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Abstract. The impact of 27 volatile organic compounds

(VOCs) on the regional O3 increment was investigated us-

ing measurements made at the UK EMEP supersites Har-

well (1999–2001 and 2010–2012) and Auchencorth (2012).

Ozone at these sites is representative of rural O3 in south-

east England and northern UK, respectively. The monthly-

diurnal regional O3 increment was defined as the difference

between the regional and hemispheric background O3 con-

centrations, respectively, derived from oxidant vs. NOx cor-

relation plots, and cluster analysis of back trajectories arriv-

ing at Mace Head, Ireland. At Harwell, which had substan-

tially greater regional O3 increments than Auchencorth, vari-

ation in the regional O3 increment mirrored afternoon de-

pletion of anthropogenic VOCs due to photochemistry (af-

ter accounting for diurnal changes in boundary layer mixing

depth, and weighting VOC concentrations according to their

photochemical ozone creation potential). A positive regional

O3 increment occurred consistently during the summer, dur-

ing which time afternoon photochemical depletion was cal-

culated for the majority of measured VOCs, and to the great-

est extent for ethene and m+p-xylene. This indicates that, of

the measured VOCs, ethene and m+p-xylene emissions re-

duction would be most effective in reducing the regional O3

increment but that reductions in a larger number of VOCs

would be required for further improvement.

The VOC diurnal photochemical depletion was linked to

anthropogenic sources of the VOC emissions through the in-

tegration of gridded anthropogenic VOC emission estimates

over 96 h air-mass back trajectories. This demonstrated that

one factor limiting the effectiveness of VOC gridded emis-

sions for use in measurement and modelling studies is the

highly aggregated nature of the 11 SNAP (Selected Nomen-

clature for Air Pollution) source sectors in which they are

reported, as monthly variation in speciated VOC trajec-

tory emissions did not reflect monthly changes in individual

VOC diurnal photochemical depletion. Additionally, the ma-

jor VOC emission source sectors during elevated regional O3

increment at Harwell were more narrowly defined through

disaggregation of the SNAP emissions to 91 NFR (Nomen-

clature for Reporting) codes (i.e. sectors 3D2 (domestic sol-

vent use), 3D3 (other product use) and 2D2 (food and drink)).

However, spatial variation in the contribution of NFR sectors

to parent SNAP emissions could only be accounted for at the

country level. Hence, the future reporting of gridded VOC

emissions in source sectors more highly disaggregated than

currently (e.g. to NFR codes) would facilitate a more pre-

cise identification of those VOC sources most important for

mitigation of the impact of VOCs on O3 formation.

In summary, this work presents a clear methodology for

achieving a coherent VOC, regional-O3-impact chemical cli-

mate using measurement data and explores the effect of lim-

ited emission and measurement species on the understanding

of the regional VOC contribution to O3 concentrations.
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1 Introduction

Production of ground-level ozone (O3) is dependent on con-

centrations of NOx (NO and NO2), methane, carbon monox-

ide, and volatile organic compounds (VOCs) (Jenkin and

Clemitshaw, 2000). The formation of O3 causes substantial

deleterious human health and environmental impacts world-

wide (RoTAP; 2012; REVIHAAP, 2013). Development of

policies for the mitigation of these impacts requires under-

standing of the influences on O3 concentrations from lo-

cal, regional and hemispheric-scale processes. The range in

VOC atmospheric lifetimes from a few hours to several days

(Atkinson, 2000) means that the major fraction of the VOC

impact on O3 production occurs on the regional scale of air-

mass movements. At the regional scale, Gauss et al. (2014)

modelled the reductions in O3 impact across Europe on hu-

man health (using the SOMO35 metric) and vegetation (us-

ing the deciduous forest PODY metric) resulting from 15 %

reductions in anthropogenic NOx and VOC emissions across

the EU and showed that VOC emission reductions were more

effective than NOx emission reductions in reducing the O3

impact metrics across much of north-west Europe. Hence,

knowledge of the contribution of individual VOCs to O3 pro-

duction on the European (regional) scale will enable target-

ing of the most effective VOC reductions for reducing re-

gionally derived O3 exposure relevant to O3 impacts.

Within Europe, the European Monitoring and Evaluation

Programme (EMEP) makes in situ atmospheric composition

measurements at sites considered to have minimal influence

from local emission sources (Tørseth et al., 2012). The UK

operates two EMEP Level II monitoring sites (or “super-

sites”), Auchencorth and Harwell, at which hourly concen-

trations of O3, NOx and 27 VOCs are measured. In this

work, chemical climates (defined in Malley et al., 2014a)

are derived to quantify the impact of the measured VOCs on

the regional increment of O3 concentrations (the difference

between regional background and hemispheric background

O3 concentrations) measured at Harwell and Auchencorth.

Full definitions of each of these O3 quantities are given in

Sect. 2.1. Monthly-diurnal O3 variation at the EMEP super-

sites has previously been shown to be representative of wider

geographical areas, namely rural background air of south-

east England and northern UK for the Harwell and Auchen-

corth UK supersites, respectively (Malley et al., 2014b).

The interpretation of VOC measurements at rural sites has

previously been undertaken using positive matrix factorisa-

tion (PMF) (Lanz et al., 2009), trajectory analysis (Sauvage

et al., 2009), VOC variability as a measure of source proxim-

ity (Jobson et al., 1999), winter/summer VOC ratios to indi-

cate changing emission sources (Jobson et al., 1999), and the

ratio of VOCs with similar reactivity to highlight changes in

emission sources (Yates et al., 2010). These studies identified

VOC emission sources based on measured VOC concentra-

tions. However, the “state” of atmospheric composition vari-

ation producing a regional O3 increment above hemispheric

background concentrations is more rigorously evaluated by

considering the chemical loss of the measured VOCs, since

it is the VOC chemical loss in the air mass that drives the

production of a regional O3 increment, not the VOC concen-

tration remaining in the air mass. In urban environments, the

chemical loss of VOCs has been calculated through the esti-

mation of initial emission ratios of two VOCs and calculation

of photochemical age through parameters such as “OH expo-

sure” or “VOC consumption” (Shao et al., 2009; Yuan et al.,

2012). This method is not appropriate for rural studies since

it assumes that local sources dominate emissions.

In this work, monthly-averaged diurnal variations of indi-

vidual VOC concentrations relative to ethane were used to

assess the photochemical loss of each VOC and its contri-

bution to the regional O3 increment at Harwell and Auchen-

corth. Monthly-diurnal averaging was chosen as the annual

and daily cycles are key features of O3 variability associ-

ated with the driving processes on its concentrations and on

its impact. For example, the monthly and diurnal variation

in O3 is central to determining the extent and spatiotem-

poral trends in health- and vegetation-relevant O3 metrics

(Malley et al., 2015). Ozone variability at hundreds of mon-

itoring sites globally has also been characterised based on

monthly-diurnal variation (Tarasova et al., 2007). Monthly-

diurnal averaging was therefore also appropriate for setting

this work in the wider context, especially given the rela-

tive scarcity of hourly VOC measurements. The magnitude

of VOC chemical loss at each site was linked to anthro-

pogenic emissions by estimating the integrated VOC emis-

sions along 96 h air-mass back trajectories. These emissions,

from the 11 Selected Nomenclature for Air Pollution (SNAP;

EEA, 2013) source sectors, were speciated to compare ob-

served VOC variation with an estimate of individual VOC in-

tegrated back-trajectory emissions. Integration of emissions,

VOC chemistry and O3 production has been reported previ-

ously for one location in the UK using a photochemical tra-

jectory model with a near-explicit chemical mechanism for

a large suite of VOCs (Derwent et al., 2007a, b). The ad-

vantage of the methodology presented here, based on mea-

surement data, is that uncertainties associated with the spe-

ciation of VOC emission source categories can be identified.

A country-specific disaggregation of emissions into 91 more

narrowly defined Nomenclature for Reporting (NFR; EEA,

2013) source sectors was used to determine more precisely

the activities contributing to VOC back-trajectory emissions

estimates. This current work presents a clear methodology

for achieving a coherent VOC, regional-O3-impact chemical

climate and explores the effect of limited emission and mea-

surement species on the understanding of the regional contri-

bution to O3 concentrations.
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2 Methodology

This work was undertaken by applying the chemical cli-

matology framework outlined in Malley et al. (2014a). A

chemical climate is derived through the linkage of a spe-

cific “impact” of atmospheric composition (here, regional

O3 increment) through the “state” of relevant atmospheric

composition variation (VOC diurnal photochemical deple-

tion) to its causal “drivers” (meteorology and emissions). The

aim of this framework is to provide a consistent method for

both consideration of impact severity and the conditions pro-

ducing it, hence highlighting pathways for mitigation. The

Methods and Results sections are subdivided into impact

(Sects. 2.1 and 3.1 for Methods and Results, respectively),

state (Sects. 2.2, 3.2) and drivers (Sects. 2.3, 3.3) to em-

phasise the analyses used to derive the components of the

chemical climate. Analyses were undertaken for the peri-

ods 1999–2001 and 2010–2012 at Harwell and 2010–2012

at Auchencorth. Measured data were obtained from UK-AIR

(http://uk-air.defra.gov.uk/) and EMEP (http://ebas.nilu.no/).

For each year, the monthly-averaged diurnal cycles of each

atmospheric component were calculated, i.e. 24× 12= 288

values per year.

2.1 Regional O3 increment impact

The regional O3 increment is defined as the regional back-

ground O3 concentrations minus the hemispheric back-

ground O3 concentration. Here, regional background O3 con-

centration is defined as that which is imported into a local

spatial domain following modification of hemispheric back-

ground O3 concentrations by European emissions. Examples

of local spatial domains are south-east England and northern

UK for which, based on monthly-diurnal O3 variation, Har-

well and Auchencorth, respectively, were shown previously

to be representative (Malley et al., 2014b). The hemispheric

background O3 concentration is in turn defined as that which

is imported into the European domain, with minimal influ-

ence from European emissions.

Hemispheric background O3 concentrations were derived

by applying Ward’s method of hierarchical cluster analysis to

pre-calculated 96 h air-mass back trajectories arriving at 3 h

intervals at Mace Head, Ireland (R Core Development Team,

2008; Carslaw and Ropkins, 2012; Draxler and Rolph, 2013),

to identify periods with no European influence. The discrim-

ination achieved by cluster analysis may be influenced by

user choices but the method used here was shown to be

the most accurate of commonly used clustering techniques

(Mangiameli et al., 1996). In Ward’s method, each object

(back trajectory) initially constitutes its own cluster. The al-

gorithm then calculates which two clusters, when merged,

give the smallest increase in total within-cluster variance.

The process is repeated until all trajectories are located in

one cluster (Kaufman and Rousseeuw, 1990). The dendro-

gram summarising the cluster merging process is then “cut”

at an appropriate level to produce the cluster set. The aim is to

maximise explained inter-trajectory variability using a small

number of clusters to highlight major distinctions between

trajectory paths. The distance between a trajectory and its

cluster mean was quantified using the two-dimensional “an-

gle” of each trajectory (or cluster mean trajectory) from the

origin (i.e. the supersite) at common time points along the

trajectory:

d1,2 =
1

n

n∑
i=1

cos−1

(
0.5

Ai +Bi +Ci
√

AiBi

)
, (1)

where

Ai = (X1 (i)− X0)
2
+ (Y1 (i)− Y0)

2,

Bi = (X2 (i)− X0)
2
+ (Y2 (i)− Y0)

2,

Ci = (X2 (i)− X1(i))
2
+ (Y2 (i)− Y1(i))

2.

d1,2 is the distance between trajectory 1 and trajectory 2,

X0, Y0 are the latitude and longitude coordinates of the ori-

gin of the trajectory, and X1(i), Y1(i), and X2(i), Y2(i) are

the coordinates at time i of trajectories 1 and 2, respectively.

The 2920 back trajectories arriving at Mace Head each year

were separated into four clusters. The monthly-diurnal cy-

cles of O3 concentrations for the westerly trajectory cluster

were used as the estimate of hemispheric background O3.

These values showed excellent agreement with the monthly-

average hemispheric background estimates derived by Der-

went et al. (2007c) using Mace Head O3 data and a combina-

tion of pollutant tracers and atmospheric modelling to select

“clean” air masses (r = 0.93, p < 0.001, Fig. 1).

Regional background O3 concentrations were estimated

using the method of Clapp and Jenkin (2001). In the region

of south-east England characterised by the Harwell super-

site nine locations, ranging from rural background to kerb-

side, had hourly measurements of O3, NO and NO2. The y

intercept of the linear fit to a total oxidant (O3+NO2) vs.

NOx (NO+NO2) plot yields the NOx-independent oxidant

contribution, interpreted as the regional background O3 con-

centration, i.e. the contribution to O3 within south-east Eng-

land from processes occurring outside south-east England.

Extraction of the y intercept from an oxidant vs. NOx plot for

each of the 288 “month–hour” averages yielded the monthly-

diurnal cycle of regional background O3 variation in south-

east England. The difference between the hemispheric back-

ground and regional background O3 concentrations provided

the magnitude and direction of the regional modification to

hemispheric background O3 concentration. A positive re-

gional O3 increment indicates additional O3 formation re-

gionally in excess of hemispheric background concentrations

and vice versa.

The spatial domain for which Auchencorth is representa-

tive does not have sufficient co-located NOx and O3 moni-

toring sites to derive regional background O3 concentrations
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Figure 1. Correlation between monthly hemispheric background

O3 concentrations derived by Derwent at al. (2007c) using pollu-

tant tracers and atmospheric modelling to select “clean” air masses,

and derived by the method described in Sect. 2.1 using cluster anal-

ysis. Black regression line is calculated by the ordinary least squares

(OLS) method, with confidence intervals (95th percentile) shown in

grey.

by the above method. The regional O3 increment at Auchen-

corth was therefore estimated by subtracting the Mace Head

hemispheric background estimates directly from the Auchen-

corth monthly-averaged diurnal concentrations.

2.2 State

VOC concentrations were determined by automated gas

chromatography (Dernie and Dumitrean, 2013). For 2010–

2012, data were available for 27 species at both Harwell and

Auchencorth. Concentrations of six VOCs at Auchencorth

during this period were not above the reported limit of de-

tection (LOD), so their contribution to the regional O3 incre-

ment was not evaluated. For 1999–2001, data were available

for 21 VOCs at Harwell only.

The VOC data sets had extensive periods during which

concentrations were below LOD, particularly at Auchencorth

(e.g. between 6 and 81 % below LOD at Harwell in 2011, and

between 11 and 82 % at Auchencorth). Therefore, maximum

likelihood estimation (MLE) was used to fit three positively

skewed distributions (lognormal, gamma and Weibull) to the

data set for each VOC (Helsel, 2006; Gardner, 2012). The

Akaike information criterion (AIC) was then used to select

the distribution which best fitted the data; this provides a rel-

ative estimate of the information lost when a given distribu-

tion is used to represent a data set (Akaike, 1974). This pro-

cess was performed on data for each month of the year, and

separately for the 288 monthly-diurnal time periods. The fit-

ted distributions estimated the probability that a “non-detect”

(below the LOD) was a concentration in the range 0 µg m−3

to the LOD.

When non-detects occurred for all VOCs in a particular

hour, these were excluded from the MLE analysis on the as-

sumption that this was due to instrument failure. To avoid the

unnecessary omission of valid concentration measurements,

all other data were used, and consequently all remaining non-

detects were assumed to be values below LOD. A number of

non-detects due to the selective failure of the instrument to

measure a particular VOC may be falsely considered to be

below the LOD. However, the following evidence indicates

that any bias introduced is likely to be small. Annual medi-

ans were calculated twice using MLE for Harwell in 2011,

first, with the non-detects unique to each VOC, secondly

with their omission (i.e. assuming all these non-detects were

due to reasons other than LOD). The increase when omit-

ted was below 10 % for 11 of the 27 VOCs, including the

VOCs with concentrations consistently well above the LOD.

For example, the 5th percentile concentrations (of all valid

concentrations) of propane, ethane and toluene were 1200,

800 and 175 % above the LOD and consequently the num-

ber of unique non-detects was relatively low (4, 2 and 1 %

of values, respectively). The increase when the unique non-

detects were omitted was 10, 8 and 3 % for propane, ethane

and toluene, respectively. Other VOCs had a 5th percentile

concentration much closer to the LOD, increasing the like-

lihood of periods during which concentrations were below

LOD. For 9 of the 10 VOCs with the largest annual median

increase, the 5th percentile concentration was the LOD.

In summary, for those VOCs with few unique non-detects,

the potential inclusion of non-LOD-related non-detects re-

sulted in a small change in calculated concentration, while

VOCs with a larger proportion of non-detects had concentra-

tions more frequently close to the LOD, increasing the like-

lihood that the unique non-detects resulted from concentra-

tions below the LOD. This indicates that the decision to as-

sign all unique non-detects as values below the LOD was jus-

tified, as the potential bias introduced was small, and there-

fore the maximum of valid VOC concentration data was pre-

served and used in the MLE distribution calculations. Intra-

annual and monthly-diurnal variation in VOC concentrations

were summarised using the monthly median concentrations

and the 24 hourly median concentrations for each month

from the best-fit distributions, respectively.

For each VOC, each of the 288 median monthly-diurnal

concentrations was multiplied by the corresponding model-

derived photochemical ozone creation potential (POCP)

(Derwent et al., 2007a), to weight the observed diurnal vari-

ation of VOCs according to their different propensities for

O3 formation. In Derwent et al. (2007a), a VOC POCP was

defined as the ratio (multiplied by 100) of the increase in

O3 due to increased emissions of the VOC simulated in a

Lagrangian model along a trajectory traversing from central

Europe to the UK, relative to the modelled increase in O3

from the same mass increase in emissions of ethene (the ref-

erence POCP VOC assigned a value of 100). Multiple stud-

ies have calculated reactivity scales of O3 production poten-
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tial (OPP) for a range of VOCs using incremental reactivity

methods (Luecken and Mebust, 2008; Derwent et al., 2007a;

Hakami et al., 2004; Martien et al., 2003), multi-parent as-

signment (Bowman, 2005) and “tagging” of VOC degrada-

tion sequences (Butler et al., 2011). These varying methods

were shown to be generally well correlated (Butler et al.,

2011; Luecken and Mebust, 2008; Derwent et al., 2010). The

Derwent et al. (2007a) POCPs are appropriate to use in this

study as they were calculated under simulated north-western

European conditions. Previous comparison with other VOC

reactivity scales indicated uncertainty in POCP values of up

to ±5 POCP units which equates to an average of ±15 % for

the measured VOCs in this study (Derwent et al., 2007b).

The diurnal variation of individual VOCs due to photo-

chemical depletion was summarised by calculating the ratio

of each POCP-weighted VOC concentration to the POCP-

weighted ethane concentration. Ethane has the second small-

est POCP of the measured VOCs, 87 % smaller than the av-

erage, and 20 % smaller than the next smallest POCP (ben-

zene), so using this ratio removed the effect on diurnal VOC

concentration of changes in boundary layer mixing depth.

The VOC with the smallest POCP, ethyne, had low data cap-

ture at Harwell between 1999 and 2001 (maximum 57 % in

2001). Additionally, ethane has a smaller rate coefficient for

reaction with OH compared with ethyne (Table 1), and the

POCPs were similar (7 for ethyne vs. 8 for ethane). Ratios of

VOC / ethane have been used previously to estimate the pho-

tochemical loss of VOCs (Yates et al., 2010; Helmig et al.,

2008; Honrath et al., 2008). It is also assumed that the diurnal

variation of VOCs at the site is not driven by differences in

the magnitude of VOC emissions along the trajectories con-

tributing VOCs to that site during the day and at night. This

can be verified by the similar monthly median VOC emis-

sions emitted along the path of 96 h trajectories (outlined in

Sect. 2.3) arriving at night (03:00) and afternoon (15:00).

For example, at Harwell in 2011, night trajectory VOC emis-

sions were no more than ±12 % different from afternoon.

Hence, a daytime decrease in POCP-weighted VOC / ethane

ratio indicates greater photochemical depletion of the VOC

relative to ethane. The magnitude of diurnal photochemical

variability for each VOC was derived from the difference

between the average POCP-weighted VOC / ethane ratio at

night (01:00–05:00) and in the afternoon (13:00–17:00). A

positive value indicates daytime photochemical depletion of

the VOC relative to ethane. The sum of positive daytime pho-

tochemical depletion of individual VOCs produces the total

VOC diurnal photochemical depletion for each month. The

monthly pattern of total VOC diurnal photochemical deple-

tion was compared with the monthly pattern of the regional

O3 increment. During those months with a positive regional

O3 increment, the relative contribution of each VOC to total

VOC photochemical depletion was used as an estimate of the

relative contribution of each VOC to the VOC chemical loss

which contributed to the production of the positive regional

O3 increment.

At Auchencorth, the analysis of VOC diurnal photochem-

ical depletion was not possible in 2010 and 2011 due to low

data capture, which compromises the ability of MLE to ac-

curately estimate median VOC concentrations. This is par-

ticularly important for ethane, as a large error in the fitted

distribution for ethane propagates to all VOC / ethane ratios.

In 2011, the average proportion of non-detects for the mea-

sured VOCs was 56 % when the six VOCs with no measure-

ments above LOD were excluded (34 % for ethane). In 2012

this decreased to 34 % (10 % for ethane), and VOC diurnal

photochemical depletion was calculated. For comparison, at

Harwell, there were on average 26 % non-detects for each

VOC species in 2011 (7 % for ethane).

2.3 Drivers

The two main drivers producing the “state” of this chemi-

cal climate, i.e. VOC diurnal photochemical depletion, which

are considered here are meteorology and anthropogenic VOC

emissions. Other drivers such as biogenic VOC emissions

and NOx concentrations are drivers of the regional O3 incre-

ment. Meteorology and anthropogenic VOC emissions are

the focus due to the benefits previously outlined in improve-

ment in health- and vegetation-relevant O3 impacts that result

from anthropogenic VOC emission reductions. The meteo-

rology was characterised by monthly mean, maximum and

minimum temperature, and number of hours of sunshine for

Harwell and Auchencorth obtained from the UK Met Of-

fice climate summaries for “South East and Central South

England” and “East Scotland”, respectively (http://www.

metoffice.gov.uk/climate/uk/datasets/#) (Perry and Hollis,

2005).

To investigate geographical emission sources, the lo-

cations of each of the 96 hourly time points of the

2920 HYSPLIT 96 h back trajectories arriving at 3 h in-

tervals per year were mapped to the 0.5◦× 0.5◦ grid-

ded VOC emissions reported by EMEP and used in

the EMEP model (Mareckova et al., 2013; Simpson et

al., 2012). This grid encompasses the region 30.25–

75.25◦ N, 29.75◦W to 60.25◦ E, and the emissions in

each grid square are disaggregated into 11 SNAP source

sectors (http://ceip.at/ms/ceip_home1/ceip_home/webdab_

emepdatabase/emissions_emepmodels/). When the location

of the trajectory during a particular hour fell within the grid-

ded domain, the annual emissions and country of the grid

square over which the trajectory was located were assigned

to that time point. Emissions were assigned to the country

which had the greatest emissions when the grid square strad-

dled an international border. Annual emissions were mod-

ified by prescriptive month, day-of-week and hour-of-day

time factors (Simpson et al., 2012) to obtain an estimate

of the hourly emissions from each SNAP sector during the

hour in which the trajectory passed over the grid cell. The

monthly-average hourly SNAP emission estimates at each of

the 96 1 h time points were summed to give the average Euro-
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Table 1. Summary data for the measured VOCs at Auchencorth and Harwell (note that m-xylene and p-xylene are reported as a single

measurement). The rate coefficients at 298 K for reactions of each VOC with OH are taken from Atkinson and Arey (2003), and the POCPs

are from Derwent et al. (2007a). The “main source” column gives the SNAP sector with the largest contribution of that VOC to UK annual

anthropogenic emissions in 2011, with the exception of isoprene which is mainly of biogenic origin (defined in Sect. 2.3). The listed SNAP

sectors are SNAP 2, non-industrial combustion plants; SNAP 4, production processes; SNAP 5, extraction and distribution of fossil fuels;

SNAP 6, solvent use; SNAP 7, road transport; and SNAP 8, non-road transport.

VOC Class Chemical formula Main source OH reaction rate constant POCP

(1012
× k (298 K)

(cm3 molecule−1 s−1))

ethane alkane C2H6 SNAP 5 (65 %) 0.248 8

propane alkane C3H8 SNAP 5 (36 %) 1.09 14

n-butane alkane C4H10 SNAP 6 (44 %) 2.36 31

isobutane alkane C4H10 SNAP 5 (61 %) 2.12 28

n-pentane alkane C5H12 SNAP 5 (42 %) 3.80 40

isopentane alkane C5H12 SNAP 5 (41 %) 3.60 34

n-hexane alkane C6H14 SNAP 6 (42 %) 5.20 40

2-methylpentane alkane C6H14 SNAP 6 (43 %) 5.20 41

n-heptane alkane C7H16 SNAP 5 (43 %) 6.76 35

n-octane alkane C8H18 SNAP 5 (64 %) 8.11 34

isooctane alkane C8H18 SNAP 4 (100 %) 3.34 25

ethene alkene C2H4 SNAP 8 (27 %) 8.52 100

propene alkene C3H6 SNAP 4 (36 %) 26.3 117

1-butene alkene C4H8 SNAP 7 (26 %) 31.4 104

cis-2-butene alkene C4H8 SNAP 5 (87 %) 56.4 113

trans-2-butene alkene C4H8 SNAP 5 (90 %) 64.0 116

1,3-butadiene alkene C4H6 SNAP 8 (57 %) 66.6 89

isoprene alkene C5H8 biogenic 100 114

ethyne alkyne C2H2 SNAP 7 (46 %) 0.78 7

benzene aromatic C6H6 SNAP 2 (35 %) 1.22 10

toluene aromatic C7H8 SNAP 6 (63 %) 5.63 44

ethylbenzene aromatic C8H10 SNAP 6 (54 %) 7.0 46

o-xylene aromatic C8H10 SNAP 6 (50 %) 13.6 78

m-xylene aromatic C8H10 SNAP 6 (71 %) 23.1 86

p-xylene aromatic C8H10 SNAP 6 (50 %) 14.3 72

1,2,3-trimethylbenzene aromatic C9H12 SNAP 6 (79 %) 32.7 105

1,2,4-trimethylbenzene aromatic C9H12 SNAP 6 (74 %) 32.5 110

1,3,5-trimethylbenzene aromatic C9H12 SNAP 6 (71 %) 56.7 107

pean VOC emissions estimate of all the trajectories arriving

in that month (henceforth the VOC trajectory emissions es-

timate (TEE)) and the proportions derived from individual

countries.

The total VOC TEE from the 11 SNAP sectors were

speciated using the 114 VOC speciated profiles from Pas-

sant (2002) to quantify the proportion of emissions emitted as

one of the 27 measured VOCs. The profiles were first applied

to UK annual emissions to obtain speciated profiles for each

SNAP sector which could be applied to the VOC TEEs. Each

year, at the most disaggregated level, the UK National Atmo-

spheric Emissions Inventory (NAEI) reports total VOC emis-

sions for 337 source activities (http://naei.defra.gov.uk/data/)

(Passant et al., 2013). In Passant (2002), each of these ac-

tivities is assigned one of the 114 speciation profiles which

in total consider the contribution from 630 VOCs, includ-

ing aggregated groups of VOCs, for example “C7 alkanes”.

The total annual UK emissions for each activity were ap-

portioned between the VOCs in the assigned profile. This

resulted in a matrix of 337 columns of source activities,

and 630 rows of VOCs. Activities were then grouped into

the 55 NFR codes used by NAEI, and then into SNAP sec-

tors 1–9 based on the NFR–SNAP conversion recommended

by the EMEP Centre for Emission Inventories and Projec-

tions (CEIP; http://www.ceip.at/fileadmin/inhalte/emep/pdf/

nfr09_to_snap.pdf). There were no reported VOC emissions

from activities falling under SNAP 10 (agriculture) and

SNAP 11 (other). The relative contribution of each VOC to

total annual UK SNAP emissions was calculated to provide

speciated emission profiles which were used to speciate the

monthly SNAP sector VOC TEEs. This produced an esti-

mate of the contribution to total monthly VOC TEE from

630 VOCs (Fig. 2). This contribution was then multiplied by
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Figure 2. Flowchart demonstrating the process used to calculate

the contribution of 630 individual VOCs to the monthly total VOC

trajectory emissions estimate (TEE; defined in Sect. 2.3). The green

rectangles represent products or data sets, and the blue rounded rect-

angles represent processes applied to transform a data set. Further

explanation is provided in Sect. 2.3.

the VOC’s POCP to weight it according to O3 formation po-

tential.

The EU emissions inventory disaggregates annual emis-

sions from SNAP sectors 1–9 into 91 NFR codes for each

EU member state (EEA, 2014). The monthly change in the

SNAP sector VOC TEE was attributed to changes in the con-

tribution from the more narrowly defined NFR codes, based

on the country-specific contributions of each NFR sector to

Figure 3. Flowchart representing the process used to derive the con-

tribution from NFR codes to monthly TEE. The green rectangles

represent products or data sets, and the blue rounded rectangles

represent processes applied to transform a data set. Note that the

separation of the TEE into contributions from two countries is illus-

trative, and in most cases a greater number of countries contributed

to the TEE in a given month. Further explanation is provided in

Sect. 2.3.

annual SNAP sector emissions. The VOC TEE from each of

the 91 NFR codes for each country were summed across all

countries to obtain the contribution of each NFR code to the

total VOC TEE for each month (Fig. 3).

The emission inventories used in this study have several

sources of uncertainty (EEA, 2013; Koohkan et al., 2013).

The 0.5◦× 0.5◦ grid squares mean that numerous distinct

sources, each with uncertainties in emission factors and ac-

tivity rates, are aggregated together to produce the estimate

of emissions from a particular SNAP or NFR source sector.

The size of the grid square also does not necessarily reflect

the size of the area from which emissions influence the at-

mospheric composition of the trajectory air mass as it passes

over. The VOC TEE is therefore used as a relative compari-

son spatially and temporally, rather than a definitive quantifi-

cation of the VOC emissions emitted into an air mass. In ad-

dition, there are uncertainties in the speciation of total VOC

emissions to individual components (Borbon et al., 2013).

However, the emission inventories used here are the best es-

timate of the spatial distribution of anthropogenic VOC emis-

sions across Europe. While studies have shown discrepancies

between the EMEP emission inventory and other estimates

of European emissions (Koohkan et al., 2013), EMEP grid-

ded emissions have also been shown previously to capture
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variation in VOC measurement data (Sauvage et al., 2009;

Derwent et al., 2014).

3 Results and discussion

3.1 Impact: regional O3 production/destruction

assessment

The difference between hemispheric background O3 con-

centrations and regional background O3 concentrations rel-

evant for Harwell for 2001 (representative of 1999–2001)

and 2011 (representative of 2010–2012), and for Auchen-

corth in 2012, is shown in Fig. 4. Although there was inter-

annual variability within each time period, the data for these

years illustrate the main differences between three differ-

ent phases of the regional O3 increment chemical climate

both temporally at Harwell (1999–2001 vs. 2010–2012) and

spatially (Harwell vs. Auchencorth). At Harwell, in 2001, a

positive regional O3 increment occurred in each month be-

tween May and September (Fig. 4a). The annual maximum

regional O3 increment (i.e. the difference between hemi-

spheric background and regional background O3 concentra-

tions) occurred in the afternoon in July 2001 (42 µg m−3),

while monthly regional O3 increments peaked in excess of

20 µg m−3 in June and August and in excess of 10 µg m−3

in May and September. A similar pattern occurred in 2000,

but with a lower annual maximum (26 µg m−3 in July). In

1999, positive regional O3 increments were greater, extend-

ing from April to September with the annual maximum in

July (53 µg m−3), and increments in excess of 30 µg m−3 in

June and August. In 2011, at Harwell, positive regional O3

increments occurred between April and September (Fig. 4b)

but their magnitudes were reduced compared with the 1999–

2001 phase. Only 2 months, April and July, had maximum

regional O3 increments > 10 µg m−3 (11 and 32 µg m−3, re-

spectively). In 2012, the monthly regional O3 increment

exceeded 10 µg m−3 in May (12 µg m−3), July (28 µg m−3)

and August (11 µg m−3) and occurred more modestly in

April, June and September. In 2010, the regional O3 incre-

ment in June was 24 µg m−3, which then decreased in July

(19 µg m−3). Reductions in regional O3 have been reported

in the UK previously, using high-percentile O3 concentra-

tions as an indicator of regionally derived episodes, rather

than calculation of the average monthly-diurnal regional O3

increment. For example, Munir et al. (2013) attributed nega-

tive trends in highest O3 concentrations calculated at 22 UK

monitoring sites (13 sites with significant trends) to regional

reduction in O3 precursor emissions between 1993 and 2011.

The regional O3 increments at Auchencorth were substan-

tially lower than at Harwell. Between 2010 and 2012, the

maximum regional O3 increment observed was 14 µg m−3 in

July 2011. In 2012 (Fig. 4c), the maximum regional O3 incre-

ment was 4 µg m−3. The spatial differences in the extent of

regional contribution to O3 variation at Harwell and Auchen-

Figure 4. Monthly–hourly average differences between hemi-

spheric background O3 and regional background O3 concentrations

(µg m−3) for (a) 2001 and (b) 2011 in south-east England, the area

for which Harwell is representative, and (c) the difference between

hemispheric and measured O3 concentrations for 2012 at Auchen-

corth.

corth are consistent with a previous study of rural UK O3

spatial variability (Jenkin, 2008).

3.2 State: VOC concentration and chemical depletion

The monthly median concentrations of the 27 VOCs mea-

sured at Harwell and Auchencorth have a pronounced sea-

sonal cycle with highest total summed VOC concentrations

in winter at each site, albeit with concentrations at Auchen-

corth substantially lower than at Harwell (Fig. 5 shows an

example year for each of the three periods). Monthly varia-

tion was lower at Auchencorth: the difference between min-

imum and maximum monthly total median VOC concentra-

tions at Auchencorth in 2012 was 6.2 µg m−3, compared with

9.5 and 13.1 µg m−3 at Harwell in 2011 and 2001, respec-

tively. Monthly median total VOC concentrations at Har-
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Figure 5. Stacked bar chart of median VOC concentrations at (a) Harwell 2001, (b) Harwell 2011, and (c) Auchencorth (2012). The error

bars show the sum of the 95th percentile confidence interval in the median VOC concentrations. This represents the error introduced by

representing the data set with the chosen fitted distribution (see text).

well in 1999–2001 and 2010–2012 were similar in winter

months (January, February, December) and generally ranged

between 6 and 18 µg m−3. In summer (June, July, August),

between 1999 and 2001, total VOC concentrations were be-

tween 5 and 13 µg m−3 but between 2010 and 2012 concen-

trations were lower, between 3 and 6 µg m−3, and only June

2010 had higher total VOC concentrations than the summer

month in 1999–2001 with the lowest total VOC concentra-

tion. In 2001 six VOCs were not measured, and these con-

stituted between 2.1 and 7.4 % of monthly total measured

VOC concentrations in 2011. The non-measurement of these

VOCs does not alter the conclusions relating to the differ-

ences in total VOC concentrations observed between 1999–

2001 and 2010–2012.

The relative composition of total measured VOCs showed

differences between 2001 and 2011 at Harwell. Ethane,

propane and n-butane had the largest measured concen-

trations. Ethane contributed on average 22± 4 % of to-

tal monthly measured VOC concentrations in 2001, com-

pared with 33± 6 % in 2011 (annual average monthly-

measured ethane concentration had a small increase from

2.0± 0.8 µg m−3 in 2001 to 2.3± 1 µg m−3 in 2011), while

the relative contribution from propane did not vary (15 %

in each year, average monthly concentrations in 2001 and

2011 were 1.5± 0.9 and 1.2± 0.8 µg m−3, respectively)

and that from n-butane decreased from 11± 2 to 8± 1 %

(1.1± 0.6 µg m−3 in 2001 and 0.6± 0.4 µg m−3 in 2011). Al-

though these differences are not large, they may result from

differences in the reduction of VOC emission sources be-

tween 1999–2001 and 2010–2012. The aim of this work,

however, was not the determination of long-term trends in ab-

solute VOC concentrations, and the reader is referred to Dol-

lard et al. (2007), von Schneidemesser et al. (2010) and Der-

went et al. (2014) which have undertaken analyses of trends

in VOC concentrations at multiple UK sites, including Har-

well and Auchencorth.

The extent of diurnal photochemical loss of VOCs over

the year is shown in Fig. 6. At Harwell, periods of increased

VOC diurnal photochemical depletion mirror the monthly

magnitude of regional O3 increments (Fig. 4 cf. Fig. 6). In

2001, at Harwell, both the regional O3 increment and VOC

diurnal photochemical depletion increased from June to July,

before declining in August. In 2011 there was a local maxi-

mum in the regional O3 increment in April, followed by the

annual maximum in July, mirrored by VOC diurnal photo-

chemical depletion. During 2012 the regional O3 increment
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Figure 6. Monthly variation in VOC diurnal photochemical reactivity as defined by the difference between night (average of 01:00–05:00)

and afternoon (13:00–17:00) POCP-weighted VOC / ethane ratios for (a) Harwell 2001, (b) Harwell 2011, and (c) Auchencorth 2011. Note

the very different vertical scales.

was minimal at Auchencorth, and the magnitude of VOC di-

urnal photochemical depletion was low, with a small peak in

August.

The association between the monthly variation in the re-

gional O3 increment and total VOC diurnal photochemical

depletion at Harwell indicates that the variation in VOC

chemical loss contributing to the regional O3 increment is

represented by the VOC diurnal photochemical depletion.

The relative contribution of each measured VOC to to-

tal VOC diurnal photochemical depletion during months of

enhanced regional O3 increment therefore indicates where

emission reductions should be targeted to most effectively

reduce VOC chemical loss and hence to reduce the magni-

tude of the regional O3 increment. The contributions of each

measured VOC to total VOC diurnal photochemical deple-

tion during the month of maximum regional O3 increment

in 2010, 2011 and 2012 at Harwell are shown in Fig. 7. A

positive value indicates lower POCP-weighted VOC / ethane

ratio during the afternoon compared to night (i.e. photochem-

ical depletion). A higher POCP-weighted VOC / ethane ra-

tio during the afternoon results in the negative value. Ethene

had the largest contribution during these months (34, 29 and

45 % of total measured VOC diurnal reactivity in 2010, 2011

and 2012, respectively). The sum of m+p-xylene also made

a major positive contribution during 2010 (15 %) and 2011

(13 %). The majority of the remaining measured VOCs made

smaller, positive contributions. In July 2011, 71 % of the re-

maining VOCs (i.e. all VOCs excluding ethene and m+p-

xylene) contributed on average 3.4± 2.5 % to total positive

VOC diurnal variation. In July 2012, the maximum regional

O3 increment was 12 % lower than July 2011, and only

58 % of the remaining VOCs made positive contributions. In

June 2010, the maximum regional O3 increment was 25 %

lower, and 54 % of the remaining VOCs contributed. VOCs

with larger VOC / ethane ratios in the afternoon included

isoprene, which is predominantly of biogenic origin (von

Schneidemesser et al., 2011). Laurent and Hauschild (2014)

modelled the impact on O3 formation of speciated VOC

emissions from 31 countries and also reported m-xylene and

ethene to have the largest impact of 270 VOCs on regional

O3 formation.

Figure 8 is the analogous plot to Fig. 7 for 1999–2001 at

Harwell. In 1999–2001, m+p-xylene had the largest diur-

nal photochemical depletion, followed by ethene. However,

there were much larger negative VOC / ethane diurnal vari-

ations for some anthropogenic VOCs compared to 2010–

2012 (Fig. 5), i.e. afternoon POCP-weighted VOC / ethane

ratios were substantially higher than at night. This indicates
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that processes other than photochemical depletion, e.g. local

emission patterns, contributed to diurnal variation in POCP-

weighted VOC / ethane ratios for these VOCs in 1999–2001.

Isopentane had the largest negative difference but had a con-

sistent positive contribution in 2010–2012. Toluene also had

a negative value in 1999 and 2000. Therefore, from 1999–

2001 to 2010–2012 there was a change in the balance be-

tween emissions of isopentane and toluene and their photo-

chemical removal to the point where photochemical deple-

tion dominated during the day, and VOC / ethane ratios were

lower in the afternoon than at night. Derwent et al. (2014)

calculated exponential decreases in the concentrations of

these VOCs at urban locations in the south-east of England,

where Harwell is located, attributed to the effective control of

evaporative and exhaust emissions from petrol-engine vehi-

cles. Toluene has an atmospheric lifetime of ∼ 1.9 days with

respect to reaction with OH (Atkinson, 2000), so local day-

time toluene emissions would not deplete substantially dur-

ing transport to the monitoring site. The observed decreasing

trends at sites close to emission sources in the south-east of

England suggest a decrease in the influence of local isopen-

tane and toluene emissions in determining the diurnal profile

of these VOCs at Harwell and hence afternoon depletion of

regionally emitted toluene and isopentane was observed in

2010–2012.

3.3 Drivers of chemical climate state: meteorology and

emissions

3.3.1 Meteorology

The monthly-averaged meteorological data for the UK re-

gions relevant for Harwell in 2001 and 2011 and Auchen-

corth in 2012 are shown in Fig. 9. Variation in tempera-

ture and sunshine is often associated with spatiotemporal

differences in VOC diurnal photochemical depletion and re-

gional O3 increment. For example, temperatures were gener-

ally lower in East Scotland than South East and Central South

England but the number of hours of sunshine were compara-

ble, although solar intensity is less in Scotland, hence a re-

duced VOC photochemical depletion and regional O3 incre-

ment at Auchencorth. At Harwell, in 2001, annual maximum

VOC diurnal photochemical depletion occurred in July, coin-

ciding with annual maximum monthly temperature, while in

July 2011 a combination of relatively high temperature and

hours of sunshine (although neither were annual maxima)

coincided with annual maximum VOC diurnal photochemi-

cal depletion. These summers were typical of the 1999–2012

period; monthly mean temperatures were between −7 and

+4 % compared to the 1999–2012 average, and hours of sun-

shine were between −14 to +11 % compared to the average.

However, not all variation in VOC diurnal photochemical

depletion and regional O3 increment were associated with

changes in meteorology. For example, at Harwell, in April

2011 there was a larger regional O3 increment compared with

Figure 7. Individual VOC diurnal photochemical reactivity as de-

fined by the difference between night (average of 01:00–05:00) and

afternoon (13:00–17:00) POCP-weighted VOC / ethane ratios for

(a) June 2010, (b) July 2011 and (c) July 2012 at Harwell. A lower

ratio in the afternoon results in a positive value (i.e. photochemi-

cal depletion), while a higher afternoon ratio results in a negative

value. These months correspond to the periods of annual maximum

regional O3 increment at Harwell (see Fig. 2).

April 2001. This coincided with a 4 ◦C higher mean tempera-

ture and 95 more hours of sunshine in South East and Central

South England. In May 2011 the temperature and sunshine

were similar to April 2011, but VOC diurnal photochemical

depletion and the regional O3 increment decreased. Hence,

other factors, such as the strength of VOC emission sources

over which an air mass passes, also influence VOC diurnal

photochemical depletion and are discussed in Sect. 3.3.2.

3.3.2 Emissions

Variation in the monthly-averaged European anthropogenic

VOC TEE is shown in Fig. 10. The VOC TEE is the sum

of hourly emissions from the grid squares the trajectories

passed over in the 96 h prior to arrival at the supersites
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Figure 8. Individual VOC diurnal photochemical reactivity as de-

fined by the difference between night (average of 01:00–05:00)

and afternoon (13:00–17:00) POCP-weighted VOC / ethane ratios

in (a) July 1999, (b) July 2000 and (c) July 2001 at Harwell. A

lower ratio in the afternoon results in a positive value (i.e. pho-

tochemical depletion), while a higher afternoon ratio results in a

negative value. These months correspond to the periods of annual

maximum regional O3 increment. To emphasise the positive con-

tributions to VOC photochemical cycling, the negative values have

been truncated.

(unit: Mg 96 h−1), rather than a definitive quantification of

the emissions directly impacting upon the measured atmo-

spheric composition at the supersites. Compared with Har-

well in 2001, the annual average VOC TEE, by mass, was

64 % smaller in 2011 at Harwell and 76 % smaller in 2012

at Auchencorth. For the purposes of clarity the following

assessment focuses on Harwell, where significant regional

O3 increment has been demonstrated (Sect. 3.1). The biggest

change in contribution from the 11 SNAP sectors to aver-

age VOC TEE between 2001 and 2011 at Harwell was for

SNAP 7 (road transport), which averaged 31 % of the total 10

VOC TEE in 2001, compared with 9 % in 2011 (Fig. 10). The

Figure 9. Average monthly mean temperatures (blue, maximum and

minimum temperatures shown as whiskers) and hours of sunshine

(red) from the UK Meteorological Office (http://www.metoffice.

gov.uk/climate/uk/datasets/#) for (a) South East and Central South

England 2001, (b) South East and Central South England 2011 and

(c) East Scotland 2012.

biggest change was for SNAP 7 (road transport), which av-

eraged 31 % of the total VOC TEE in 2001, compared to 9 %

in 2011. Emissions from SNAP 6 (solvents) were the largest

contribution to the VOC TEE during both periods, contribut-

ing 50 % of total emissions on average in 2011, compared

to 34 % in 2001. Emissions from SNAP 4 (production pro-

cesses) were the second largest contributor on average in

2011 (11 % of the total VOC TEE), followed by SNAP 7

(road transport), and SNAP 5 (extraction and distribution of

fossil fuels), both contributing 9 %.
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Figure 10. Monthly-average VOC 96 h back-trajectory emission estimates prior to arrival at the receptor site, disaggregated into 11 SNAP

source sectors for (a) Harwell 2001, (b) 2011 Harwell, and (c) Auchencorth 2012.

Monthly variation in VOC TEE mirrors that of VOC di-

urnal photochemical depletion and hence the magnitude of

the regional O3 increment. The period of April–July 2011

provides a useful case study to demonstrate the nature of the

emissions driver. This period shows how variation in both

the magnitude of the VOC TEE, as well as the proportion of

emissions emitted closer to the receptor site (temporally) can

influence the extent of VOC diurnal photochemical depletion

and the magnitude of the regional O3 increment. April and

May 2011 have similar meteorological conditions (Fig. 9),

but VOC diurnal photochemical depletion was lower in May

due to a 62 % decrease in the VOC TEE compared to April.

The VOC TEE decreased in June, then increased in July. This

latter increase, coupled with increased temperatures and solar

intensity in summer, provided conditions conducive to pro-

ducing the observed annual maximum in VOC diurnal pho-

tochemical depletion for 2011.

The proportion of the total VOC TEE derived from the fi-

nal 4 h prior to a trajectory’s arrival, plus the hour of arrival,

was labelled as the “final 4 h” VOC TEE to investigate the ef-

fect of variation in the proportion of emissions emitted closer

to the monitoring site. In 2011 the final 4 h was on average

28 % of the total VOC TEE (Fig. 11a). In May and June 2011

it was above average (36 and 44 %, respectively) and in April

and July it was lower (17 and 20 %, respectively). While the

4 h cut-off for this calculation was somewhat arbitrary, it was

based on consideration of the average atmospheric lifetimes

of the individual VOCs (Atkinson, 2000) which indicate that

most VOCs emitted in the final 4 h have insufficient time to

form O3. Between June and July 2011 there was a 32 % in-

crease in median VOC concentrations due to an increased

VOC TEE (Fig. 11b). However, there was a 275 % increase

in VOC diurnal photochemical depletion as a larger propor-

tion of emissions were emitted earlier along the air-mass tra-

jectory (Fig. 11c). Hence, in May and June, lower total VOC

TEE compared to April and July, respectively, coupled with

a larger proportion of VOCs emitted in the final 4 h, resulted

in the reduced regional O3 increment impact (Fig. 11d).

The speciated VOC monthly trajectory emission estimates,

based on a UK-specific speciation of the total VOC TEE for

nine SNAP sectors, are shown in Fig. 12 for July 2001 and

2011. Individual VOC trajectory emission estimates were ex-

pressed as the percentage of the total POCP-weighted emis-

sions and the comparison between 2001 and 2011 illustrates

the contrast and similarities in contribution from individual

VOCs to the VOC TEE during the months of maximum re-

gional O3 increment. The biggest decreases between 2001

and 2011 were for isopentane (4.1 % total POCP emissions

in 2001, 1.7 % in 2011), and toluene (6.5 % in 2001, 4.5 % in

2011). These decreases mirror the absence of much greater

POCP-weighted VOC / ethane ratios in the afternoon com-

pared to night for toluene and isopentane in 2010–2012,

which were observed in 1999–2001 and attributed to vari-

ation in local emissions (discussed in Sect. 3.2 and visu-
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Figure 11. Summary of variables relevant to the assessment of the

effect of variation in the proportion of emissions accumulated close

(temporally) to the monitoring site: (a) the final 4 h TEE metric,

i.e. the proportion of the TEE emitted into the air mass during the

4 h prior to arrival at the site (defined in Sect. 3.3.2), (b) monthly-

average sum of measured VOCs, (c) monthly-average sum of VOC

diurnal photochemical depletion, (d) monthly maximum difference

between hemispheric background concentrations and regional back-

ground concentrations (a positive value indicates additional regional

O3 production).

alised as “negative” VOC diurnal photochemical depletion

in Figs. 7 and 8)

Monthly variation in the contribution of measured VOCs

to the VOC TEE was not consistent with variation in the con-

tribution of individual VOCs to total measured VOC diur-

nal photochemical depletion. This is in contrast to the ob-

served changes between 2001 and 2011 in VOC contribu-

tion to TEE and VOC diurnal photochemical depletion and

is effectively illustrated using the April–July 2011 time pe-

riod as an example. For example, in 2011, the VOC diur-

Figure 12. Speciation of average VOC back-trajectory emission es-

timates in (a) July 2001, and (b) July 2011 at Harwell. The specia-

tion was based on source profiles catalogued in Passant (2002) and

the relative contribution of individual activities to annual total VOC

emissions.

nal photochemical depletion peak in July (Fig. 6) was much

greater than in April due to more intense sunshine and higher

temperatures. This increase was not equally reflected across

the measured VOCs, indicating differences in the speciation

of the VOC TEEs prior to arrival at the site. For example,

toluene was 4.2 % of total VOC diurnal photochemical de-

pletion in April, increasing to 9.6 %, in July and the 1,3,5-

trimethylbenzene contribution increased from 0.1 % in April

to 8 % in July. The monthly-averaged speciated VOC TEEs

do not reflect these changes and show little monthly variation

within a given year. The speciated VOC monthly TEE cal-

culation assumes that the SNAP sector component activities

(i.e. the activities for which speciated profiles are defined;

Passant, 2002) contribute similarly to the emissions exposure

of the parent SNAP sector in each month of the year. For ex-

ample, it is assumed that an x % increase in SNAP emissions

results from an x % increase in emissions from all component

activities. It is unlikely that the SNAP sector emissions in ev-

ery region over which an air mass travels are similarly appor-

tioned between component emission activities. The inability

of this method to account for these spatial differences will

result in the underestimation of the TEE of some VOCs, and

the overestimation of others. Currently, data are only avail-

able on changes in the contribution of more narrowly defined

NFR codes to SNAP sector emissions at a country level and
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Figure 13. Contributions to the average VOC 96 h back-trajectory

emission estimates in April 2011 (green bars) and July 2011 (blue

bars) from countries which contributed at least 0.5 % during one of

the months. The contribution of the UK in July 2011 was 95.8 %

and has been truncated in the plot.

for annual VOC emissions. In 2011 the average contribution

to monthly VOC TEE at Harwell from the UK was 62 %,

with France the second largest contributor at 14 %. Compar-

ing April and July 2011, the contributions from the UK to

the VOC TEE were 50 and 95 %, respectively, with the other

50 % in April resulting from contributions from Germany,

France, Belgium and the Netherlands (Fig. 13). These coun-

tries all have different relative contributions to total SNAP

sector emissions from component NFR source sectors (EEA,

2014).

Highly aggregated SNAP source sectors, and a constant

contribution of component activities to SNAP emissions

were identified as a potential contributing factor to inconsis-

tencies between VOC contributions to TEE and VOC diurnal

photochemical depletion. Disaggregation of the VOC TEEs

into 91 NFR codes, based on country-specific contributions

of these NFR codes to annual VOC emissions in the 11 par-

ent SNAP sectors, accounted for country-specific changes in

NFR sector contributions to monthly VOC TEE at Harwell.

The aim was to show that within each SNAP sector an in-

crease in VOC SNAP emissions can result from an increase

in a specific source activity (e.g. specific NFR code), rather

than a general overall increase. Variability in the contribu-

tion of constituent activities to SNAP emissions could result

in variation in the contribution of individual VOCs to those

emissions. This would therefore demonstrate that the report-

ing of gridded VOC emissions in more disaggregated source

sectors was required, so that more flexible VOC speciation

profiles could be derived than those calculated for the nine

SNAP sectors in this study and those calculated previously,

e.g. Derwent et al. (2007a). For example, in 1999–2001, the

large contribution from SNAP 7 (road transport; Fig. 10) is

more precisely attributed to NFR sectors 1A3bi (passenger

cars) and 1A3bv (gasoline evaporation) which contributed

19 and 11 % to the total VOC TEE in July 2001 (month of

maximum regional O3 increment), respectively, and 87 % of

the SNAP 7 emissions estimate. The next largest contribution

was from 3D2 (domestic solvent use, 10 %), a component of

SNAP 6 (solvents). Between 2010 and 2012, SNAP 6 was the

major contributor to the VOC TEE. During July 2011, SNAP

6 component NFR sectors 3D2 (domestic solvent use) and

3D3 (other product use) contributed 18 and 12 % of the to-

tal VOC TEE (65 % of the SNAP 6 emissions estimate). The

SNAP 4 (production processes) component 2D2 (food and

drink) was the third largest contributor (10 % in July 2011).

The two road transport categories contributed 4 % (1A3bi)

and 1 % (1A3bv) to the total VOC TEE in July 2011.

The difference between the contribution of 91 NFR codes

to the average VOC TEE between April and July 2011 is

shown in Fig. 14 to demonstrate the variability in contribu-

tion of component activities to parent SNAP sector emis-

sions. Between these months, the cumulative change in the

contribution of the nine SNAP sectors to the total VOC TEE

was 13.4 %, compared to a change of 15.9 % for the 91 NFR

codes. However, the changes in NFR code contributions were

not equally spread between the constituent activities of a

SNAP sector; they were concentrated in relatively few NFR

sectors. For example, between April and July 85 % of the

NFR change resulted from a decrease in 10 out of the 91

NFR sectors. The sectors “residential: stationary plant com-

bustion” and “industrial coating application” show the great-

est decrease, while sectors “food and drink” and “venting

and flaring” show the largest increase (identified by stars

in Fig. 14). The disaggregation of SNAP sector VOC TEEs

also illustrates changes of opposite sign in the contribution

of component NFR sectors under the net changes in SNAP

sector. For example, SNAP sector 4 (production processes)

increased in contribution between April and July by 2.7 %

(12.0–14.7 %). Following disaggregation, this change was

seen to result from a 3.4 % increase in NFR sector 2D2 (food

and drink) and a 0.76 % decrease in 2B5 (other chemical

industry). NFR-sector-level speciated profiles can therefore

give much more specific information on the emission source

drivers of VOC diurnal photochemical depletion, though it is

noted that the accuracy of many emission source speciation

profiles is subject to discussion (Borbon et al., 2013). How-

ever, the changes in contribution of NFR sectors to the VOC

TEE calculated here only account for country-level varia-

tion, not for variation in the contribution of NFR sectors to

SNAP emissions on finer spatial scales, such as differences

in NFR sector contribution to SNAP emissions in different

0.5◦× 0.5◦ grid squares for which the SNAP-sector-gridded

emissions are reported. Hence, the future reporting of grid-

ded emissions to NFR code level would more accurately rep-

resent the true nature of VOC emissions across Europe.
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Figure 14. Difference between NFR source sector contributions to average VOC back-trajectory emission estimates (VOC TEE) in April

and July 2011 at Harwell. Also shown are the change in contribution of the SNAP source sectors. These were calculated from the VOC TEE

prior to disaggregation and do not represent the sum of the contribution changes of the constituent NFR source sectors. The source sectors

identified by stars have the largest changes between April and July (Sect. 3.3.2).

3.4 Uncertainties and implications for future

mitigation and monitoring

Two VOCs, ethene and m+p-xylene, consistently had larger

contributions to total VOC diurnal photochemical depletion

compared to the remaining VOC suite. Therefore, a targeted

reduction of these two VOCs (compared to other measured

VOCs) would be most effective in reducing the regional O3

increment. Further reduction of total measured VOC diurnal

photochemical depletion would require a reduction across a

larger number of the remaining measured VOCs. This could

be achieved by lowering emissions from large VOC-emitting

sources rather than focusing on individual VOC species. As

previously identified (Sect. 3.3), between 2010 and 2012, the

largest VOC-emitting sources (NFR codes) were 3D2 (do-

mestic solvent use including fungicides), 3D3 (other product

use) and 2D2 (food and drink).

The 27 measured VOCs studied here are a subset of the

total VOC species emitted by a multitude of anthropogenic

activities and biogenic processes. In 2011, 37.5 % of the re-

ported annual UK anthropogenic VOC emissions were emit-

ted as one of the 27 measured VOCs when speciated us-

ing the Passant (2002) speciation profiles. The UK biogenic

VOC emissions estimate reported to EMEP for 2011 was

91.2 Gg (cf. anthropogenic emissions of 752 Gg) but this

value is uncertain and studies have estimated considerably

higher UK annual biogenic VOC emissions, in excess of

200 Gg (Karl et al., 2009; Oderbolz et al., 2013). Biogenic

VOC contributions to regional O3 increments were not stud-

ied using this methodology. The estimate of 752 Gg of UK

anthropogenic emissions is also subject to uncertainty as-

sociated with defining accurate activity rates and emission

factors for a large number of source activities (EEA, 2013).

The UK National Atmospheric Emissions Inventory (NAEI)

calculated the uncertainty in UK anthropogenic VOC emis-

sions to be ±10 % (Misra et al., 2015). Of the 62.5 % of

UK anthropogenic VOC emissions not emitted as one of the

VOCs measured at the supersites, only the additional mea-

surement of ethanol (13 % of 2011 anthropogenic UK emis-

sions), methanol (4 %) and acetone (3 %) would substantially

increase the proportion of the UK VOC suite for which VOC

diurnal photochemical depletion would be quantified. The

measurement of these three VOCs would increase the propor-

tion of UK anthropogenic emissions emitted as a measured

VOC from 37.5 to 57.5 %. Currently, ethanol, methanol and

acetone constitute 35 % of the unmeasured fraction of UK

anthropogenic emissions. Contributions from the 40 unmea-

sured VOCs with the next highest emissions are required to

make up the same percentage and the remaining unmeasured

emissions fraction comprises 464 VOCs. The large num-

ber of VOCs contributing to the “unmeasured” VOC emis-

sions fraction supports the argument that the targeting of high

VOC-emitting sources would be more beneficial than reduc-

tions in individual VOCs from whatever their source(s). The
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large proportion of UK VOC emissions emitted as ethanol,

methanol and acetone (mainly from SNAP 6 (solvents), from

which 39, 97 and 91 % of UK anthropogenic emissions of

ethanol, methanol and acetone derived in 2011, and SNAP

4 (production processes), which contributed 57 % of ethanol

emissions) suggests that, like ethene and m+p-xylene, they

may have a disproportionately high contribution to VOC di-

urnal photochemical depletion and hence to the magnitude of

the regional O3 increment. Measurement of these oxygenated

VOCs at the supersites would allow their contribution to be

quantified.

Other limitations, in addition to using measurements of

a subset of the emitted VOC suite, include use of monthly-

diurnal averages. Monthly-diurnal averages were required to

use MLE to derive summary statistics and to calculate hemi-

spheric and regional background O3 concentrations. Addi-

tionally, it is more appropriate to consider an ensemble of

air-mass back trajectories to reduce the random uncertainty

associated with their calculation. The integration of air-mass

back trajectories and gridded emission inventories therefore

also benefitted from use of monthly averages. Hence, the

contribution of VOCs to the average increase in regional O3

increment in a given month was evaluated, rather than any

short-term episodic regional O3 increment increases.

An additional uncertainty is associated with the gridded

emissions inventory itself. The derivation of the inventory

requires accurate determination of emission factors and ac-

tivity rates for a large number of source activities (EEA,

2013). Previous studies show the uncertainty associated with

this process. For example, Koohkan et al. (2013) calculated

VOC emissions across Europe using inverse modelling by

data assimilation of measurements for 15 VOCs, and com-

parison with the EMEP inventory showed an underestima-

tion of emissions of some VOCs and an overestimation of

others. Hence, there is a requirement for improvement of

emissions inventory derivation. However, this analysis shows

that the future reporting of gridded VOC emissions in source

sectors more highly disaggregated than currently (e.g. NFR

codes) would also facilitate a more precise identification of

those VOC sources most important to mitigation strategies

and increase the accuracy in calculating emissions of indi-

vidual VOCs. For example, Derwent et al. (2007b) applied

the POCP concept to calculate the contribution of 248 VOC

source categories to regional O3 production using a pho-

tochemical trajectory model with a near-explicit chemical

mechanism which followed a “worst case” 5-day trajectory

bringing aged air masses from Europe to a location on the

England–Wales border. A UK-derived VOC emissions spe-

ciation was derived and applied to total gridded VOC emis-

sion estimates across north-west Europe. While the POCP

concept provides an effective means of comparison between

different source categories, source category POCPs were cal-

culated without accounting for the spatial variation in the

contribution of the different source categories to total VOC

emissions.

The work presented here highlights the constraints of rep-

resenting spatial variation of VOC emissions across Europe

with 11 highly aggregated SNAP sectors in terms of accu-

rately determining the suite of VOCs impacting atmospheric

composition at a site. This results from a fixed contribu-

tion of component activities to the aggregated SNAP sec-

tor emissions spatially and temporally (see Sect. 3.3.2), al-

though emissions from different SNAP sectors can vary inde-

pendently of one another. These constraints would be ampli-

fied with no disaggregation of gridded VOC emissions and a

constant contribution from component activities spatially and

temporally to total VOC emissions, i.e. emissions from each

aggregated SNAP sector do not vary independently from one

another. The effectiveness of the POCP concept in the de-

termination of the strongest O3-influencing VOC emission

sources, and hence the most cost effective mitigation strate-

gies, would be substantially improved by the reporting of

gridded emissions at NFR sector level. Finally, the future

measurement at supersites of VOCs which are distinct mark-

ers for source sectors (e.g. NFR codes) could be used to

quantify the contribution from different VOC source sectors.

4 Conclusions

A methodology has been demonstrated which links the im-

pact of regional O3 increment to VOC photochemical de-

pletion and spatially gridded anthropogenic VOC emissions.

The utility of this methodology, which integrates atmo-

spheric composition measurements (O3 and VOCs), mete-

orological data and gridded emissions inventory, was shown

through the derivation of policy-relevant conclusions using

measurement data at the two UK EMEP supersites (Harwell

and Auchencorth). The regional O3 increment at Harwell

in 2010–2012 was substantially larger than at Auchencorth,

but substantially smaller than in 1999–2001. Of the 27 mea-

sured anthropogenic VOCs, ethene and m+p-xylene con-

sistently contributed the most VOC photochemical depletion

during regional O3 production at Harwell and therefore re-

ductions in emissions of these VOCs would be most effective

in reducing regional O3 production. To reduce VOC diurnal

photochemical depletion further, reductions across a larger

number of the VOCs would be required. Of these, ethanol,

methanol and acetone appear to be the most important, and

measurement of these VOCs at the supersites would provide

data for targeting future emission reductions. Additionally,

more detailed speciated measurement of biogenic VOCs at

the supersite, highlighted previously by von Schneidemesser

et al. (2011), would also advance our understanding of the

relative contribution of anthropogenic vs. biogenic VOCs in

determining the regional O3 increment.

Estimates of the integrated anthropogenic VOC emissions

along back trajectories arriving at Harwell have decreased

substantially between 1999–2001 and 2010–2012, due to de-

creases in emissions from SNAP source sector 7 (road trans-
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port). Currently, SNAP sector 6 (solvent and product use)

provides most of the total VOC trajectory emissions esti-

mate. The disaggregation of highly aggregated SNAP trajec-

tory emission estimates to NFR codes, accounting for coun-

try variation in the NFR sector contribution to parent SNAP

sector, allowed the source sectors which determine the VOC

contribution to the regional O3 impact to be more precisely

defined, i.e. NFR sectors 3D2 (domestic solvent use), 3D3

(other product use) and 2D2 (food and drink), which were

the top three contributors to total VOC emissions exposure

at Harwell (2010–2012) during the month of maximum re-

gional O3 increment. It is concluded that considerable ad-

ditional benefits to the interpretation of measurement data,

to modelling of future O3 concentrations and hence to de-

termining policy for abatement of detrimental O3 impacts

would be gained from the availability of gridded VOC emis-

sions data reported in more narrowly defined source sectors

such as the NFR codes.
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