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Security of supply of a number of rawmaterials is of concern for the European Union; foremost among these are
the rare earth elements (REE), which are used in a range of modern technologies. A number of research projects,
including the EURARE and ASTER projects, have been funded in Europe to investigate various steps along the REE
supply chain. This paper addresses the initial part of that supply chain, namely the potential geological resources
of the REE in Europe. Although the REE are not currently mined in Europe, potential resources are known to be
widespread, and many are being explored. The most important European resources are associated with alkaline
igneous rocks and carbonatites, although REE deposits are also known from a range of other settings. Within
Europe, a number of REE metallogenetic belts can be identified on the basis of age, tectonic setting, lithological
association and known REE enrichments. This paper reviews those metallogenetic belts and sets them in their
geodynamic context. The most well-known of the REE belts are of Precambrian to Palaeozoic age and occur in
Greenland and the Fennoscandian Shield. Of particular importance for their REE potential are theGardar Province
of SWGreenland, the Svecofennian Belt and subsequentMesoproterozoic rifts in Sweden, and the carbonatites of
the Central Iapetus Magmatic Province. However, several zones with significant potential for REE deposits are
also identified in central, southern and eastern Europe, including examples in the Bohemian Massif, the Iberian
Massif, and the Carpathians.
© 2015 British Geological Survey, NERC. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The rare earth elements (REE) are a group of 17 chemically similar
elements (the lanthanides, scandium (Sc), and yttrium (Y)). Here we
focus on the lanthanides and Y, which behave in similar ways in most
environments in the Earth's crust. They are typically divided into light
rare earth elements (LREE) and heavy rare earth elements (HREE).
LREE and HREE are variably defined: we follow the EU definition of
the LREE (EC, 2014) as lanthanum to samarium, and the HREE as euro-
pium to lutetium plus yttrium. Some members of this group are vital
components in much modern technology, from neodymium (Nd), dys-
prosium (Dy), and praseodymium (Pr) for high-strength magnets used
inwind turbines, hard disk drives and engines in electric cars, to europi-
um (Eu), yttrium (Y), terbium(Tb), lanthanum (La), and cerium (Ce) for
phosphor-based fluorescent lighting, smartphone screens and batteries
(Guyonnet et al., 2015). Demand for these elements is thought to be
growing at a rate of approximately 5–10% per year (Hatch, 2012;
Massari and Ruberti, 2013) although rapid technological develop-
ment means that accurate prediction is difficult. Recycling of scrap
consumer electronics and technical industrial components will in-
creasingly contribute to REE supply in the future (Binnemans et al.,
2013), but is unlikely to be able to meet increasing demand (Du
and Graedel, 2011), and thus mining of natural deposits is expected
to continue as the major source for REE. At the time of writing, al-
most 90% of all REE entering the global market are produced in
China (Wübbeke, 2013), and the EU has to import virtually all its
REE, either as raw materials or as products such as batteries and
magnets (Wall, 2014; Guyonnet et al., 2015). For this reason, the
European Commission has recently identified the REE, particularly
the HREE, as critical materials with a significant risk to supply (EC,
2014). Detailed recent research highlights Nd, Eu, Dy, Tb, and Y as
the most critical of all of the REE, because of their use in the impor-
tant magnet and phosphor markets (Du and Graedel, 2013), al-
though the criticality of Eu, Tb, and Y is likely to change as LEDs
increasingly replace phosphors (Guyonnet et al., 2015).

This paper is a product of the EURARE project, which is funded by the
European Commission under the Seventh Framework programme to set
the basis for development of a European REE industry; and the ASTER
project granted by the French national research agency (ANR) to under-
stand REE flows and stocks in Europe. The EURARE project aims to as-
sess the potential for REE resources in Europe, and to develop new,
efficient and sustainable methods for processing of potential European
REE ores. Such rawmaterial processing is complex, comprising a bene-
ficiation step to concentrate REEminerals from the ore, extraction of the
rare earth oxides from their hostminerals to produce amixed rare earth
concentrate, and subsequent metallurgical separation into individual
rare earth metals. Once a rare earth deposit is identified, its geology
and mineralogy must be fully characterised as beneficiation methods
have to be tailor-made for each deposit, and are dependent on proper-
ties such as mineralogy, textures, and grain size of the ore (Jordens
et al., 2013). The first step for the EURARE and ASTER projects has
thus been a review of all potential European REE resources and an as-
sessment ofwhich REE deposits deserve further research and character-
isation. This review paper presents an overview of themain natural REE
occurrences and prospects in Europe, and identifies the areaswithmost
potential for future exploration and development, on the basis of their
geological suitability. ‘Europe’ in this context is considered to include
EU countries and candidate countries, plus Norway, Switzerland, and
Greenland. Russia and Ukraine are not included in this work.

Although the majority of the rare earth elements were originally
discovered in European samples, chiefly from the Bastnäs and Ytterby
mines in Sweden (Gadolin, 1794; Hisinger and Berzelius, 1804;
Williams-Jones et al., 2012) there is no recent history of REE mining in
Europe. Exploration over the last decade has identified some major
REE deposits, particularly in Greenland and the Fennoscandian shield,
but it is likely that more extensive primary resources of the REE remain
to be identified.

The partners in the EURARE and ASTER projects (including the geo-
logical surveys of Denmark and Greenland, Sweden, Norway, Finland,
France, Greece and the United Kingdom) have critically reviewed both
published and unpublished data to develop the overview provided
here. Due to the limited extent of REE exploration, only a small number
of Europe's deposits have been investigated to the stage of a full REE re-
source estimate that is compliant with the JORC or NI-43–101 codes of
practise for reporting ofmineral resources and reserves.Where such re-
source estimates are available, they are included in this overview. How-
ever, our understanding of Europe's potential is still largely based on
knowledge of the most suitable geological environments for enrich-
ment of the REE in the crust, and on data derived fromacademic studies.
It is very likely that someof themetallogenetic belts described here con-
tain other REE-enriched localities that have not yet been described.

Where individual localities are recognised as being of interest, they
are classified by the EURARE project as an REE ‘resource’, ‘deposit’,
‘occurrence’ or ‘by-product’ (Table 1). Resources have a formal resource
estimate that has been published at the time of writing, although it
should be noted that these vary widely in grade and tonnage across
Europe. Deposits have typically been the subject of some previous ex-
ploration, and on the basis of the available evidence it is considered
that an economic resourcemay be identified by future exploration. Indi-
vidual REE occurrences have REE enrichments above normal crustal
abundances, but are typically very low-grade or small in size and there-
fore unlikely to be economic; however, they are of significant scientific
interest. By-product localities are those where the REE could be
economic as by-products of the extraction of other minerals in large
volumes. These classifications are based on review of the evidence avail-
able to the authors at the time of writing, and may be subject to change
on the basis of new or unpublished evidence.

2. Overviewof the geological setting of REEmineralisation in Europe

Despite their name, the rare earth elements are not all particularly
rare in the earth's crust; the name reflects the difficulty of separating
them into the native metals, and the fact that some members of the
group are indeed rare (Chakhmouradian and Wall, 2012). They occur
in small amounts in all parts of the Earth's crust in a wide range of tec-
tonic settings, and are widely used for petrogenetic studies. The total
concentration of REE in average bulk continental crust is c. 125 ppm;
(Rudnick and Gao, 2004). Development of a potentially economic rare
earth element resource requires that they are concentrated significantly
above these background levels, typically to percentage concentrations
of total REE. Enrichment of the REEmay occur through primary process-
es such asmagmatic processes and hydrothermal fluidmobilisation and
precipitation, or through secondary processes that move REE minerals
from where they originally formed, such as sedimentary concentration



Table 1
Significant localities or groups of localities described in this paper, classified as resource (those with a formal REE resource estimate compliant with the JORC or NI-43–101 reporting
codes); deposit (those for which an economic resource is likely to be present and may be identified by future exploration); occurrence (those in which the REE are enriched but which
are unlikely to be economic); and by-product (those in which the REE could be economic as a by-product of another commodity).

Locality Country Type Deposit classification

Aksu Diamas Turkey Placer Resource
Alnö Sweden Carbonatite Occurrence
Arran, Skye, Mourne Mountains UK Granite & pegmatite Occurrence
Biggejavri Norway Hydrothermal Occurrence
Delitzsch (Storkwitz) Germany Carbonatite Resource
Ditrãu Romania Alkaline igneous rock Deposit
Fen Norway Carbonatite Resource
Galiñeiro Spain Alkaline igneous rock Deposit
Gardiner Complex Greenland Alkaline igneous rock Occurrence
Grønnedal-Ika Greenland Carbonatite Occurrence
Grängesberg-Blötberget Sweden Iron oxide–apatite By-product (iron ore)
Halpanen Finland Carbonatite Occurrence
Høgtuva Norway Hydrothermal Occurrence
Iivaara Finland Alkaline igneous rock Occurrence
Ivigtut Greenland Alkaline igneous rock Occurrence
Jämtland Sweden Alkaline igneous rock Occurrence
Kaiserstuhl Germany Carbonatite Occurrence
Katajakangas Finland Alkaline igneous rock Deposit
Kiruna-Malmberget Sweden Iron oxide–apatite By-product (iron ore)
Kizilcaören Turkey Hydrothermal Deposit
Kodal Norway Alkaline igneous rock By-product (apatite)
Korsnäs Finland Carbonatite Deposit
Kringlerne Greenland Alkaline igneous rock Resource
Krušné hory Czech Republic Alkaline igneous rock Occurrence
Kvanefjeld Greenland Alkaline igneous rock Resource
Lamujärvi Finland Alkaline igneous rock Occurrence
Loch Loyal UK Alkaline igneous rock Occurrence
Mediterranean bauxites Italy, Greece, Turkey Bauxite By-product (aluminium)
Milne Land Greenland Placer Occurrence
Misværdal Norway Alkaline igneous rock Deposit
Motzfeldt Greenland Alkaline igneous rock Resource
Naantali Finland Carbonatite Occurrence
Nea Peramos, Strymonikos Gulf Greece Placer Occurrence
Nettuno Italy Placer Occurrence
Norberg Sweden Hydrothermal Deposit
Norra Kärr Sweden Alkaline igneous rock Resource
North Qôroq Greenland Alkaline igneous rock Deposit
Olserum Sweden Hydrothermal Resource
Palaeozoic nodular monazites UK, Belgium, France, Portugal Diagenetic Occurrence
Petäiskoski/Juuka Finland Carbonatite Occurrence
Qaqarssuk Greenland Carbonatite Deposit
Riddarhyttan-Bastnäs Sweden Hydrothermal Deposit
Sæteråsen Norway Alkaline igneous rock Occurrence
San Venanzo, Polino, Cupaello and Monte Vulture Italy Carbonatite Occurrence
Sarfartoq Greenland Carbonatite Resource
Siilinjärvi Finland Carbonatite By-product (apatite)
Skjoldungen Greenland Alkaline igneous rock Occurrence
Sofular Turkey Carbonatite Deposit
Sokli Finland Carbonatite Deposit
Svecofennian pegmatites Sweden, Finland Granite & pegmatite Occurrence
Sveconorwegian pegmatites Norway, Sweden Granite & pegmatite Occurrence
Tajno Poland Carbonatite Occurrence
Tikiusaaq Greenland Carbonatite Deposit
Třebíč Czech Republic Alkaline igneous rock Occurrence
Tupertalik Greenland Carbonatite Occurrence
Tysfjord Norway Alkaline igneous rock Occurrence
Västervik Sweden Placer Occurrence
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and weathering. Natural rare earth element deposits and occurrences
may thus be divided into primary (high-temperature) and secondary
(low-temperature) deposit types.

The most important primary deposits with high grade and ton-
nage are typically associated with alkaline–peralkaline igneous
rocks and carbonatites formed in extensional intracontinental rifts
(Chakhmouradian and Zaitsev, 2012;Wall, 2014). Primary REE concen-
trations can also be formed in a range of other geological settings, often
associatedwith granites and pegmatites orwith hydrothermal systems,
and more rarely in metamorphic or diagenetic settings. Erosion or
weathering of any of these primary enrichment types may produce
secondary deposits such as placers and ion adsorption deposits (Wall,
2014). In a global context, the bulk of the world's REE are currently
derived from carbonatites, notably Bayan Obo in China; these deposits
are typically high-grade, but LREE-dominated (Chakhmouradian and
Wall, 2012; Wall, 2014). REE deposits associated with alkaline igneous
rocks are typically lower grade but with larger tonnage and a higher
content of the most critical HREE (Wall, 2014).

Formation of REE deposits in alkaline to peralkaline igneous rocks
and carbonatites is typically due to magmatic and/or hydrothermal
processes (Wall and Mariano, 1996; Kogarko et al., 2002; Salvi and
Williams-Jones, 2006; Schilling et al., 2011; Sheard et al., 2012;
McCreath et al., 2012). Alkaline silicate and carbonatite magmatism
are associated with small degrees of partial melting of enriched mantle,



Table 2
Table of all the main REE-bearing minerals and mineral groups found in the European deposits and occurrences described here. Note that many of these groups contain a range of indi-
vidual mineral species (Wall, 2014), for example the monazite group includes monazite-(La), monazite-(Ce), monazite-(Nd), and monazite-(Sm). For simplicity, these variations are
encompassed as REE (LREE/HREE) in the formulae given here. Mineral groups are marked with an asterisk.

REE-bearing
mineral or mineral
group*

Formula Typical deposit types Examples from this study

Aeschynite* REE(Ti,Nb)2(O,OH)6 Hydrothermal deposits Galiñeiro, Spain; Ditrãu, Romania
Allanite* (REE,Ca)2(Al,Fe)3(SiO4) (Si2O7)O(OH) Miaskitic igneous rocks Loch Loyal, Scotland; Misværdal,

Norway; Třebíč, Czech Republic
Ancylite* LREE(Sr, Ca)(CO3)2(OH).H2O Carbonatite Sokli, Finland; Qaqarssuk, Greenland
Apatite* Ca5(PO4)3(F,Cl,OH) Carbonatite; iron oxide–apatite deposits Siilinjärvi, Finland; Kiruna, Sweden;

Sokli, Finland; Kodal, Norway
Bastnäsite* REE(CO3)F Carbonatite; hydrothermal deposits Bastnäs, Sweden; Fen, Norway; Sokli, Finland;
Britholite* (REE,Ca)5(SiO4)3(OH,F) Hydrothermal deposits Norberg, Sweden; Korsnäs, Finland
Brockite (Ca,Th,Ce)(PO4).H2O Hydrothermal deposits Kizilcaören, Turkey
Burbankite (Na,Ca)3(Sr,Ba,LREE)3(CO3)5 Carbonatite Qaqarssuk, Greenland
Cerite* (LREE,Ca)9(Mg,Ca,Fe3+) (SiO4)3(SiO3OH)4(OH)3 Hydrothermal deposits Bastnäs, Sweden
Dollaseite* CaLREE(Mg2Al)[Si2O7][SiO4]F(OH) Hydrothermal deposits Norberg, Sweden
Eudialyte* Na15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2 Agpaitic igneous rocks Norra Kärr, Sweden; Kringlerne, Greenland
Euxenite* (REE,Ca,Th,U)(Nb,Ta,Ti)2O6 Miaskitic igneous rocks Třebíč, Czech Republic
Fergusonite* REENbO4 Miaskitic igneous rocks Ditrãu, Romania
Fluocerite* REEF3 Hydrothermal deposits Kizilcaören, Turkey
Gadolinite* REE2Fe2+Be2O2(SiO4)2 Hydrothermal deposits; Miaskitic igneous rocks Norberg, Sweden; Mourne Mts, N Ireland
Monazite* REE(PO4) Carbonatite; Placers; Hydrothermal deposits;

Miaskitic igneous rocks
Olserum, Sweden; Fen, Norway; Central
Wales; Ditrãu, Romania

Parisite CaLREE2(CO3)3F2 Carbonatite Fen, Norway
Perrierite* REE4(Mg, Fe,Ti)4O8(Si2O7)2 Placers Nettuno, Italy
Pyrochlore* (Na,Ca)2Nb2O6(OH,F) Carbonatite Sokli, Finland; Motzfeldt, Greenland;

Delitzsch, Germany
Steenstrupine Na14REE6Mn2Fe3+2Zr (PO4)7Si12O36(OH)2·3H2O Agpaitic igneous rocks Kvanefjeld, Greenland
Strontianite Sr(CO)3 Carbonatite Siilinjärvi, Finland; Sokli, Finland
Synchysite* CaREE(CO3)2F Carbonatite; Hydrothermal deposits Sarfartoq, Greenland
Törnebohmite* REE2Al(SiO4)2(OH) Hydrothermal deposits Bastnäs, Sweden
Västmanlandite Ce3CaMg2Al2Si5O19(OH)2F Hydrothermal deposits Norberg, Sweden
Xenotime* (Y,HREE)PO4 Hydrothermal deposits;

Miaskitic igneous rocks; Placers
Olserum, Sweden; Galiñeiro, Spain;
Ditrãu, Romania

Zircon ZrSiO4 Miaskitic igneous rocks Katajakangas, Finland
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potentially derived either from metasomatised lithospheric mantle or
from mantle plumes (Fig. 1), or from interaction between the two
(Downes et al., 2005; Wilson and Downes, 2006; Ernst and Bell,
2010). Further evolution of these small-degree partial melts in a near-
Fig. 1. Schematic diagram to illustrate the main environments of formation of a
closed system is typically needed to produce highly evolved igneous
rocks enriched in REE minerals. Notably, many important REE deposits
are associated with extremely peralkaline igneous rocks containing
complexNa–K–Ca–(Fe, Zr, Ti) silicates such as eudialyte-groupminerals
lkaline igneous rocks and carbonatites, major hosts of many REE deposits.
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and aenigmatite that are commonly also enriched in the REE; such rocks
are termed ‘agpaitic’ (Sørensen, 1997;Marks et al., 2011). In contrast, in
most other felsic igneous rocks the REE are hosted in accessoryminerals
such as zircon, allanite, apatite, and monazite, and these rocks are
termed ‘miaskitic’. Key REE minerals within carbonatites include
bastnäsite, parisite, synchysite, monazite, pyrochlore and many others
(Wall and Mariano, 1996). Major REE-bearing minerals found in
European deposits are listed in Table 2.

The main REE metallogenetic provinces in Europe (Fig. 2) are those
areas where extensional tectonics and introduction of enriched mantle
melts have produced alkaline silicate and carbonatite magmatism.
Major REE deposits are currently known where the plutonic complexes
at depth in continental rift zones have been exposed by erosion
(Goodenough et al., 2014). The most notable of these are the
Mesoproterozoic Gardar Province of south-west Greenland (Upton
et al., 2003), and the Protogine Zone, a major, multiply reactivated, in
part extensional structure in southern Sweden (Åberg, 1988;
Andréasson and Rodhe, 1990). Both of these zones currently host ad-
vanced REE exploration projects. Several intracontinental rift-related
provinces of Palaeozoic age occur in Europe, including the Devonian
Kola Alkaline Province, which extends from Russia into Finland, and
the Permo-Carboniferous Oslo Rift in Norway. The Kola Alkaline
Province contains some large peralkaline igneous complexes (Downes
et al., 2005) that represent major Russian REE resources, but these lie
outside the geographical scope of this paper.

Some episodes of European rifting have progressed to continental
break-up and development of a new ocean, notably the formation of
the Iapetus Ocean during the Neoproterozoic (Svenningsen, 2001),
Fig. 2.Overviewmap of Europe showing the approximate extent of the key REEmetallogenetic
distinct belt and are not shown on other maps are indicated by symbols.
and theopeningof theNorth Atlantic from the Jurassic into the Cenozoic
(Saunders et al., 2013). Such rift phases are typically associated with
large volumes of magmatism, but central complexes with alkaline com-
positions are rare, although isolated carbonatite bodies and dyke
swarms are known.

Localised rifting and alkaline magmatism have developed periodi-
cally across much of central and southern Europe from the Triassic
into the Cenozoic, both to the north of the Alpine collision zone and
around the margins of the Mediterranean (Wilson and Downes,
2006). In these areas, alkaline volcanic rocks are typically exposed at
the surface; the central complexes thatmight contain significant prima-
ry REE resources are still likely to be hundreds of metres to kilometres
below the surface. In general, the major known potential for REE re-
sources around the Mediterranean is dominated by secondary deposits
such as bauxites.

Potential REE deposits can also be associated with magmatic and hy-
drothermal activity in other tectonic settings away from intracontinental
rift zones. The most notable of these occur in the Palaeoproterozoic
Bergslagen province in Sweden, including the Bastnäs deposits where
the LREEs were first discovered. These deposits are considered to have
formed through reaction of carbonates with fluids derived from
subduction-related magmas (Holtstam et al., 2014; Jonsson et al.,
2014). There are a number of other areas in Europe where alkaline
magmatism has developed towards the end of an orogenic cycle, such
as in the Caledonides, and these areas may also contain localised REE
enrichments (Walters et al., 2013).

No significant secondary REE deposits with high tonnage and high
grade are currently known in Europe, but at a number of localities
belts described in this paper. Notable REE deposits and occurrences that do not fall within a
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erosion and weathering processes have formed low-grade REE concen-
trations that have economic potential because of their relative ease of
processing. These include heavy mineral placers, particularly along the
Mediterranean coastlines, and bauxites in many parts of southern
Europe. In China, and other parts of the world that have experienced
tropical weathering, the REE are known to be enriched in weathered
ion adsorption clay deposits (Kynicky et al., 2012). However, studies
of weathered granitic rocks in Europe have shown no evidence of REE
upgrading during the weathering process (Höhn et al., 2014).

3. REE metallogenetic belts in Europe

The EURARE project has identified almost 100 distinct localities of
interest for the REE across Europe. These are summarised in Table 1
and described in more detail below. Some of these are recognised min-
eral deposits that have been actively explored; the most well known
have estimates of the contained REE resources. Other localities,
described here as occurrences, are noteworthy due to either high REE
contents or the presence of abundant REE minerals. These occurrences
may be potential REE deposits, but further research and exploration
are needed. It is likely that there aremanymore REE occurrences across
Europe than are described here, but there is very little information
Fig. 3. Simplified geological map of Greenland showing the main R
available. Here we group these deposits and occurrences into key
metallogenetic provinces for the REE within Europe on the basis of
age, tectonic setting, and genetic type (Fig. 2), and summarise their
geodynamic context. Brief mention is also made of groups of deposits
such as bauxites, where the REEs are only slightly enriched but there
is potential for them to be produced as a by-product of another
commodity.

3.1. Archaean to early Palaeoproterozoic alkaline rocks and carbonatites

No significant REE deposits of Archaean to early Palaeoproterozoic
age are known in Europe, and indeed there are few alkaline igneous
rocks of this age. Rare examples of alkaline magmatism include the c.
3000 Ma Tupertalik carbonatite in west Greenland (Fig. 3) (Bizzarro
et al., 2002); the c. 2700 Ma Skjoldungen Alkaline Igneous Province
of SE Greenland (Fig. 3), which includes nepheline syenites and
carbonatites (Nutman and Rosing, 1994; Blichert-Toft et al., 1995); the
c. 2600 Ma Siilinjärvi carbonatite in Finland (Fig. 4) (Tichomirowa
et al., 2006; Rukhlov and Bell, 2010); and the c. 2050 Ma Katajakangas
alkaline gneiss in Finland (Fig. 4) (Sarapää et al., 2013). Apatite is
currently mined at Siilinjärvi as a phosphate resource. The main rock
types at Siilinjärvi are enriched in REE (Hornig-Kjarsgaard, 1998), and
EE deposits and occurrences. Base geological map from GEUS.



Fig. 4. Simplified geological map of the Scandinavian countries showing the main REE deposits and occurrences. Base geological map after Eilu (2012).
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REE-hosting minerals in the carbonatite and associated “glimmerite”
includemonazite-(Ce), pyrochlore-groupminerals, LREE-bearing stron-
tianite and REE-bearing Ti–Nb-phases (Al-Ani, 2013). The Katajakangas
gneisses containmineralised layers rich in zircon, bastnäsite, columbite,
and thorite, and an informal resource estimate suggests 0.46 million
tonnes (Mt) grading 2.4% total rare earth oxides (TREO) (Sarapää
et al., 2013).

3.2. Palaeoproterozoic: the Svecofennian belt

Magmatic and hydrothermal REE deposits are associatedwithmany
parts of the Svecofennian orogenic belt, which represents the earliest of
Europe's distinct REE metallogenetic provinces. This belt formed during
accretion and continental collision leading to amalgamation of the
supercontinent Columbia (Nuna) in the Palaeoproterozoic (2000–
1700Ma) (Korja et al., 2006; Roberts, 2013). During this period, subduc-
tion around themargins of the growing supercontinent drove extensive
igneous activity and also the generation of significant base and precious
metal deposits. The tectonomagmatic belts generated in Europe at this
time include the Svecofennian and Kola-Karelian of Fennoscandia, the
Laxfordian in the Lewisian Gneiss Complex of the UK, and the Ketilidian
and Nagssugtoqidian belts in Greenland (Zhao et al., 2002; Lahtinen
et al., 2008), but important REE deposits and occurrences are only
known from the Svecofennian (Fig. 2). In this belt, calc-alkaline
magmatism was followed by widespread late-orogenic alkaline
magmatism in the waning stages of the Svecofennian orogen (also
termed the Svecokarelian orogen). The early stages of magmatism
were associated with the development of significant hydrothermal
activity.

Historically, the most important REE occurrences in Sweden were
the Bastnäs-type deposits (Geijer, 1961) and the Ytterby pegmatite in
the Bergslagen region (Fig. 4), which provided the samples from
which many of the REE were originally isolated (Weeks, 1932;
Williams-Jones et al., 2012). The Bastnäs-type deposits occur along a
narrow zone that stretches for about 100 km NE–SW (the ‘REE-line’,
Fig. 5; Jonsson et al. (2014)), andwere likely thefirst hard-rock deposits
in the world to bemined explicitly for REE extraction. They are situated
within hydrothermally altered Palaeoproterozoic (1910–1880 Ma)
felsic metavolcanics andmetasedimentary rocks that formed in a conti-
nental back-arc setting (Allen et al., 1996; Holtstam et al., 2014). These
REE deposits can be subdivided into two types: one enriched in LREE
minerals, in the Riddarhyttan-Bastnäs area, and the other also showing
enrichment in HREE+Yminerals, in theNorberg district (Holtstamand
Andersson, 2007). Both types are iron-rich, skarn-type REE deposits



Fig. 5. Simplified geological map of Bergslagen, Sweden, showing the location of the main areas of REE deposits and occurrences. Modified after Jonsson et al. (2014).
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associatedwithmetasomatisedmarble horizons, and formed duringhy-
drothermal activity associated with felsic magmatism (Holtstam et al.,
2014). Historical mining in the area has typically focused on iron ore,
with minor production of REE. The LREE subtype wasmined at Bastnäs,
where the key ore minerals included cerite-(Ce), ferriallanite-(Ce),
törnebohmite-(Ce) and bastnäsite-(Ce), occurring in an amphibole-
rich skarn associated with magnetite, haematite, and sulphides
(Holtstam et al., 2014; Jonsson et al., 2014). The HREE-enriched subtype
in the Norberg district is more highly enriched inMg and F, and the REE
minerals include fluorbritholite-(Ce), västmanlandite-(Ce), dollaseite-
(Ce), gadolinite-(Ce) and gadolinite-(Y) (Holtstam et al., 2014;
Jonsson et al., 2014).

Iron oxide-apatite deposits of Kiruna type in the Svecofennian belt
are also enriched in the REE (Frietsch and Perdahl, 1995; Smith et al.,
2009; Jonsson et al., 2013). These include Kiirunavaara (Kiruna) and
Malmberget in the Norrbotten region of northern Sweden, and the
Grängesberg–Blötberget deposits in Bergslagen, South Central Sweden
(Fig. 4). The origin of these deposits, whether orthomagmatic or hydro-
thermal, continues to be debated. Recent work suggests that the Kiruna
ores formed during the period 1920–1860 Ma, through hydrothermal
alteration of volcanic rocks by high salinity fluids, with subsequent
reworking of the mineralisation until around 1750 Ma (Smith et al.,
2009). An orthomagmatic origin has also been suggested for these de-
posits (Jonsson et al., 2013), and in the case of the Grängesberg
deposit, ore formation is considered to have taken place prior to
1895 Ma (Högdahl et al., 2013). The deposits are associated with either
sodic alteration (albitisation) or potassic alteration. Although largely
known as iron ore deposits, the magnetite-dominated ores host high
concentrations of REE in fluorapatite, monazite-(Ce), allanite-(Ce),
xenotime-(Y), and minor REE fluorcarbonates (Harlov et al., 2002;
Jonsson et al., 2013; Majka et al., 2013). Albitised, REE-enriched felsic
volcanic rocks of Palaeoproterozoic age at Biggejavri in northern
Norway (Fig. 4) are likely to have been affected by hydrothermal alter-
ation leading to albitisation at a similar time.

At the southern end of the Svecofennian orogen, Palaeoproterozoic
metasedimentary rocks of the Västervik formation contain heavy-
mineral layers, which may represent original placer deposits that have
been variably affected by regional metamorphism, metasomatism, and
REE remobilisation (Reed, 2013). Potentially related to these
palaeoplacer deposits are the REE-enriched biotite–magnetite–apatite
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veins of the Olserum area (Fig. 4), which occur within Västervik forma-
tion metasedimentary rocks cut by granitoids belonging to the
Transscandinavian Igneous Belt (Högdahl et al., 2004). In these veins,
REEs are mainly hosted in fluorapatite, monazite-(Ce), xenotime-(Y),
and ferriallanite–allanite (Ce). The Olserum deposit has an NI-43–101
compliant indicated resource of 4.5 Mt. at 0.6% TREO, and an inferred
resource of 3.3 Mt. at 0.63% TREO (using a TREO cut-off of 0.4%) (Reed,
2013).

The end-Svecofennian alkaline magmatism, around 1800 Ma, in-
cluded both alkaline silicate intrusions and carbonatites. In Finland,
the Korsnäs swarm of carbonatite dykes (Fig. 4) is dated at c.
1830Ma, and cuts c. 1900Ma gneisses (Sarapää et al., 2013). The largest
of these dykes was mined for Pb and REE in the 1960s, with the REE
chiefly hosted in apatite, monazite, allanite, ancylite, britholite, and
bastnäsite, and grades averaging 0.91% total REE oxides (Al-Ani et al.,
2010; Sarapää et al., 2013). Other carbonatite dykes of similar age are
known in Finland (Fig. 4), including the Halpanen calcite carbonatite
dyke emplaced at c. 1792 Ma (Rukhlov and Bell, 2010), the Naantali
carbonatite at c. 1796 Ma (Woodard and Hetherington, 2014), and the
Petäiskoski/Juuka carbonatite dykes (Tyni et al., 2003). All these
carbonatites are LREE-enriched, have similar mineralogy, and are typi-
cally associated with marginal zones of sodic–potassic alteration
(fenitisation) (Woodard and Hetherington, 2014).

Late-orogenic alkaline to calc-alkaline intrusions also formed within
the Svecofennian belt, including numerous small shoshonitic (highly
potassic) intrusions in southern Finland that show LREE-enrichment,
with allanite as the main REE mineral (Andersson et al., 2006). In Cen-
tral Finland, the c. 1850Ma Lamujärvi syenites (Fig. 4) are also enriched
in LREE, chiefly hosted in allanite and monazite (Sarapää et al., 2013).
Granites and granitic pegmatites with ages around 1800 Ma are widely
distributed in the Svecofennian Belt in Sweden and Norway, including
the Ytterby pegmatite field in eastern Sweden (Fig. 4). Larger-volume
magmatism is represented by the granitoid intrusions of the
Transscandinavian Igneous Belt (TIB) which were emplaced in two
major phases c. 1810–1770 and 1720–1660 Ma and which are now
largely preserved within the nappes of the Caledonian orogenic belt
and in southern Sweden (Romer et al., 1992; Åhäll and Larson, 2000).
An exploration campaign in the Tysfjord granitic complex (Fig. 4) iden-
tified locally elevated REE concentrations in soil (up to c. 1500 ppm total
rare earths, Sc and Y excluded; Finne and Eggen (2013)). The c. 1800Ma
Høgtuva igneous complex in Norway (Fig. 4) constitutes not only a
major European Be deposit, but is also regarded as a REE-occurrence,
with a mineralized zone rich in zircon and allanite that has a grade of
0.15% TREO (Wilberg, 1987). Primary enrichment of the high field
strength elements (HFSE, including Zr and the REE) occurred during
emplacement, but HFSE mobilisation and recrystallisation took place
during the Caledonian orogeny. Although most other TIB intrusions
are not thought to contain significant REE mineralization (Müller,
2010), more regional-scale data are required to determine the overall
REE potential of the most evolved granitoids.

3.3. Mesoproterozoic rift systems

Collisional and accretionary tectonics continued to dominate within
Fennoscandia and around themargins of the North Atlantic Craton until
around 1500Ma,when localised zones of extension and rifting began to
develop in some areas (Bogdanova et al., 2008). Extensional tectonics
became dominant after 1400 Ma, and eventually led to the break-up
of the supercontinent of Columbia around 1200 Ma (Zhao et al., 2004).
These extensional rifts represent significant belts of REE mineralisation
in northern Europe.

In Sweden, amajor roughly north–south zone ofweakness known as
the Protogine Zone developed in the Mesoproterozoic and was
reactivated numerous times, with repeated magmatic episodes
(Andréasson and Rodhe, 1990; Söderlund and Ask, 2006). To either
side of this zone, voluminous rapakivi granite magmatism gave way to
a phase of bimodal mafic–felsic, syn-tectonic, intracratonic magmatism
at c. 1470–1440Ma (Brander and Söderlund, 2009). Geochemically, the
felsic part of this magmatic suite has features of A-type granites, such as
moderate enrichment in the REE (Cecys and Benn, 2007). This A-type
suite includes some small bodies of peralkaline syenite with elevated
REE contents, most notably the Norra Kärr Alkaline Complex in south-
ern Sweden (Fig. 4), emplaced at 1489 ± 8 Ma (Sjöqvist et al., 2013).
Norra Kärr is a body of deformed, agpaitic, peralkaline nepheline sye-
nite, about 1300 × 400 m in size, which is rich in eudialyte-group min-
erals and other REE-bearing minerals such as catapleiite (Sjöqvist et al.,
2013). It has an NI-43–101 compliant indicated resource of 41.6million
tonnes (Mt) at 0.57% TREO, and an inferred resource of 16.5Mt. at 0.64%
TREO (using a TREO cut-off of 0.17%) (Gates et al., 2013). Probable min-
eral reserves are estimated at 23.5Mt. at 0.59% TREO (Short et al., 2015).
The Almunge nepheline syenite in Sweden has been considered to be
of similar age (Doig, 1970), but recent dating suggests that it is
Palaeoproterozoic in age and unrelated to the magmatism at Norra
Kärr (Delin and Bastani, 2009); its REE potential has not been studied.

TheGardar Province of SouthGreenland (Fig. 2) is aMesoproterozoic
rift zone that developed along the southern margin of the Archaean
North Atlantic Craton during two separate periods of activity, c.
1280–1250 Ma and 1180–1140 Ma (Upton and Emeleus, 1987; Upton
et al., 2003; Upton, 2013). Both Gardar rifting events include volcanic
rocks, large volumes of mafic dykes, major plutons of silica-saturated
and silica-undersaturated syenite and peralkaline granite, and minor
carbonatite bodies. Alkaline magmatism of similar age extends into
Canada (e.g. Strange Lake, Miller et al. (1997)) and possibly into
Sweden (e.g. the Kalix-Storö dykes, Kresten et al. (1981)), thus indicat-
ing a wide network of rift zones and alkaline magmatism associated
with the break-up of Columbia. To date, the Gardar Province is consid-
ered to represent the most important area of REE resources in Europe.

Themost well-known REE deposits in the Gardar Province lie within
the Ilímaussaq Complex (Figs. 3, 6), amajor layered granitic–syenitic in-
trusive complex (18 km × 8 km) with a significant component of
peralkaline, agpaitic nepheline syenite (Larsen and Sørensen, 1987;
Markl et al., 2001). The complex has been dated at 1160 ± 5 Ma
(Krumrei et al., 2006), and is thus one of the younger intrusions within
the Gardar Province. It has been affected by later faulting with
downthrow to the north, such that both the roof and the lower parts
of themagma chamber can be studied. The complexwas formed by suc-
cessive intrusions of increasingly differentiated alkalinemelts; early au-
gite syenites form the margins of the complex, and are locally intruded
by sheets of quartz syenite and alkali granite. These were subsequently
intruded by one or more pulses of agpaitic magma, forming the layered
nepheline syenites in the main core of the complex (Markl et al., 2001;
Sørensen, 2006; Pfaff et al., 2008). The extreme and unusual composi-
tions of the agpaitic magma at Ilímaussaq produced a number of rare
minerals,many of which are enriched in REE (Sørensen, 1992). Explora-
tion interest has focused on the agpaitic nepheline syenites, notably
the lower c. 300 m of spectacular layered kakortokites (eudialyte-
arfvdedsonite-nepheline syenites), and the overlying c. 500 m of
lujavrite (melanocratic, eudialyte- or steenstrupine-bearing nepheline
syenite).

Ilímaussaq hosts two separate REE exploration projects, Kringlerne
and Kvanefjeld (Thrane et al., 2014). The Kringlerne deposit comprises
the layered kakortokites in the southern part of the IlÍmaussaq Complex
(Fig. 6), with eudialyte-group minerals and their alteration products
(notably catapleiite and nacareniobsite-(Ce)) (Borst et al., 2015) as
the main economic minerals. Although formal resource information
has not been published, estimates suggest the possibility of inferred re-
sources of at least 4300 Mt. grading 0.65% TREO, 0.2% Nb2O5 and 1.8%
Zr2O5 (Thrane et al., 2014).

The Kvanefjeld deposit lies in the northern part of the Ilímaussaq
Complex (Fig. 6). The main ore rocks are fine-grained lujavrites that
are considered to have formed from highly fractionated, volatile-rich
agpaitic magmas emplaced in fracture systems beneath the solid roof



Fig. 6. Geological map of the Ilímaussaq syenite complex showing the location of the main REE deposits after Upton (2013).
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of the magma chamber (Sørensen et al., 2011). Steenstrupine is the
main REE ore mineral in this lithology. A JORC-compliant resource esti-
mate for Kvanefjeld suggests indicated REE resources of 437Mt. grading
1.1% TREO (Thrane et al., 2014). This was followed in 2015 by a maiden
ore reserve estimate of 108 Mt. grading 1.4% TREO (GME, 2015). The
deposit also contains economic concentrations of uranium, mainly in
steenstrupine, and zinc in sphalerite.

The Gardar Province contains several other syenite complexes that
have the potential for REE resources (Fig. 3); the most important of
these is the Igaliko Complex, which contains four separate intrusive
centres. One of these, the Motzfeldt centre, has been known for some
time to host Th–U–Nb–Ta–Zr–REE mineralisation (Tukiainen, 1988).
The Motzfeldt centre (1273 ± 6 Ma (McCreath et al., 2012)) is made
up of multiple intrusions of nepheline syenite, the majority of which
are miaskitic. However, the mineralisation is associated with the latest
intrusive phase, comprising agpaitic peralkaline sheets that cut hydro-
thermally altered nepheline syenites, largely around the margins of
the centre. Metasomatic alteration in older syenites was related to
these latest, highly-fractionated agpaitic magmas (McCreath et al.,
2012). The potential resources of REE and HFSE are thus hosted both
in the altered syenites and in the peralkaline sheets themselves.
Ore minerals include pyrochlore, columbite, bastnäsite, monazite,
eudialyte-group minerals, and zircon. Current estimates suggest an
exploration potential in one area of altered syenites (the Aries
Prospect) of 200–500 Mt. grading 0.3–0.5% TREO, 0.18–0.22%
Nb2O5, and 0.013–0.016% Ta2O5 (Tukiainen, 2014). Further resources
are likely to exist in other outcrop areas of peralkaline sheets within
the complex, particularly in North and South-east Motzfeldt
(Tukiainen, 2014).
TheNorth Qôroq Centre of the Igaliko Complex hasmany similarities
to the Motzfeldt Centre, being made up of several nepheline syenite
intrusions of which the latest are agpaitic and contain significant pro-
portions of eudialyte-group minerals (Coulson and Chambers, 1996;
Coulson, 2003). As at Motzfeldt, metasomatic alteration of older sye-
nites is extensive, with evidence of REE mobilisation and formation of
REE-fluorcarbonateminerals such as synchysite, parisite, and bastnäsite
(Coulson and Chambers, 1996). There is thus potential for recognition of
REE resources in North Qôroq. Agpaitic compositions have not been
recognised in the other centres of the Igaliko Complex, or indeed else-
where in the Gardar Province.

Peralkaline granites are minor constituents of the Gardar Province,
themost famous being the Ivigtut granite, whichwas host to theworld's
most important cryolite deposit (now largely mined out). This granite
stock was strongly affected by metasomatic alteration and REE
remobilisation during formation of the cryolite deposit (Goodenough
et al., 2000; Köhler et al., 2008) but there has been no detailed study
of REE minerals and areas of REE enrichment. Carbonatites are also
known within the Gardar Province, particularly at Grønnedal-Ika
(Pearce et al., 1997) andQassiarsuk (Andersen, 1997). These carbonatites
typically showenrichment in the LREE (Coulson et al., 2003) but have not
been explored in detail.

3.4. Neoproterozoic orogenic belts and rift systems in northern Europe

From around 1100 Ma, accretionary and collisional tectonics again
began to dominate in Europe as the supercontinent of Rodinia was
assembled, forming the Grenville and Sveconorwegian orogenic belts
(Li et al., 2008). The Sveconorwegian lacks the hydrothermal REE
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deposits of the Svecofennian. However, local enrichment of REE occurs
in numerous pegmatites of the Sveconorwegian orogenic belt (Fig. 4)
(900 to 1100 Ma) extending from SW Sweden to SW Norway, and in-
cluding the Evje-Iveland, Froland, and Glamsland pegmatite fields
(Romer and Smeds, 1996; Müller et al., 2008). The most common REE
minerals in these pegmatites are allanite, monazite, aeschynite,
fergusonite, and gadolinite. Generally, these deposits are either too
small or too low in grade to be commercially exploited solely for REE,
but REE could potentially be by-products of feldspar and/or quartz
mines, such as the Glamslandminewhich closed in 2009. Vein-type ap-
atite deposits were also formed in the Sveconorwegian of Norway, the
largest at Søftestad (Fig. 4) (Ihlen et al., 2014), andmay have some sim-
ilarities to the REE-enriched Kiruna-type deposits.

After c. 850Ma, Rodinia began to break up, with the development of
continental rifts and eventual formation of the Iapetus Ocean. Some im-
portant European REE resources were formed towards the end of the
Neoproterozoic, with emplacement of carbonatites and lamprophyres
distributed around the North Atlantic Craton and Fennoscandian Shield,
together with somemore extensive areas of alkalinemagmatism. These
are part of the Central IapetusMagmatic Province (Ernst and Bell, 2010)
which developed on the Laurentian and Baltican margins of the newly-
forming Iapetus Ocean. Siting of these individual intrusive bodies is like-
ly to have been controlled by crustal-scale structures that provided
magma pathways, but it is unclear whether the magma sources can be
attributed to a plume or to extension in a number of separate rifts.

In West Greenland, the Sarfartoq carbonatite (Fig. 3), together with
associated kimberlitic and lamprophyric minor intrusions, were
emplaced into Archaean rocks at themargin of theNorth Atlantic Craton
at c. 565 Ma (Hutchison and Heaman, 2008; Secher et al., 2009). The
carbonatite is made up of a c. 10 km2 core series of concentric dolomite
carbonatite sheets, surrounded by a marginal zone with carbonatite
dykes cutting highly altered (fenitised) Archaean gneisses. The REE
are concentrated in shear zones and pyrochlore-rich veins within the
marginal zone (Secher and Larsen, 1980). The main REE minerals are
synchysite-(Ce), synchysite-(Nd), bastnäsite-(Ce), and monazite-(Ce)
(Tuer, 2011). The Sarfartoq intrusion has a NI 43-101-compliant re-
source estimate including indicated resources of 5.9 Mt. grading 1.8%
TREO, and inferred resources of 2.5 Mt. grading 1.6% TREO (using a
TREO cut-off of 1%) (Tuer, 2012).

In Norway, the Fen carbonatite (Fig. 4) was emplaced into
Mesoproterozoic orthogneisses at c. 580 Ma (Meert et al., 1998). It
forms a subcircular body of c. 9 km2 at the surface, and includes a variety
of carbonatite types: pyroxene- and amphibole-bearing sövite (calcite
carbonatite), dolomite carbonatite, ankerite ferrocarbonatite, and hae-
matite carbonatite, as well as minor intrusions of nepheline syenite
(Andersen, 1988). The gneisses around the complex have been intense-
ly altered by alkaline metasomatic fluids, giving rise to the term
‘fenitisation’. Highest REE contents are found in the ferrocarbonatite
and haematite carbonatite, which are LREE-enriched; the main REE-
bearing minerals are monazite, bastnäsite, parisite, and apatite
(Andersen, 1986). The carbonatites have previously been mined for
iron ore and subsequently for Nb at the Søve mine, and have more re-
cently been considered for their resources of REE, Th and apatite
(Ihlen et al., 2014). In the south and east of the complex, an inferred re-
source of 84 Mt. grading 1.08% TREO (0.8% TREO cut-off) has been
outlined (Lie and Østergaard, 2014), but the resources in the complex
as a whole are likely to be greater.

In Sweden, the Alnö carbonatite complex (Fig. 4)was emplaced con-
temporaneously with the Fen carbonatite, at c. 585 Ma (Meert et al.,
2007; Rukhlov and Bell, 2010). It comprises a number of intrusive cen-
tres, including the main carbonatite–syenite–ijolite–pyroxenite centre
on Alnö Island, a smaller centre on the mainland at Söråker, and a
swarm of carbonatite dykes (Morogan andWoolley, 1988). Fenitisation
is extensive aroundmost of the intrusions, and the REEsweremobilised
by these metasomatic fluids; the fenites have total REE up to 350 ppm
and are typically enriched in LREE over HREE (Morogan, 1989). REE
contents are highest in the carbonatitic rocks, and specifically in the
sövites (up to 1463 ppm) (Hornig-Kjarsgaard, 1998). The carbonatites
include a wide range of REE-bearingminerals such as apatite, monazite,
titanite, pyrochlore, bastnäsite, and synchysite, but except for some re-
cent activity in the Söråker area, there has been no formal exploration
within the complex.

Amajor area of latest Neoproterozoic alkaline and carbonatitic igne-
ous rocks is the Seiland Igneous Province, which occurs in the
allocthonous Caledonian nappes of northern Norway (Fig. 4). The
most voluminous parts of the province comprise sub-alkaline to mildly
alkaline gabbroic rocks, but the latest intrusions include syenites, neph-
eline syenites, and carbonatites dated at 580–560 Ma (Roberts et al.,
2010). REE enrichments have not been identified in the main igneous
complexes but are present in carbonatite dykes and fenites (Ihlen
et al., 2014), and there may be potential for exploration.

3.5. Cambrian to Silurian rift systems and sedimentary basins

Neoproterozoic continental rifting in northern Europe was largely
terminated by the transition to drift and the opening of the Iapetus
Ocean. Within Europe, the main locus of continental rifting shifted
southward,with rifts developing in the northern part of Gondwana dur-
ing the Cambrian. These rifts would eventually lead to opening of the
Rheic Ocean during the Ordovician (Nance et al., 2010). Magmatism as-
sociatedwith this period of rifting is nowwell-preserved in the Bohemi-
an Massif (Pin et al., 2007) and in the Iberian massif of Spain and
Portugal (Sánchez-García et al., 2010). The main rift-related sequence
in the Iberian massif (Fig. 2) is dominated by volcanic rocks with some
plutons, typically sub-alkaline to alkaline in nature (Sánchez-García
et al., 2003). These include a large area of peralkaline granitoids, the
482 ± 2 Ma Galiñeiro Complex (Montero et al., 2009). This complex
has notable enrichments in the REE, hosted in a range of minerals
including allanite, monazite, xenotime, zircon, bastnäsite, thorite,
and REE niobotantalates (aeschynite, fergusonite, samarskite, and
pyrochlore group minerals) (Montero et al., 1998).

An unusual suite of REE-enriched rocks exists in the form of
authigenic nodular monazite layers in Palaeozoic sedimentary basins
across western and Central Europe. Such monazite nodules are found
in Lower Palaeozoic turbidite sequences in Central Wales and in
Belgium (Fig. 2), and are considered to have formed by remobilisation
of REE from volcanogenic or heavy mineral layers during diagenesis
(Burnotte et al., 1989;Milodowski and Zalasiewicz, 1991). They are typ-
ically characterised by cores that show enrichment in the middle REE
with LREE-enriched rims, and are lower in Th than igneous monazites
(Milodowski and Zalasiewicz, 1991). In Brittany, similar monazite nod-
ules have locally been eroded from their host sedimentary rocks and
concentrated into alluvial placers (Donnot et al., 1973). Thesemonazites
similarly show MREE-enriched cores and LREE-enriched rims (Tuduri
et al., 2013). Within the Iberian massif, REE enrichments are found in
Ordovician quartzites in Vale de Cavalos in Portugal (de Oliveira,
1998). The REE are hosted in detrital minerals such as zircon and rutile,
and also in nodular monazite.

3.6. Silurian post-collisional magmatism: the Caledonian belt

During the Silurian, closure of the Iapetus Ocean and collision be-
tween Laurentia, Baltica, and Avalonia formed the Caledonide orogenic
belt which extends through northern Germany, Norway, the northern
British Isles, and east Greenland, and into the Appalachians of North
America (McKerrow et al., 2000). Parts of the Caledonian belt are
marked by voluminous syn- to post-collisional calc-alkaline to alkaline
magmatism (Atherton and Ghani, 2002) with localised areas of more
highly alkaline magmatism.

In northern Scotland, a suite of high-K syenitic to pyroxenitic plu-
tons, with one small carbonatite body, was emplaced at 431–425 Ma
(Goodenough et al., 2011). Of these, the most significant REE
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enrichments are found in the Loch Loyal Complex (Fig. 2) (Hughes et al.,
2013), where allanite-rich mafic syenites have been affected by late-
stage hydrothermal alteration that has concentrated the REE into bio-
tite–magnetite-rich veins with up to 2% TREO (Walters et al., 2013).
The main REE-bearing minerals are allanite, apatite, titanite, and REE-
carbonate (Walters et al., 2013). In Norway, the Misværdal Complex
(c. 440 Ma) also comprises high-K intrusions of pyroxenite and granit-
oid, intruded into the Caledonian belt (Fig. 4). The pyroxenites show
local enrichments in allanite and apatite, with significant REE contents
(c. 0.5 wt.% TREO) (Ihlen et al., 2014). Similar high-K magmatism also
occurs in east Greenland (Fig. 3), with examples in the Batbjerg Com-
plex (Brooks et al., 1981) and in Milne Land (Kalsbeek et al., 2008). In
Milne Land, heavy minerals have been eroded from the plutons and
subsequently concentrated in Jurassic placer deposits (Larsen et al.,
2003) that are of interest for their REE enrichment. In Jämtland,
Sweden, nepheline syenites and carbonatitic rocks occur within the
Caledonide nappes (Fig. 4). These rocks contain REE hosted by
pyrochlore-group minerals and bastnäsite (Jonsson and Stephens,
2004). Recent exploration in the area has so far failed to find any evi-
dence for larger carbonatitic bodies.

3.7. Devonian to Permian rifting and Variscan belts

During the Devonian and Carboniferous, much of central and south-
ern Europe was affected by Variscan orogenesis associated with the
closure of the Rheic Ocean, whilst rifting, and alkaline magmatism
developed in the foreland to the Variscan (Timmerman, 2004).
Pronounced continental rifting in the Baltic Shield at 390–360 Ma led
to the formation of the Kola Alkaline Province (Fig. 2), one of the most
well-studied areas of alkaline magmatism in the world (Arzamastsev
et al., 2001; Downes et al., 2005; Kogarko et al., 2010). During the
early Carboniferous, around 350 Ma, a phase of rifting affected the
British Isles, Norway, and into north Germany and Poland. Minor
alkaline magmatism also developed during the Carboniferous in a
post-collisional setting within the Variscan orogenic belt, notably in
the Bohemianmassif. Subsequently, an extensive rift system developed
to the north of theVariscan orogenic belt through the late Carboniferous
and early Permian (Wilson et al., 2004). These continental rifts repre-
sent notable areas of alkaline magmatism with significant potential for
REE deposits.

The majority of the Kola Alkaline Province lies in Russia, where it
contains significant REE deposits in the Khibiny and Lovozero intrusive
complexes (Kogarko et al., 2010), but is outside the geographical scope
of this paper. The westernmost part of the province falls within the
Finnish border, with two main intrusions: the Sokli phoscorite–
carbonatite complex, and the Iivaara alkaline complex (Fig. 4). Sokli
was emplaced at c. 380 Ma (Rukhlov and Bell, 2010) into Archaean
gneisses, and covers an area of c. 20 km2. It has a magmatic
carbonatite–phoscorite core in which several intrusive phases can be
identified, surrounded by an aureole of fenitised gneiss and pyroxenite
(Vartiainen and Paarma, 1979; Lee et al., 2006). The earlier intrusions
within the carbonatite comprise calcite carbonatite and phoscorite,
with abundant pyrochlore in the phoscorites. Late-stage dykes of dolo-
mite carbonatite cut the earlier intrusions and the fenites, and contain
apatite and monazite together with Sr–Ba-LREE-bearing carbonates
such as strontianite, alstonite, bastnäsite-(Ce), and ancylite-(Ce) (Lee
et al., 2006; Sarapää et al., 2013). Analysis of these veins has indicated
TREE contents up to 1.83% (Al-Ani and Sarapää, 2013). The Iivaara alka-
line complex is a c. 9 km2 plug of ijolitic rocks surrounded by a zone of
fenitised gneisses (Sindern and Kramm, 2000). Although some apatite
and allanite are present in samples from the plug, REE contents are rel-
atively low (Sarapää et al., 2013).

Early Carboniferous magmatism in the Variscan foreland is well
known from the British Isles, particularly the Midland Valley and
Northern England, where it largely comprises mafic volcanic rocks
(Timmerman, 2004). Alkaline intrusions may be present at depth in
this area. In Poland, geophysical investigations and drilling have re-
vealed a buried alkaline plutonic province of Early Carboniferous age
(354–345 Ma) which includes the Pisz and Elk gabbroic to syenitic plu-
tons, and the Tajno pyroxenite–carbonatite–syenite body (Fig. 2)
(Demaiffe et al., 2013). The late carbonatite veins in the Tajno body
show LREE enrichment with reported total rare earth oxide content
up to 9 wt.% (Demaiffe et al., 2005).

Late-stage alkaline post-collisional magmatism occurred in many
parts of the Variscan belt, and can be considered as analogous to the
similarmagmatism in the Caledonian belt described above. Although al-
kaline intrusions represent only a small percentage by volume of the vo-
luminous Variscan batholiths that extend across Central Europe, there
has been limited study of their REE potential. The Bohemian Massif in
the Czech Republic (Fig. 2) hosts ultrapotassic syenitic plutons such as
the c. 335–340 Ma Třebíč Pluton (Kotková et al., 2010; Kusiak et al.,
2010) which are cut by fields of late, REE-enriched pegmatites with a
range of REE minerals including allanite, bastnäsite, and euxenite
(Škoda and Novák, 2007). Late-Variscan A-type microgranite dykes
have also been recognised from the Krušné hory mountains; they
show HREE enrichment and contain minerals such asmonazite, thorite,
xenotime, and pyrochlore (Breiter, 2012).

Widespread rift-relatedmagmatismdeveloped in the British Isles, in
the Oslo Rift in Norway, in southern Sweden, and in the North German
Basin during the late Carboniferous and into the early Permian
(Neumann et al., 2004). Much of this magmatism is still preserved as
lava flows, dykes, and sills at the surface, such that the plutons that
might contain REE resources remain buried. One of the most important
areas of alkaline magmatism of this age is the Oslo Rift (Fig. 4), which
has been subdivided into six stages of rifting and magmatism from c.
300 Ma to c. 240 Ma (Neumann et al., 1992; Larsen et al., 2008; Corfu
and Dahlgren, 2008). Lavas are extensivewithin the rift, and are intrud-
ed by a number of alkaline plutons of varying composition. The plutons
are dominated by monzonitic compositions and many have marginal
pyroxenite bodies, such as the Kodal apatite deposit, which consists of
a 1900 m-long zone of closely-spaced pyroxenite lenses within the
monzonitic Larvik Plutonic Complex (Ihlen et al., 2014). This deposit is
currently being explored for phosphate and Fe–Ti, but has also been re-
corded ashavinghigh REE contents in apatite (Ihlen et al., 2014). Syenit-
ic pegmatites, of both miaskitic and agpaitic types, are also recorded
throughout the Larvik Plutonic Complex and may contain REE-bearing
minerals (Andersen et al., 2010). Other magmatic bodies within the
rift that may be of interest for the REE include Sæteråsen in Norway, a
Nb-REE mineralisation hosted in a trachytic lava flow (Ihlen, 1983),
and Särna in Sweden.

3.8. Mesozoic rifts: Alpine Tethys and Atlantic

Rifting continued throughout Europe during the Mesozoic and into
the Cenozoic, with varying amounts of associated magmatism. In west-
ern Europe, Atlantic rifting generated the voluminous Central Atlantic
Magmatic Province and subsequently the North Atlantic Igneous
Province, whereas rifting of the Alpine Tethys in southern and eastern
Europe appears to have been associated with rather limited magmatic
activity (Stampfli, 2000).

Alpine Tethyan rifting during the Triassic generated alkaline
magmatism in the Carpathians, which is still relatively little-known.
The most notable REE mineralisation is associated with the c. 230 Ma
Ditrãu Alkaline Complex in the Eastern Carpathians of Romania
(Fig. 2) (Dallmeyer et al., 1997; Morogan et al., 2000; Fall et al., 2007).
REE-richmineral veins are foundwithin the alkaline complex at Jolotca,
and outside the complex at Belcina. The REE mineralised veins include
monazite-(Ce), xenotime-(Y), allanite-(Ce), apatite, bastnäsite, parisite,
synchysite, fergusonite, polycrase, and aeschynite in association with
sulphides, carbonates and a wide range of other minerals (Hirtopanu
et al., 2010). Disseminated enrichments in REE, Nb, and Zr are also
found within the roof zone of the alkaline complex in the Lazarea area.
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A small Triassic alkaline intrusive body associated with REE
mineralisation has also been identified in the Slovakian Carpathians
(Ondrejka et al., 2007). This area may well have significant potential
for discovery of further REE mineralisation.

In contrast, rifting of the Atlantic led to the development of volumi-
nous magmatism. The Central Atlantic Magmatic Province, associated
with rifting of the Pangaea supercontinent and formation of the central
Atlantic Ocean, comprises extensive flood basalts erupted around
the Triassic–Jurassic boundary at c. 200 Ma (Marzoli et al., 1999;
Blackburn et al., 2013). As the ocean opened, subsequent late
Cretaceous rifting cycles (100–70 Ma) emplaced alkaline magmas
along the Iberian margin in Spain and Portugal and also in the Pyrenees
(Solé et al., 2003; Miranda et al., 2009; Grange et al., 2010). REE
mineralisation is not currently known in association with this alkaline
magmatic phase, but there may be potential for further investigation.

During the Jurassic, continental extension began to develop north-
wards, marked in Europe by the emplacement of carbonatites and
lamprophyres in west Greenland (Fig. 3) at 165–145 Ma (Secher et al.,
2009; Tappe et al., 2009). Both the Qaqarssuk (Qeqertaasaq) and
Tikiusaaq carbonatite intrusions are enriched in LREE. The Qaqarssuk
carbonatite comprises a series of calcite- and dolomite-carbonatite
and silicocarbonatite ring-dykes (Knudsen, 1991)with late-stage sheets
of calcite- and ferro-carbonatite that show significant REE enrichment.
The major REE minerals are ancylite, burbankite, huanghoite, and
qaqarssukite (Thrane et al., 2014). The Tikiusaaq carbonatite similarly
comprises calcite- and dolomite-carbonatiteswith later ferrocarbonatite
dykes (Tappe et al., 2009). Both carbonatites are surrounded by zones in
which the country rock has been fenitised.

Rifting and ocean opening, together with impingement of the
Iceland plume, led to development of tholeiitic flood basalt magmatism
of theNorthAtlantic Igneous Province during the Cenozoic, beginning at
62 Ma (Saunders et al., 2013). In East Greenland, the alkaline Gardiner
Complex formed at c. 55Ma (Tegner et al., 2008). It comprises ultramaf-
ic cumulates with syenites and carbonatite sheets (Nielsen, 1980) and
may have potential for REE mineralisation, although it is extremely dif-
ficult to access. On the other margin of the Atlantic, in Scotland and
Northern Ireland, REE minerals including chevkinite-group minerals,
fergusonite, gadolinite, allanite, and monazite have been reported
from Cenozoic granites in Arran, Skye, and the Mourne Mountains
(Hyslop et al., 1999; Moles and Tindle, 2011; Macdonald et al., 2013).
However, the bulk compositions of the granites do not exhibit signifi-
cant REE enrichment.

3.9. Cretaceous to Cenozoic circum-Mediterranean rifts

Intraplate, extensional magmatism has been common through
much of Europe during the Cenozoic, particularly in areas of Variscan
basement around the Alpine collisional zone (Wilson and Downes,
2006). To the north and west of the Alps, alkaline volcanism developed
around the Rhenish Massif and Rhine Graben in Germany, the Massif
Central in France, Calatrava in Spain, and the Bohemian Massif in the
Czech Republic (Fig. 2). To the south and east, subduction-related
magmatism was followed by more alkaline volcanism in Italy, Greece,
Turkey and parts of Eastern Europe such as the Pannonian Basin
(Agostini et al., 2007). In all of these areas, the current surface expres-
sion of the magmatism constitutes volcanic fields and their eruptive
products, most commonly basanitic and basaltic (Wilson and Downes,
2006). Carbonatiticmagmas are rare, but locally present. It seemshighly
likely that plutonswith potential for REE enrichmentmay exist beneath
these areas.

In eastern Germany, the Delitzsch carbonatite–lamprophyre com-
plex (Fig. 2) lies buried beneath c. 100 m of Cenozoic sediments. It
was discovered during exploration for uranium deposits in the 1960s
and 1970s. Extensive drilling has proved lamprophyres and carbonatite
dykes and plugs down to c. 1100m, across an area of c. 450 km2 (Krűger
et al., 2013). The presence of xenoliths of coarse carbonatite in diatreme
breccias is considered to indicate a carbonatitic pluton at greater depths
(Seifert et al., 2000). REE minerals in the carbonatites include apatite,
pyrochlore and bastnäsite. One of the carbonatitic diatremes, the
Storkwitz diatreme, has estimated total (indicated and inferred) re-
sources of 4.4Mt. @ 0.45% TREO (Deutsche-Rohstoff, 2013). Recent dat-
ing (Krűger et al., 2013) suggests an emplacement age for the complex
of 75–71 Ma, indicating early reactivation of Variscan structures in the
Alpine foreland.

Extrusive carbonatites and alkaline volcanic rocks are known from a
number of localities around the Rhine Graben, including Kaiserstuhl,
Hegau and centres in the Eifel volcanic province (Woolley and Church,
2005). One of the more well-known carbonatites of this age is the
Miocene Kaiserstuhl Volcanic Complex (Keller, 1981; Kraml et al.,
2006; Wang et al., 2014) in the Rhine Graben. It comprises volcanic
rocks and dykes of alkaline silicate composition, as well as carbonatitic
dykes, intrusions, and diatreme breccias. The carbonatites show signifi-
cant REE enrichment (Hornig-Kjarsgaard, 1998) and hydrothermal
alteration of phonolites has generated an economic zeolite deposit
which contains the rare earth-bearing phase götzenite (Weisenberger
et al., 2014). It seems likely that plutonic rocks of interest for their REE
concentrations may be present beneath Kaiserstuhl. The same may be
true of the alkaline–carbonatite complexes in the Eifel volcanic prov-
ince, such as Rockeskyll (Riley et al., 1999) and Laacher See (Schmitt
et al., 2010), and also of extrusive carbonatite complexes at Calatrava
in Spain (Bailey et al., 2005).

In southern Europe, extrusive carbonatites occur in association with
alkaline to peralkaline volcanic rocks at a number of localities in Italy,
including San Venanzo, Polino and Cupaello in the Intra-Montane
Ultra-alkaline province, and the Monte Vulture volcanic complex
(Stoppa and Woolley, 1997; Downes et al., 2002). In these areas, com-
pressional tectonics associated with Apennine folding and thrusting
have passed into an extensional regime over the last 5 Ma (Lavecchia
and Boncio, 2000). The presence of coarse-grained carbonatite tephra
at Monte Vulture indicates that intrusive carbonatites are present at
depth, and these rocks are enriched in the LREE as is typical of
carbonatites (Rosatelli et al., 2000; Mongelli et al., 2013). Beach sands
along the Italian coastline, particularly at Nettuno near Rome, contain
REEminerals such as perrierite-(Ce) that may be derived from the alka-
line volcanics (Macdonald et al., 2009).

In Greece, alkaline volcanic rocks are known frommany localities in
the Aegean (Agostini et al., 2007). However, the most important REE
concentrations are not associated with alkaline rocks, but are found in
heavy mineral sands on the coast in the Nea Peramos and Strymonikos
Gulf areas. REE-bearing minerals in these placers include monazite,
allanite, titanite, uraninite, zircon, and apatite (Eliopoulos et al., 2014).
Geochemical and mineralogical studies indicate that these minerals
are derived from the Symvolon and Kavala plutons, which are deformed
granodioritic complexes of Miocene age (Dinter et al., 1995).

Alkaline igneous rocks and carbonatites of Cretaceous to Cenozoic
age are common in the Anatolian rift systems in Turkey (Fig. 2), and
would deserve further work to understand their potential for REE
mineralisation. Of particular significance is the c. 25 Ma Kizilcaören
Complex, which comprises phonolite and trachyte stocks, carbonatite
dykes, and a fluorite-barite-LREE deposit forming veins and brecciasfill-
ings in the Palaeozoic country rock (Gültekin et al., 2003; Nikiforov
et al., 2014). The ore assemblage contains barite, fluorite, quartz, calcite,
feldspar, and phlogopite, with bastnäsite as the main REE mineral ac-
companied by brockite, fluocerite, monazite, and parisite (Gültekin
et al., 2003; Nikiforov et al., 2014). The mineralisation can be related
to hydrothermal activity associated with the alkaline magmatism.
Late Cretaceous syenites with associated carbonatites and fluorite
mineralisation have been described from east-central Anatolia, includ-
ing the Karaçayir pluton (Cooper et al., 2011) and the area around
Malatya, which contains the Sofular carbonatite (Ozgenc, 1999;
Ozgenc and Ilbeyli, 2009). The Quaternary alkaline volcanism of Gölcűk,
close to Isparta in south-western Turkey, shows enrichment in the REE
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(Platevoet et al., 2014) and has been proposed as a possible source for
heavy minerals in the nearby Çanakli placer (Aksu Diamas REE
prospect). This prospect has an inferred resource estimate of 494 Mt.
at 0.07–0.08 wt.% TREO (Cox et al., 2013).

3.10. Bauxites

Bauxite deposits occur along the northern shore of theMediterranean
Sea (Fig. 7), fromSpain to Turkey, encompassing parts of southern France,
Hungary, Italy, Greece and the Balkans (Bárdossy, 1982; Özlü, 1983).
Many of these bauxites, which formed by intense lateritic weathering of
residual clays, are currently mined for aluminium, and the red mud
waste from bauxite processing represents a potential REE resource
(Deady et al., 2014). A pioneer study described the existence of
authigenic REE-bearing minerals within karst bauxites of the San
Giovanni Rotondo deposit, in Italy (Bárdossy andPanto, 1973). Thepres-
ence of REE-bearing minerals within bauxites was confirmed by
Bárdossy et al. (1976) for the Nagyharsány deposit, in Hungary and sub-
sequently for a range of other deposits (Maksimovic and Panto, 1996).
Themost abundant REE-bearingminerals aremembers of the bastnäsite
group, and the most frequent is hydroxylbastnäsite (REE(CO3)(OH)),
followed by synchysite-(Nd), bastnäsite-(Ce), and bastnäsite-(Nd).
Other minerals described include monazite-(Nd), monazite-(La), Nd-
rich goyazite, florencite and crandallite (Maksimovic and Panto, 1996).
The REE contained within bauxites pass into red mud wastes after
processing, and represent a low-grade but potentially large-tonnage
resource of REE in Europe (Deady et al., 2014).

4. Discussion

From the assessment above, it is clear that Europe already has sub-
stantial known REE resources, and that there is significant potential
for further resources to be recognised. Although detailed estimation of
total European REE demand is complex, recent work by the ASTER pro-
ject indicates that the current demand for certain critical REE could be
met by the known REE resources within Europe (Guyonnet et al.,
Fig. 7. Map of the bauxite deposits in the Med
2015). However, if demand is to be met into the future, continued re-
search into, and exploration of Europe's resources will be needed. This
overview should provide a basis for such potential future work. An
important aspect is the identification of areas that are prospective for
deposits of different types andmineralogies, whichmay become impor-
tant as REE mineral processing methods continue to evolve.

The majority of the known resources, and many potential future
exploration areas, are associated with alkaline magmatism and
carbonatites developed in intracontinental rift settings. However, REE
can be concentrated in other settings, most notably associated with
post-collisional alkaline magmas. The REE deposits of the Svecofennian
belt are unique in Europe, in that they were formed by hydrothermal
processes associated with active subduction. Secondary deposits are
also of interest, although typically low-grade; they include diagenetic
nodular monazites, sedimentary placers, and deposits formed by
weathering such as bauxites. REE-enriched placers in particular are typ-
ically found in areaswhere alkalinemagmatism exists nearby, although
few REE placers have been studied in any detail.

Many of Europe's current exploration projects for REE are associated
with carbonatites, including Sarfartoq and Qaqarssuk in Greenland, Fen
in Norway, and Storkwitz in Germany. Many of these have the advan-
tage that they contain the mineral bastnäsite, currently the most
commonly processed REE ore mineral (Jordens et al., 2013). However,
the majority of carbonatites are strongly enriched in the LREE
(Chakhmouradian and Zaitsev, 2012) and have lower contents of the
most critical HREE. In a worldwide context, current REE production
comes largely from high-grade carbonatites such as Bayan Obo and
Mountain Pass; the European carbonatites are typically somewhat
lower grade (Fig. 8).

Higher concentrations of the most critical REE are found in deposits
where the main REE minerals include xenotime, eudialyte-group min-
erals, or to a lesser extent monazite (Chakhmouradian and Wall,
2012). Both monazite and xenotime have been mined outside Europe
from heavy mineral placers, and processing methods have been
established for both minerals (Jordens et al., 2013). These minerals are
typically formed in miaskitic igneous rocks and several potential REE
iterranean area, after Deady et al. (2014).



Fig. 8. Grade and tonnage plot comparing European REE deposits with those worldwide. Background data for worldwide resources from Orris and Grauch (2002); for current producers
from Wall (2014); and for European resources from references quoted in this paper.
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deposits of this type are known in Europe, including the xenotime-
bearing mineralisation associated with the Galiñeiro and Ditrãu com-
plexes. A number of heavy mineral placers formed by erosion of
miaskitic plutons also occur within Europe. However, both xenotime
andmonazite typically contain high levels of Th andU, creating possible
issueswith radioactivewaste (Chakhmouradian andWall, 2012). None-
theless, most REE deposits of this type in Europe have been the subject
of only limited research and exploration, andwould deservemuchmore
investigation.

Currently, there is a significant European focus on eudialyte-group
minerals and their alteration products as a source of the critical REE,
particularly needed in the magnet industry. These minerals are most
commonly found in large, agpaitic igneous complexes. Ores containing
eudialyte-group minerals may have lower REE grades than those bear-
ing monazite and xenotime, but they are also typically characterised
by lower Th andU contents. Research into eudialyte-groupmineral ben-
eficiation and processing is ongoing as part of the EURARE project, but
has not been successfully carried out on a commercial scale. Europe
has resources of eudialyte-group minerals in Norra Kärr and in the in-
trusions of the Gardar Province, particularly Ilímaussaq; other signifi-
cant agpaitic intrusions are not known at the present time, but may
remain to be discovered. These intrusions are typically fairly low
grade (commonly b1 wt.% TREO) but large tonnage (Fig. 8).

Europe has a wide variety of REE deposits and it is very likely that
many more remain to be discovered. A key point that emerges from
this review is the existence of ‘fertile zones’ for REE mineralisation.
The stable cratonic areas in Greenland and Scandinavia have only limit-
ed evidence of alkaline magmatism despite their long histories, and
there are no recognised Archaean REE deposits in Europe. However,
many of Europe's carbonatites are focused along craton margins.
These craton margins represent more fertile zones, which have initially
been affected by subduction in accretionary orogens, potentially
fertilising the lithospheric mantle. Subsequently, in many cases hun-
dreds ofmillions of years later, reactivation of these areas by extensional
tectonics has led to alkaline igneous activity and enrichment in REE. This
pattern of repeated enrichment of mantle sources appears to be funda-
mental to the formation of REE-enriched magmas. A clear example of
this comes from Southern Greenland, where Gardar Province magmas
were derived from lithospheric mantle that was metasomatised and
fertilised some 600 million years earlier during subduction and forma-
tion of the Ketilidian belt (Goodenough et al., 2002). In Norway, the
Fen carbonatite and associated dyke swarms, and the subsequent Oslo
Rift, represent two episodes of alkaline magmatism (Dahlgren, 1994)
localised along the margin of a Neoproterozoic subduction-related
igneous province associated with the Sveconorwegian event (Slagstad
et al., 2013). Further south in Europe, many areas that were affected
by the Variscan orogeny have been reactivated during the Cenozoic,
with the emplacement of alkaline magmas. A notable example is the
Bohemian Massif, in which Palaeozoic subduction-related magmatism
(Schulmann et al., 2009) was followed by post-collisional alkaline
magmatism, with subsequent reactivation and formation of a rift-
related alkaline igneous province during the Cenozoic (Ulrych et al.,
2011). In the Iberian massif, initial alkaline magmatism associated
with Rheic Ocean rifting was followed by Variscan collision and then
by a further period of alkaline magmatism. In general, areas where
Variscan belts have been reactivated by later rifting with alkaline
magmatism would appear to be of great interest for REE exploration.
To the south of the Alpine mountain chain, there is significant potential
for REE enrichments at depth beneath the alkaline volcanic rocks of Italy
and Turkey.

5. Conclusions

This overview demonstrates that Europe has a wide range of REE
deposits and occurrences. The most significant primary deposits are
associated with alkaline igneous rocks and carbonatites formed in
extensional settings, although a range of deposits of hydrothermal and
igneous origin can be formed in other geodynamic settings. Secondary
deposits include placers, which can commonly be linked back to an ig-
neous source, and bauxites in southern Europe.

The most well-known primary deposits are those associated with
Mesoproterozoic rift-related magmatism in Greenland and Sweden,
and with Neoproterozoic to Palaeozoic carbonatites across Greenland
and the Fennoscandian Shield. However, there are a number of less-
well known deposits in areas where Europe's Variscan belts have been
reactivated by later rifting with the emplacement of alkaline magmas,
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and these represent important targets for further research. It is clear
that Europe has the potential REE deposits needed to secure its own
supply of these elements for the foreseeable future, but that there is a
need to develop beneficiation and processing methods in order to
ensure sustainable exploitation.
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