random error based on the root mean squared deviation

(RMSE) of fw′c′ (t) from zero within the same specified re-

gion (greyed area – Fig. 2a and b), which reflects the vari-

ability in the cross-covariance function in these regions, but

also its offset from zero as shown in Eq. (9).

RERMSE =

√(
0.5

((
σfw′c′ [−0]

)2
+
(
fw′c′ [−0]

)2
+
(
σfw′c′ [+0]

)2
+
(
fw′c′ [+0]

)2))
, (9)

where σfw′c′ and fw′c′ represent the standard deviation and

the average of the cross-covariance within a defined time

window (0), respectively. Again, multiplying RERMSE by α

gives a limit of detection at a given confidence interval (i.e.

LoDRMSE = α×RERMSE).

Figure 2, panel c shows the LoD for sensible heat flux

data calculated using both the LoDRMSE and LoDσ methods.

The two approaches agree very closely for periods where

the cross-covariance fluctuates regularly around zero as in

Fig. 2a, but where the covariance is predominantly of one

sign, the LoDσ approach derives significantly smaller lim-
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Figure 2. Cross-covariance functions for sensible heat fluxes (a and b) measured above a Douglas fir forest in Speuld, Netherlands, during

two example measurement periods. Panel (c) shows the limit of detection for sensible heat fluxes calculated either by block averaging or

linearly detrending the vertical wind velocity and temperature data. The limits of detection were calculated using both the standard deviation

approach (LoDσ ) and the root mean square error approach (LoDRMSE) approach. See text for further details.

its of detection, which, as shown in Fig. 2b, do not exceed

the general noise of the cross-covariance function. While this

does not prevent the identification of the true peak in the sen-

sible heat flux in this example, this finding is particularly

important for closed-path eddy-covariance systems in situ-

ations where the time lag between sensors is not known and

signal quality is poor. In these instances, the identification of

the genuine flux may be confounded by multiple regions of

the cross-covariance exceeding the limit of detection and re-

sulting in the reporting of erroneous fluxes (see Sect. 3.3.1

for further discussion on this issue). Importantly, if fluxes are

calculated using linear detrending (i.e where a linear function

is used to remove trends from the time series of w′ and T ′

separately) as opposed to block averaging (where the mean

of the 30 min averaging period is subtracted from w′ and T ′,

respectively), the effect is reduced somewhat but not com-

pletely removed. For this data set, 14 % of block averaged

data would have been rejected using the LoDRMSE method

as opposed to 4 % using the more traditional LoDσ method.

In contrast, when applying linear detrending to these data the

percentage of data rejected fall to 6 and 3 % for the LoDRMSE

and the LoDσ methods, respectively. In light of these findings

we utilise the LoDRMSE method for all calculations of the

flux LoD in this study. Recommendations for the application

of the LoDRMSE method to ozone eddy-covariance flux data

are outlined in Nemitz et al. (2015).

2.3 Calculating the effect of instrument noise on the

flux error

Analysis of the statistical properties of the cross-covariance

function seems to offer a practical approach for approximat-

ing the total random error of the flux, because the variability

of the cross-covariance function comprises both instrument

noise and the variability of the (genuine) atmospheric con-

centration. Yet, as discussed above, isolating the instrumen-

tal component of the total random error remains a challenge.

Here, we attempt to untangle the two errors using an ap-

proach similar to the “random shuffle” method of Billesbach

(2011). Rather than shuffling the measured scalar time series

to remove any covariance between c′ and w′, we generate a

new time series of equal length comprised purely of Gaussian

white noise, εWN. The standard deviation of the white noise

is set to match that of the instrument noise, σε, which can

be calculated using the auto-covariance method described in

Sect. 2.1. The resulting time series shares the statistical prop-

erties of c′, minus the contribution of the genuine analyser

signal x′ and therefore the contribution of instrument noise

to the total random flux error can now be determined by ap-

plying the RERMSE method to the cross-covariance of fw′ε′WN

The four steps of this method are summarised as follows:

1. Perform an auto-covariance of c′ to obtain the standard

deviation of the instrument noise ε (e.g. σε as described

in Eq. 7).

2. Generate a time series of white noise (εWN) with a stan-

dard deviation matching that of the instrument noise

(e.g. σεWN = σε).

3. Calculate the cross-covariance fw′ε′WN
.

4. Apply the RERMSE method to fw′ε′WN[0]
to obtain the

instrumental random error (REnoise). Here, 0 represents

a time window of 0–30 s.

In theory, this numerical exercise seeks to quantify the same

error approximated by Mauder et al. (2013; Eq. 5), whilst
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making no assumptions on the shape of the distribution of

w’. Therefore we can use this approach to validate Eq. (5)

for use with both EC and DEC data sets and assess its per-

formance when applied to data sets with varying levels of

SNR. The random error in the flux, attributable to instrument

noise, is calculated using both these approaches and these re-

sults are compared in Sect. 3.1. As mentioned previously, the

auto-covariance technique, also used by Mauder et al. (2013),

is not sensitive to the effects of structured instrument noise.

Consequently, the instrumental random error reported by

both methods is likely underestimated. Nonetheless, the con-

tribution from structured noise is included in our estimate of

the total random error (i.e. by applying the RERMSE method

to fw′c′) and it is this parameter that is used to define the flux

limit of detection (i.e. LoDRMSE = α×RERMSE).

Although this proposed technique does not make any as-

sumption about the distribution of w’, it does make the as-

sumption that the instrument noise follows a Gaussian dis-

tribution which is not always the case. For example, concen-

trations have often been found to be skewed towards larger

values. In particular, tracers which show a high degree of

variability at low mean concentrations may be log-normally

distributed: concentrations are not constrained towards larger

values, but cannot physically be negative, and therefore typ-

ically follow a log-normal distribution. The combined fre-

quency distribution of w′ and c′ has been found to be more

closely approximated by a Gram–Charlier equation than a

Gaussian distribution (Milne et al., 2001). In addition, the

statistical noise generated by instruments that derive con-

centrations from count events, e.g. counting particle num-

ber, ions (as the PTR-MS does for VOC fluxes or the aerosol

mass spectrometer (AMS) for submicron aerosol chemical

fluxes), follows a Poisson distribution. This Poisson distri-

bution is again limited towards small values by zero, whilst

it is not constrained towards larger values. This potentially

introduces an asymmetry in the response, and it is not imme-

diately clear that this cannot act on the flux in a different way

than a normally distributed instrument noise.

With this in mind we performed several tests to determine

if the covariance between the vertical wind velocity and a

time series of white noise differs depending on the distri-

bution of that noise (e.g. whether it is Gaussian, Poisson or

log-normally distributed). For a single 30 min averaging pe-

riod the covariance between w′ and ε′ was calculated iter-

atively, whereby the artificially generated noise (εWN) was

either Gaussian, Poisson or log-normally distributed as seen

in Fig. 3a. For each of the 5000 iterations, a new time series

of white noise was generated and the covariance was recal-

culated using a prescribed time lag. Figure 3b shows a dis-

tribution of the resulting white noise fluxes calculated using

either Gaussian, Poisson or log-normally distributed noise.

In each case, the fluxes are evenly spread about zero, which

demonstrates that unstructured white noise creates a random

uncertainty in the flux but does not induce a systematic bias,

regardless of its distribution. In our calculation of the random
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Figure 3. Panel (a) shows the frequency distributions of Gaussian,

log-normal and Poisson noise (εWN) of identical standard deviation.

Panel (b) shows the frequency distributions of the flux calculated

from the unstructured white noise over a period of 5000 iterations.

The mean average flux for each noise distribution are marked with

dashed lines, which are all close to zero and consistently confirm

that no systematic bias is introduced to a flux measurement regard-

less of the type of noise used.

instrumental flux error, we have chosen to generate white

noise with a Gaussian distribution. This simple test clearly

demonstrates that our choice of noise distribution is actually

unimportant and that the same result will be obtained, re-

gardless of the distribution of the noise. Importantly, these

findings provide assurances that flux biases are not created

for eddy-covariance systems that induce a Poisson counting

noise.

These findings confirm the theoretical considerations of

Lenschow and Kristensen (1985), that, if the time lag is

known, the presence of uncorrelated noise induces a random

uncertainty in the flux but does not induce a systematic bias.

Nonetheless, this conclusion does not consider the interplay

of this noise with the determination of a time lag, which is

vital for sensors that are spatially separated from the vertical

wind velocity measurement, and its potential to introduce a

bias that is a function of the random error.

2.4 Effect of instrument noise on time-lag

determination

2.4.1 Signal-to-noise simulations

In order to investigate the influence of unstructured white

noise from analysers and the method of time-lag determina-

tion on calculated fluxes, a series of simulations were per-

formed using 31 days of sensible heat flux data (see the

Supplement). Time lags were determined using the three

main methods outlined above, MAX, AVG and PRES. For

the AVG method, a further ten scenarios were implemented,

whereby the running mean applied to the cross-covariance

was increased from 0.5 to 5 s in 0.5 s intervals. In all sce-

narios the time lag was sought within a 10 s window which

ranged from −5 to +5 s, with the true time lag obviously

being 0 s. For the AVG method, the running mean was ap-
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plied over a larger window to ensure the mean was prop-

erly centred for all data in the 10 s window. To accurately

control the analyser noise level, the SNR of the temperature

data was first quantified using the auto-covariance approach

outlined above. The signal was then deteriorated by adding

Gaussian white noise until a target signal-to-noise ratio was

achieved to within a 1 % tolerance. Sensible heat fluxes were

calculated using block averaging and a reference flux was

determined by calculating the flux with zero lag from the un-

manipulated temperature time series. This process was re-

peated 10 times for temperature data with a signal-to-noise

ratio (SNR) ranging between 200 and 0.05. In addition, the

above simulation was repeated three more times to assess the

impact of adopting disjunct sampling protocols of 2.5, 5 and

7.5 s as is common for measurements of VOC fluxes by PTR-

MS and aerosol fluxes by Q-AMS (quadrupole-AMS). The

overall bias between simulated time series and the reference

was determined by the gradient of the regression between 31

days of reference data versus those of the simulations.

2.4.2 Peak width simulation

The covariance between the genuine signals of c′(e.g .x′)

and w′ gives a peak with respect to time lag in the cross-

covariance function. Superimposed on top of this peak are

the contributions from the covariance of the error compo-

nents of c′ and w′, e.g. w′εc
′
ε. It stands to reason that the

broader the peak, the greater the probability of detecting an

extreme local maximum i.e. detecting a peak in w′εc
′
ε on

top of the genuine covariance, w′c′. Consequently, the peak

width of the genuine covariance becomes an important con-

sideration when assessing the potential bias induced through

the choice of time-lag determination. In order to assess the

sensitivity of flux measurements to the peak width, we ran a

second set of simulations on two identical artificially gener-

ated chirp signals (a signal that decreases in frequency over

time). This type of signal, generated within LabVIEW (Na-

tional Instruments, Austin, Texas, USA), was chosen as a

convenient means of producing time series to represent the

“genuine” signals of x′ and w′ which contained multiple fre-

quencies. In a series of 12 iterations, Gaussian white noise

(εWN) was added to x′ until a target signal-to-noise ratio was

met. In a second round of iterations the initial frequency of

the chirp signal was decreased from 0.075 to 0.005 Hz in

0.005 Hz intervals. As the frequency was reduced, the full

width at half the maximum (FWHM) of the covariance peak

increased, resulting in a matrix of fluxes calculated using

12 signal-to-noise ratios (100–0.05) vs. 15 covariance peak

widths, ranging between 0.9 and 12 s (FWHM). For each

point in the matrix, the error relative to the flux, calculated

from the unmodified chirp signals, was calculated.
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Figure 4. Signal-to-noise ratios of typical instruments used for the

flux measurement of various trace gases and aerosols. Analysers

include a sonic anemometer (temperature) and PTR-MS (isoprene,

methanol and acetone) operated above a mixed oak forest at a height

of 32 m and above a city (benzene). Particle number concentrations

were measured by a CPC and UHSAS (single size bin) above a Dou-

glas fir forest and N2O measurements were made above a grassland

field in 2003 using a first-generation tuneable diode laser.

2.5 Real world data

Simulating the effects of different time-lag determination

methods and the effects of SNR is a useful exercise, but it is

important to verify that these are representative of real world

data. We assessed the performance of each lag method on

example data from a variety of analysers operated in field

experiments with varying levels of signal-to-noise, bearing

in mind that the SNR for a given application will depend

on concentrations and instrument operation. The analysers

included an ultrasonic anemometer (Gill HS-50), a conden-

sation particle counter (CPC, TSI Model 3776), an ultra-

high-sensitivity aerosol spectrometer (UHSAS, PMS, Boul-

der, USA), a tuneable diode laser (TDL, Aerodyne Research

Inc.) as well as disjunct data from a proton transfer reac-

tion mass spectrometer (PTR-MS; Ionicon, Innsbruck, Aus-

tria). Figure 4 shows the frequency distribution of the SNR

of 30 min averaging periods for each of the analysers.

A detailed description of each of the data sets used is sup-

plied in the Supplement.

3 Results and discussion

3.1 Calculation of random flux errors

The procedure for calculating random errors using the auto-

covariance approach was applied to EC fluxes of sensible

heat (A) and DEC fluxes of isoprene (B) and acetone (C),

and the results are shown in Fig. 5. The error bars denote the

total random error obtained from the cross-covariance func-

tion (e.g. RERMSE applied to fw′c′), and the central panels

show how that error is divided between the random instru-
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ment error (REnoise) and natural variability of turbulence and

the (genuine) scalar concentrations (REvar). For the fluxes

of sensible heat, the random instrumental error is very low,

reflecting the excellent SNR of the sonic anemometer. In

contrast, the instrumental error for fluxes of acetone is very

large, likely due to the very low atmospheric concentrations

of acetone. For isoprene, a clear diurnal cycle is visible

which shows the relative contribution of the instrument er-

ror is largest at night when the isoprene signal is lowest and

the signal-to-noise ratio is low. During the daytime, isoprene

concentrations increase, improving the SNR of the analyser

which sees the error due to natural variability of the (genuine)

atmospheric concentration become the dominant source of

uncertainty in the flux measurement. Overall, absolute errors

are larger during the day, when turbulence is larger.

The lower panels show scatter plots of the random instru-

ment error calculated using the numerically calculated Gaus-

sian white noise flux versus the analytical approximation of

Mauder et al. (2013; Eq. 5). The two methods give consistent

results to within a few percent for both eddy-covariance and

disjunct eddy-covariance data sets. Therefore, implementa-

tion of either method can enable operators to estimate the

minimum detectable flux for their analyser under a given tur-

bulence regime.

3.2 Bias effects of different time-lag determination

methods

3.2.1 Dependence on signal-to-noise ratio

The simulations applied to sensible heat flux data reveal a

distinct relationship between the signal-to-noise ratio of the

raw temperature data and the relative flux bias for both the

MAX and AVG lag determination methods. Figure 6a shows

the results for 10 Hz eddy-covariance data. It is immediately

apparent that methods that systematically search for a max-

imum (red trace) induce an average positive bias (towards

more extreme emission or deposition) to the reported flux

which increases linearly as the analyser signal deteriorates.

For this data set, the relative bias can be as much as 18 %.

Adopting the AVG method can significantly reduce this er-

ror provided the applied running mean is of a suitable length.

However, selection of an inappropriate running mean may

allow the bias to persist and can also become negative when

overly long. The reason for the negative result lies in the fact

that the shape of the peak in the covariance spectrum tends

to be skewed, while the running average of the AVG peak fit

is symmetrical. However, theory cannot currently explain the

skewness which is therefore difficult to predict. By contrast,

the use of a prescribed time lag (for the anemometer tem-

perature data, the time lag is known to be zero), uncertainty

increases as the signal is deteriorated more and more, but to

a smaller degree, and its sign is random.

Figure 6b and c show the same set of simulations for fluxes

calculated using the disjunct eddy-covariance method using

sampling intervals of 2.5 s (panel b), 5 s (see Supplement)

and 7.5 s (panel c), respectively. It is well understood that

adopting a disjunct sampling approach reduces the statistical

sample size and thus increases the random error (Lenschow

et al., 1994; Rinne and Ammann, 2012). However, it is fre-

quently assumed that the increased random error does not

translate to a systematic bias in the measured fluxes, but our

simulations show this not to be the case. The poor sampling

statistics and high instrument noise combined with the MAX

method for time-lag identification can potentially lead to 100

or even 200 % overestimation in the mean flux.

The method used to determine the time lag is a key fac-

tor in accurately resolving the flux as already demonstrated

with the 10 Hz eddy-covariance data. Additional random un-

certainty incurred from disjunct sampling amplifies the bias

at signal-to-noise ratios less than 100, and in this instance re-

sulting in relative errors of about 300 % at SNR= 0.01 where

1t is set to 7.5 s. Importantly, this offset appears avoidable if

a prescribed time lag is used. When using a prescribed time

lag, individual flux measurements are biased either high or

low compared with the standard eddy-covariance approach

that uses a larger number of data points, but when analysed

collectively, the net error is close to zero. This implies that

where the signal-to-noise ratio is very high it may be neces-

sary to average over more data to reduce the relative random

error and thus ensure no systematic bias is introduced.

These findings come with the caveat that in these simula-

tions the prescribed time lag was a known quantity. When ap-

plied to real world data the adopted time lag must be a well-

defined parameter that does not drift significantly over time.

Failure to meet this requirement would undoubtedly result

in a systematic underestimation of the flux, the magnitude of

which would become a function of the cross-covariance peak

width. This is discussed further in Sect. 3.2.2.

Of equal importance is the magnitude of the expected flux.

Fluxes may be large even if the scalar mixing ratios are very

noisy and thus the relative error is dependent on both the

signal-to-noise ratio and the magnitude of the flux. Thus, al-

though Fig. 6 describes the behaviour of the bias, the exact

values depend on the magnitude of the fluxes and also the

structure of the underlying turbulence data. However, these

simulations do serve to highlight those aspects that make flux

data more vulnerable to systematic errors.

3.2.2 Influence of peak width

Figure 7 shows the results of the peak width simulations on

two artificially generated, multi-frequency signals. As well

as reiterating the increase in the relative error associated with

the analyser signal-to-noise ratio, this plot serves to demon-

strate that the FWHM of the covariance peak is an equally

important parameter. Broader covariance peaks, reflecting

slower turbulence/larger eddies, result in a higher probability

of an extreme maximum (i.e. the true cross-covariance be-

tween w′ and c′ plus random noise) being chosen and there-
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Figure 5. Sensible heat (a), isoprene (b) and acetone (c) fluxes and accompanying errors. Upper panels show the measured fluxes with error

bars denoting the total random error (RE). The central panels show how the total random error can be divided into errors associated with

instrument noise (red, REnoise) and the variability in turbulence at the genuine atmospheric concentration (blue, REvar). The lower panels

show scatter plots of the random instrument noise calculated using the analytical approximation of Mauder et al. (2013) and the numerical

method outlined in this study.
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Figure 6. Panel (a) shows the average relative bias of a half-hourly flux as a function of the analyser signal-to-noise ratio for 31 days of

10 Hz eddy-covariance sensible heat flux data acquired at a height of 32 m. The signal-to-noise ratio of the temperature data was deteriorated

to match predefined limits. The errors shown are relative to the sensible heat flux calculated using the unmodified temperature data and a

constant (0 s) time lag. Panels (b) and (c) show the same plot for disjunct eddy-covariance data with sampling intervals of 2.5 and 7.5 sm

respectively.

fore both the probability of overestimating the flux and the

magnitude of the bias are closely linked to the peak width.

The increase of mean eddy size with height means trace gas

and aerosol flux measurements at higher elevations above

ground are more at risk to systematic bias when the MAX

or AVG methods are employed. Conversely, the probabil-

ity of systematic underestimation of the flux through the

use of a prescribed time lag at these measurement heights

is somewhat reduced due to a greater tolerance afforded by

the increased peak width. Massmann (2000) and Hörtnagl

et al. (2010) recognised that further broadening of the co-

variance peak is possible through the attenuation of scalars

through long inlet lines and also through an increase in the

analyser integration time. Therefore, when working on tall

towers above forests or urban canopies, one should be aware

of the greater potential for systematic bias and should con-

sider the use of a prescribed time lag which may provide

the most representative (least biased) estimate of the flux. In
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relative bias and both the signal-to-noise ratio of the analyser and

the full width half maximum (FWHM) of the cross-covariance func-

tion peak for simulated eddy-covariance flux data calculated using

the MAX time-lag method.

general terms, when sampling at lower heights such as above

crops or grassland, the potential for bias is lessened, whereas

the likelihood of underestimating the flux through the use of

a prescribed time lag is increased.

When using a prescribed time lag, the attenuation of sam-

ples through long inlet lines, adsorption/desorption effects

and fluctuations in pump flow rate are not typically consid-

ered. More often, the prescribed value is chosen purely on the

basis of the inlet dimensions and a spot measurement of the

flow rate, or through a single test where a pulse in concentra-

tion and wind speed is created near the anemometer/inlet. In

these cases the potential for underestimating the flux is large.

It is therefore good practice to initially search for the time lag

using the AVG or MAX method and to plot the results as a

histogram or time series. This may confirm that the time lag

was indeed constant or it may reveal a clear peak or trend in

time lags which can be used to set the prescribed value. For

instruments that measure multiple species (e.g. mass spec-

trometers, optical spectrometers), it may be suitable to use

the average time lag of a species that shows a clear flux (and

thus clear time lags) as a proxy for the other compounds be-

ing measured. However, difference between gases in terms

of solubility and therefore adsorption/desorption characteris-

tics need to be considered. For example, it is well known that

for closed-path sensor measurements of CO2/H2O a longer

time lag is found for H2O than for CO2 (Ibrom et al., 2007).

While most appropriate for instruments that measure mul-

tiple species simultaneously, this approach can also be ap-

plied to instruments that measure species sequentially (e.g.

the quadrupole-based PTR-MS or AMS) as long as the scan

cycle is accounted for when assigning time lags.

3.3 Real world flux measurements with low SNR

3.3.1 Mirroring

When measuring trace gas and aerosol fluxes, the fast sam-

pling requirements of eddy covariance can result in low

SNRs. Working in this region can see the random flux error

equal or even exceed the magnitude of the flux, potentially

introducing a bias as discussed above. In addition to these

effects, where a maximum in the cross-covariance is still

sought, the derived flux may switch between emission and

deposition values of similar magnitude. This phenomenon,

which we term “mirroring”, is observed in the example flux

data shown in Fig. 8 which were obtained using TDL, UH-

SAS and PTR-MS instruments and occurs because the ran-

dom error in the flux is sufficiently large to span the zero line.

It may be tempting to remove the negative (positive) fluxes

on the basis of biophysical implausibility. For example, when

measuring aerosol fluxes where only deposition fluxes are

expected, it would be easy to dismiss positive fluxes as arte-

facts. Nevertheless, removal of these points is clearly incor-

rect and would introduce a positive bias to the reported aver-

age data (cf. Nemitz et al., 2002). Under such circumstances

the reported flux is predominately driven by fluctuations in

the amount of turbulence which evolves throughout the day

to give a diurnal cycle which might be mistaken for a flux.

Adopting the MAX or AVG methods exaggerates the mirror-

ing by systematically choosing the furthest point away from

zero which in the extreme case can result in the very unnat-

ural flux distributions shown in Fig. 9. Adopting the AVG

method with 5 s running mean limits this effect to a certain

extent, but a noticible dip around zero remains. Importantly,

the use of a prescribed time lag eliminates the splitting of

data from either side of zero to give a much more natural

looking flux distribution. For many compounds an assess-

ment of the frequency distribution of flux data evaluated with

the MAX method will highlight whether mirroring occurs

and whether this approach is therefore not applicable. Care

needs to be taken, however, when making this type of assess-

ment on CO2 fluxes, as the interplay between strong positive

fluxes during the night and negative fluxes during the day

could potentially result in a similar bimodal distribution. Fig-

ure 9 also nicely illustrates the flux bias introduced by using

time-lag methods that systematically search for a maximum

in the cross-covariance. In this instance the MAX method

gives a mean flux 2.3 times larger than the PRES method.

In addition to the calculated fluxes, the red time traces

in Fig. 8 show the Gaussian white noise flux (fw′ε′WN
), i.e.

the cross-covariance between an artificially generated white

noise signal that shares the same standard deviation as the

analyser noise. Here, both tracer and Gaussian noise fluxes

have been calculated using the MAX method. For acetone,

fw′ε′WN
is of a similar magnitude which indicates that in this

example, the fluxes shown are almost entirely due to coinci-

dental covariance between the vertical wind velocity and in-
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Figure 8. An example of “mirroring” in eddy-covariance data with low SNR processed with the MAX time-lag method. The data were

obtained by TDL (panel a), UHSAS (data from a single size bin – panel b) and PTR-MS (panels c and d) instruments during four separate

measurement campaigns. Red circles show a flux calculated from a cross-covariance between a time series of Gaussian white noise (εWN)

and the vertical wind velocity (w). The standard deviation of the white noise was set to match that of the instrument noise for each of the

analysers and the flux was determined by searching for a maximum in the cross-covariance.

strument noise (i.e. the random error in the flux is completely

dominated by instrumental noise). In contrast, the range of

benzene and particle number fluxes both at least partially ex-

ceed the Gaussian white noise flux and show a sustained pe-

riod of emission fluxes (e.g. 17 to 20 September) indicating

the presence of a “genuine” flux which is, for certain peri-

ods, distinguishable from the random sensor noise flux. The

remaining data would undoubtedly fall below conventional

limits of detection and the individual 30 min flux measure-

ments would ordinarily be rejected. Yet, the question remains

whether any useful information on the net exchange can still

be extracted from data such as these and is discussed in detail

in Sect. 3.3.2. Finally, the TDL N2O fluxes are consistently

larger than the Gaussian white noise flux despite an appar-

ent mirroring in the data. In this case it is likely that the in-

strument noise is comprised of both unstructured white noise

and structured noise, perhaps from optical fringes which our

method does not take into account. It should be noted, that

we tried here to identify data series which showed the effects

of limited SNR. All these instruments obviously can perform

better in situations where fluxes are larger or where instru-

mentation parameters are further optimised.

3.3.2 Limit of detection for individual and averaged

fluxes

For data where mirroring is observed, there are either no

fluxes present or insufficient statistics to resolve them. If

these data are to be utilised at a 30 min time resolution then

they are of little use and should be rejected. In some cases,

extending the averaging period may provide the additional

statistical information required for resolving the flux, but it

is also increasingly likely to violate the requirements for sta-

tionarity. Yet, in the literature, measured fluxes are seldom

utilised at the resolution with which they are collected, but

are more typically aggregated either to establish longer term

budgets, by time of day or by a meteorological parameter

such as light or temperature, in order to establish robust re-

lationships for model parameterisations. Where data are av-

eraged, presented and utilised in this way, the statistical sig-

nificance of the average can be evaluated against the LoD of

the ensemble average (LoD) calculated from the LoDs of the

N individual data points that entered the average as

LoD=
1

N

√√√√ N∑
i=1

LoD2. (10)
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Figure 9. Distributions for benzene fluxes calculated using the

MAX, AVG (5 s) and PRES time-lag methods. The benzene concen-

tration data had an average signal-to-noise ratio of 0.09 and ranged

between 0.007 and 0.24 at the 5th and 95th percentiles.

For this reason, data that fail averaging period specific LoD

criteria, such as the time series shown in Fig. 8, should not

be discounted out of hand as they may retain useful informa-

tion on the net exchange when averaged, but they need to be

reported together with an estimate of the random error. As

the random errors are typically calculated on the raw data,

any corrections applied to the calculated fluxes (e.g. low or

high frequency loss corrections) should also be applied to the

random error.

Figure 10a shows the averaged diurnal fluxes of the ace-

tone time series shown in Fig. 8c for 1, 7, 14 and 21 day pe-

riods (Acton et al., 2015). The shaded areas represent the av-

eraged LoDRMSE for the same period. Data falling within the

shaded area cannot be resolved by the measurement system,

but those points falling outside this area are statistically sig-

nificantly different from zero at the 95th percent confidence

interval. The fluxes were determined using both the MAX

and PRES time-lag methods, with the latter based on the av-

erage isoprene time lag (plus the duty cycle offset). We have

already demonstrated that using the MAX method highly bi-

ases the fluxes and consequently after 2 weeks of data are

averaged, many of the fluxes appear to exceed the LoD. In

contrast, those fluxes calculated with a prescribed time lag,

which limits the bias, fail to exceed the LoD even when aver-

aged over a 3 week period and would be rejected. This serves

as an important example of how the choice of time-lag deter-

mination can lead to the reporting of a flux which in essence

is not statistically different from zero.

Figure 10. (a) Averaged diurnal profiles of acetone flux data ob-

tained using a quadrupole PTR-MS. Increasing the number of av-

eraged data points does not bring the PRES flux above the LoD

(greyed area indicates the LoD at the 95th percentile), indicating no

detectable flux. By contrast, the MAX fluxes, which are highly bi-

ased, show some periods above the LoD which are an artefact of the

MAX time-lag determination method. (b) Averaged diurnal profiles

of benzene flux data obtained using a quadrupole PTR-MS. Increas-

ing the number of data points averaged from 14 to 56 is sufficient

to distinguish the flux calculated with a prescribed time lag from

the LoD (greyed area indicates the LoD at the 95th percentile) and

indicates a clear flux of benzene.

Figure 10b shows the same plot for the much longer time

series of benzene (Valach et al., 2015). In this case we ob-

serve how the averaged fluxes eventually exceed the LoD

as the number of samples are increased. With this in mind,

when targeting trace gas or aerosol fluxes with instrumenta-
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Figure 11. Benzene flux measurements calculated using a pre-

scribed time lag and averaged as a function of traffic density. Error

bars represent the ensemble LoD. In cases where the error bars in-

tersect zero (blue points), the flux cannot be considered significantly

different from zero.

tion limited in signal or where the expected fluxes are small,

it may be prudent to attempt to measure for longer to ensure

that statistically robust estimates on the net exchange are ob-

tained. The improvement of LoDs for ensemble data does

not only apply to temporal patterns. For example, Fig. 11

illustrates how benzene flux data can be averaged as a func-

tion of traffic density in order to parameterise emission rates

from vehicles. Provided that the 30 min LoDs are averaged

according to Eq. 10, flux data with limited SNR can be used

in numerous ways that should go beyond the reporting of av-

erage diurnal emission rates. In this example, the ensemble

LoD is shown as individual error bars and thus where those

bars intersect the zero line, the flux is not significantly differ-

ent from zero (e.g. the blue points). Rather than eliminating

these data from the fit shown in Fig. 11 which might intro-

duce a bias, our recommendation is to down weight these

points according to their relative uncertainties.

4 Conclusions and recommendations

In this study we have carefully examined several key fac-

tors affecting the analysis of flux data with high noise level.

Clearly, the effect of instrument noise on flux measurements

has been studied before. Here we have developed a technique

to quantify the uncertainty due to sensor white noise by first

quantifying the amount of noise and then calculating a flux

with this noise level. This numerical approach has been used

to validate the approximations of Mauder et al. (2013) and

shows consistent results when applied to both EC and DEC

data sets. Both these methods can be easily implemented into

eddy-covariance processing software and share the key ad-

vantage over the more traditional experimental approach of

Shurpali et al. (1993) that measurements do not need to be

interrupted for the assessment to take place. Nonetheless, it

is important to reiterate that both of these approaches are

not sensitive to the effects of structured noise, which cannot

be quantified using the auto-covariance method (e.g. Eq. 7)

upon which each of these approaches are based.

Most of the earlier analyses of random errors have been

carried out under the assumption that the time lag be-

tween wind and concentration measurement is known. To our

knowledge, the systematic bias introduced through the inter-

play between random sensor noise and the techniques used

to determine the time lag has so far not been studied very

systematically, although the problem has been highlighted in

general terms in several publications and textbooks. Taipale

et al. (2010) studied the effect of routines that are based on

maximising the absolute value of the cross-covariance for

disjunct data produced by PTR-MS and introduced the AVG

approach to reduce this effect. We show here that, in general,

the effectiveness of this approach depends on the length of

the running mean chosen and the shape of the peak in the

cross-covariance function.

Our work highlights the benefit of constraining the time

lag of the air sampling and quantifying it as precisely as

possible by external means when working with noisy sen-

sors. In practical terms, this might mean controlling the in-

let flow carefully and heating the inlet line to minimise ad-

sorption/desorption effects, or deriving the time lag from a

simultaneously measured compound with better SNR. Here

we compile a list of general recommendations for the col-

lection and processing of eddy-covariance data with limited

SNR.

1. Where possible, log anemometer and scalar data to a

single computer. This eliminates uncertainty in time

lags due to clock drift and should restrict time lags to

positive time shifts.

2. In-line flow meters should be used to monitor and record

fluctuations in pumping speeds.

3. Use pressure controllers to limit fluctuations in sample

flow rate (this may not always be possible when high

flow rates are required to maintain turbulent flow and

increases the required pumping capacity and therefore

power consumption).

4. For water-soluble trace gases, heating of the entire inlet

line should be considered to limit adsorption/desorption

effects. Care needs to be taken not to generate aerosol

evaporation artefacts for trace compounds that are dis-

tributed between the gas and aerosol phase according to

a temperature dependent equilibrium.
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5. Online monitoring of sample humidity may be neces-

sary to account for adsorption desorption effects.

6. Use of the MAX method to generate an initial histogram

or time series of time lags, followed by a second analy-

sis using the PRES approach with a thus informed pre-

defined time lag may be preferable to either estimating

the time lag based on sampling flow rates alone or us-

ing the MAX method for final processing. This is be-

cause time lags estimated from the sampling flow do

not consider the potential for a phase shift in the cross-

covariance due to either signal attenuation or limited re-

sponse of the instrumentation (Massman, 2000; Hört-

nagl et al., 2010).

7. When reporting processed fluxes, results should be re-

ported even if they are below the single-flux LoD, as

long as they fulfil other quality control criteria. How-

ever, each individual flux value should be reported with

its own quantification of the random uncertainty, so that

uncertainties can be combined when fluxes are aver-

aged.

We conclude that a significant number of fluxes (and derived

values such as emission factors) reported in the literature are

biased towards larger values (more distant from zero), be-

cause insufficient attention has been given to the way the

time lag was estimated. By contrast, we demonstrate here the

value of individual flux measurements, even if they individu-

ally fall below the LoD, for obtaining statistically significant

longer-term averages, as long as care has been taken during

data processing. In particular, fluxes below the LoD for the

individual flux measurement should not be evaluated with the

MAX method.

The Supplement related to this article is available online

at doi:10.5194/amt-8-4197-2015-supplement.
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