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Abstract. Impacts of storm chronology within a storm clus-

ter on beach/dune erosion are investigated by applying the

state-of-the-art numerical model XBeach to the Sefton coast,

northwest England. Six temporal storm clusters of different

storm chronologies were formulated using three storms ob-

served during the 2013/2014 winter. The storm power values

of these three events nearly halve from the first to second

event and from the second to third event. Cross-shore profile

evolution was simulated in response to the tide, surge and

wave forcing during these storms. The model was first cal-

ibrated against the available post-storm survey profiles. Cu-

mulative impacts of beach/dune erosion during each storm

cluster were simulated by using the post-storm profile of an

event as the pre-storm profile for each subsequent event. For

the largest event the water levels caused noticeable retreat of

the dune toe due to the high water elevation. For the other

events the greatest evolution occurs over the bar formations

(erosion) and within the corresponding troughs (deposition)

of the upper-beach profile. The sequence of events impacting

the size of this ridge–runnel feature is important as it conse-

quently changes the resilience of the system to the most ex-

treme event that causes dune retreat. The highest erosion dur-

ing each single storm event was always observed when that

storm initialised the storm cluster. The most severe storm al-

ways resulted in the most erosion during each cluster, no mat-

ter when it occurred within the chronology, although the ero-

sion volume due to this storm was reduced when it was not

the primary event. The greatest cumulative cluster erosion

occurred with increasing storm severity; however, the vari-

ability in cumulative cluster impact over a beach/dune cross

section due to storm chronology is minimal. Initial storm im-

pact can act to enhance or reduce the system resilience to

subsequent impact, but overall the cumulative impact is con-

trolled by the magnitude and number of the storms. This

model application provides inter-survey information about

morphological response to repeated storm impact. This will

inform local managers of the potential beach response and

dune vulnerability to variable storm configurations.

1 Introduction

Natural coastal systems not only provide protection to coastal

communities from flooding but also host both environmen-

tally and economically important areas (Hanley et al., 2014).

Foredunes are of importance to ecological habitats as well

as of aesthetical value. Such sedimentary systems are at risk

from naturally occurring coastal erosion and manmade in-

tervention. For example, in the 1960s–1970s tourist urbani-

sation and road construction led to major alteration and de-

struction of extensive sand dune systems across Spain. The

accelerated dune erosion was in response to interruptions

of the littoral drift by harbour developments and sand min-

ing for construction and agriculture, in addition to human

trampling, refuse dumping, recreational pressure and crop-

ping (Gómez-Pina et al., 2002). Across Europe, 25 % of sand

dunes were lost during the 20th century and up to 85 % of the

remainder may be threatened as a consequence of sea level
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rise and climate change (Hanley et al., 2014). In response

to accelerated erosion artificial beach nourishment schemes

have been widely implemented across Europe (Hanson et al.,

2002).

Coastal storms are recognised as one of the most important

driving agents responsible for the observed morphological

changes within beach/dune systems (Tătu et al., 2014). Such

systems can be viewed as adaptive through their beach/dune

response to changes in energy from the forcing conditions

(Hanley et al., 2014). It is therefore important to understand

how the cross-shore beach/dune profile responds under tem-

poral clusters in storm impacts to interpret the consequent

changes in resilience and in turn the vulnerability of the dune

system to repeat high energy shocks. To this end a case study

of Formby Point (in the northwest of England) is used to as-

sess sequences in storm impact on one of the largest dune

systems in the UK. At this location, approximately 13 m of

dune retreat was observed over the 2013/2014 winter period

by the National Trust, the responsible authority for the man-

agement of this site (NT, 2014). Such information is there-

fore of importance to enable researched-informed shoreline

management planning (Esteves et al., 2009).

The aim of this research is to investigate the cumulative

change in beach/dune volume in response to the variation in

the storm sequences to reduce the uncertainty in storm clus-

ter impact. The impact of storm clusters has been investi-

gated on a range of beaches by Ferreira (2005), Callaghan et

al. (2008), Vousdoukas et al. (2012a) and Coco et al. (2013).

Splinter et al. (2014) concluded that the cumulative clus-

ter impact is insensitive to the sequence of events. This case

study confirms these findings at this location but also as-

sesses the change in dune impact from a single extreme event

in response to a cluster of events evolving the ridge–runnel

system on the lower beach face. This case study allows as-

sessment of not only how a ridge–runnel system reduces

dune erosion but also how this feature responses to a se-

quence of events of variable wave power. Analysis of a cross-

sectional transect enables detailed analysis of how sediment

is redistributed across the beach/dune profile in response to

storms of varying strength. It is suggested that sediment lost

from the dune system enhances bar growth on the beach face,

forcing waves to break further offshore and preventing fur-

ther degradation of the dune system (Hanley et al., 2014).

Understanding the likely response of the beach/dune profile

to a sequence of storms is crucial for the development of ap-

propriate and sustainable strategies to manage coastal flood

and erosion risks.

2 Study area: Formby point

Formby Point is situated on the Sefton coast in Liverpool

Bay and is one of the largest coastal dune systems in the

UK (Fig. 1). Covering an area of 2100 ha, it extends 16 km

alongshore and 4 km inland with dune heights reaching ap-

proximately 30 m (Esteves et al., 2012). It supports a di-

verse range of habitats, including protected species such as

the red squirrel and natterjack toad within the dune system

(Edmondson, 2010). While vegetation (e.g. marram grass) is

present the dune frontage at the profile of interest is rela-

tively free from the influence of plant root stabilisation. Such

biotic factors can play an important role on the dune stabil-

ity increasing slope steepness (Armaroli et al., 2013). In this

region the nearshore is characterised by a series of symmet-

rical sand ridges which are separated from the dune complex

by a planer slope and are between 0.5 and 1.0 m high with

a wavelength between 150 and 500 m. These features are

formed due to the large tidal range and wave dominance in

shoreline evolution. Typically these features build up during

calm periods and flatten during storms (Plater and Grenville,

2008).

The largest waves within Liverpool Bay reach 5 m and the

coastal surges exceed 2 m (Brown et al., 2010). The mean

spring tidal range is approximately 8.2 m at Liverpool (lo-

cated at the southern extent of the Sefton coast; Esteves et

al., 2012) and, when coinciding with veering winds from SW

to W, gives rise to the most extreme combined wave and wa-

ter level conditions in Liverpool Bay (Brown et al., 2010).

The wind climate within this region and the convex coastline

geometry cause waves to focus on Formby Point, located at

the coastal apex, while the net onshore tidal transport of sed-

iment diverges into a net north and south littoral drift at this

point (Pye and Neal, 1994). Formby Point therefore experi-

ences a negative sediment supply, making it susceptible to

storm-driven erosion (Pye and Blott, 2008). Dune retreat of

up to 20 m has been observed along the Sefton coast and at

Formby Point. It is suggested that significant winter erosion

is caused when water levels exceed 4.87 m OD (9.8 m CD)

(Esteves et al., 2012).

Within this region, extensive coastal observations

(Howarth et al., 2006) and shoreline monitoring by Sefton

Metropolitan Borough Council (SMBC) has historically

been carried out. At present, shoreline monitoring by

SMBC of the coastal waves, circulation, beach profiles and

shoreline position continues alongside an offshore wave

rider buoy (WAV in Fig. 1), which forms part of the UK

WaveNet system (maintained by Centre for Environment,

Aquaculture and Fisheries Science – Cefas), that has been

operational since 2005 in Liverpool Bay. A long-term tide

gauge has also been maintained as part of the UK tide gauge

network at Gladstone Dock, Liverpool (TG in Fig. 1). Using

records of waves and water levels the recent storm cluster of

December 2013–February 2014 has been found to consist

of some of the most extreme conditions this coastline has

experienced (Wadey et al., 2015). We therefore use this

cluster of events to investigate how the chronology of wave

events, with different wave power, causes variability in

the system resilience to extreme events and the cumulative

erosive impact on Formby Point.
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Figure 1. Liverpool Bay with the locations of the studied Formby

Point transect P14, on the Sefton coast, and points of used obser-

vations; WAV (offshore wave characteristics), TG (Liverpool Glad-

stone Dock, nearshore tide) and WN (Hilbre wind station).

3 Storm chronology

The winter season 2013/2014 saw three events when the wa-

ter elevation was able to allow wave impact and soaking of

the dune toe, while there were seven extreme wave events

impacting the shoreface. Beach surveys nearly 1 year later (8

October 2014) have shown that the dunes at the studied cross

section have not fully recovered over an annual cycle. The

frontage is still setback by approximately 5 m from the pre-

storm state (surveyed 10 September 2013). The ridge–runnel

system has recovered, but sits slightly higher up the beach

face, although this position could be related to the tidal con-

ditions around the time of the surveys. This study uses three

storm events (D1, D2 and J2) from the storm cluster that oc-

curred from December 2013 to January 2014 to assess the

impact of variable storm sequences on the ridge–runnel fea-

ture within the beach profile that influences the resilience of

the beach/dune system at Formby Point. Such information

will then be used to inform the wider community of the pos-

sible erosive threats of storm sequences to natural dune de-

fence systems. The selected storms represent the first two that

occurred in December and the second event that occurred in

January. The extreme storm (D1, Fig. 2) is chosen due to the

combination of large waves combined with a total water level

that allows impact on the dune system, i.e. it exceeds the

mean high water spring tide level (4.47 m OD at Liverpool

tide gauge) which the dune toe is typically located just above.

This storm is the most extreme during the winter 2013/2014

period and causes approximately 4 m of dune retreat for the

considered profile. The other two (D2 and J2) events are cho-

sen to represent storms of different offshore wave severity

but with a clear linear relation between the event severity.

These events do not reach the dune toe, which typically has

a mean winter position of 5.07 m OD (Esteves et al., 2012),

but they do inundate the ridge–runnel feature. Selecting large

wave events that can be related in terms of power is impor-

tant to assess the morphological response of the ridge–runnel

system. Unlike the dune response, the flattening of this fea-

ture is dependent on storm activity rather than the total water

level. This allows the wave impact of different events on the

ridge–runnel system to be assessed to identify whether the

consequent morphological dune evolution in D1 is controlled

by the timing of relative events. The relation between the

wave power of all three events allows assessment of whether

the ridge–runnel response is proportional to wave power of

the number of repeated impacts. The first storm (D1 on 5

December) is the most powerful (266 m2 h−1). The second

storm (D2 on 24 December) is approximately half the power

(at 110 m2 h−1) of the first and the third storm (J2 on the

23 January) is approximately half the power (at 52 m2 h−1)

of the second (and a quarter of the power of the first). We

also calculate the offshore wave power for the full duration

of the event when the total water elevation exceeds 1 m ODN

(Ordnance Datum Newlyn), the approximate beach level at

the start of the first ridge on the upper-beach face (see later

Fig. 4) and 2 m ODN, the approximate elevation of the sec-

ond ridge feature. The wave power was found to still have a

similar ratio, decreasing by approximately a factor of 2 be-

tween each event.

Time variation of the wave height and water level within

these events are shown in Fig. 2 together with the storm

threshold wave height used to calculate the offshore storm

wave power. In the first event (D1), which persisted about 1

day, the peak storm wave height (4.6 m) coincides with high

water (6.2 m ODN) during spring tide and strong westerly

wind (note: wind characteristics are not shown here but are

presented by Wadey et al., 2015). The second storm (D2)

spanned about 19 h and occurred during the intermediate pe-

riod between spring and neap tide. There were two peaks

when this storm exceeded the wave threshold, with the wave

heights reaching 2.8 m during the second peak. In this storm,

the wind speed was higher at high water than at low wa-

ter. The high water elevations reached 4.2 and 3.9 m ODN.

The third storm (J2) lasted 8 hours and the peak storm wave

height was 2.9 m. A large part of the J2 storm coincided with

the high-water spring tide (3.5 m ODN). Wind speed during

this storm varied from 11 to 16 m s−1 whereas wind direction

was almost similar to that of the westerly wave direction.

Using the three storm events, six storm clusters of differ-

ent wave chronologies were simulated (Table 1) to investi-

gate their impacts on the cumulative beach/dune response of

Formby Point.
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Figure 2. The three selected storm events D1, D2 (in December 2013) and J2 (in January 2014) and their wave height and water level

variations together with the storm threshold wave height.

Table 1. Defined storm clusters using different storm wave

chronologies of the three storm events (D1, D2 and J2).

Storm cluster Storm chronology

1 D1, D2, J2

2 D1, J2, D2

3 D2, D1, J2

4 D2, J2, D1

5 J2, D1, D2

6 J2, D2, D1

4 Model set-up

The modelling system selected for this study is XBeach

(Roelvink et al., 2009), which is one of the latest devel-

oped off-the-shelf models and is being continually improved

by applications to different coastal environments worldwide

(e.g. in Italy, Harley and Ciavola, 2013; Poland, Bugajny et

al., 2013; Australia, Pender et al., 2014; the UK, Williams

et al., 2011). This model has been proven to be capable of

predicting storm impacts on morphodynamics of beach/dune

systems in numerous case studies (Dissanayake et al., 2014;

Souza et al., 2013; Harley and Ciavola, 2013; Splinter and

Palmsten, 2012; Harley et al., 2011; Williams et al., 2011;

McCall et al., 2010; Lindemer et al., 2010). The success of

these previous applications motivated us to use XBeach in

the present study, which aims to investigate the effects of

wave chronology in a storm cluster on modifying the lower

beach profile and therefore the impact of an extreme event

on the dune system at Formby Point. It is noted that a 1-D

approach was chosen to enable efficient computation time to

perform multiple simulations of varied storm sequences. A

1-D application also removes the complication of alongshore

transport in consequence to up-drift storm impact.

4.1 Model domain

We focus on a 1-D profile at the apex of the Sefton coast,

Formby Point (transect P14 in Fig. 1), which extends from

the upper dune crest across a routinely surveyed transect to

Figure 3. The pre-storm 1-D profile based on the observed data

from survey location P14 (see Fig. 1). Calibration was performed

over the transect length available from the post-storm survey.

the offshore wave rider buoy (Fig. 3). The chosen profile

could therefore be forced, initialised and calibrated by ob-

served conditions to reduce error. This beach cross section

is centred on Formby Point and is susceptible to maximum

wave impact, enabling assessment of storm-driven evolution

at the most vulnerable section of the Sefton beach/dune sys-

tem. This 1-D nearshore beach/dune profile (from the dune

crest to −2 m ODN depth) was defined by the surveyed

pre-storm profile (on the 10 September 2013) provided by

SMBC. The profile elevation from−2 to−8 m ODN was es-

timated using the historical profile data from SMBC. A con-

stant slope of 1 : 500 was then imposed from −8 to −20 m

ODN depth, based on the averaged offshore sea bed (used in

local modelling studies by Brown et al., 2010). This was in

order to extend the computational domain offshore to accu-

rately impose the offshore boundary conditions from points

of observation (Dissanayake et al., 2014). The offshore grid

resolution was 50 m while the minimum grid size in the

beach/dune region was about 1 m in order to accurately repre-

sent the bed topography. In this cross section, the dune toe is

located at around 4.8 m ODN (Pye and Blott, 2008). Survey

data collected on 9 December 2013 suggest that an erosion

of 4 m occurred at the dune frontage of this transect during

the D1 storm. A later survey, 8 October 2014, shows that the

dune frontage has still not recovered nearly 1 year later.
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4.2 Boundary forcings

Wave, wind and tidal forcings during each event are sepa-

rately applied to simulate the storms in the XBeach model.

The extension of the model profile offshore to a 20 m depth

enables us to set up the model such that it is forced with the

observed waves at the offshore boundary (WAV in Fig. 1).

Water levels at the offshore boundary are those recorded by a

nearby tide gauge data at Gladstone Dock in Liverpool (TG

in Fig. 1). This allows the tide, surge and any interaction to

be imposed. Any local surge generation across the 1-D do-

main is assumed to be minimal and the tidal conditions are

likely to be similar to those experienced at Formby Point.

The location of the tide gauge in sheltered deep water within

the Mersey estuary also means wave set-up in the observed

water level is likely to be minimal, allowing XBeach to simu-

late this at the more open location. Wind speed and direction

during each storm were extracted using the observed data at

WN (see Fig. 1). The combination of these wave, wind and

tidal characteristics provides the full model forcing for the

offshore boundary of the investigated transect (P14).

4.3 Model simulations

Initial model simulations were undertaken to calibrate the

model settings comparing the measured post-storm profile

on 9 December 2013 and that of the model prediction dur-

ing the D1 storm event. The calibrated model was then sepa-

rately used to obtain the cumulative morphological change

during the storm clusters defined in Table 1. The transect

assessed (see Fig. 4, cross-shore distance 75–400 m) corre-

sponds to the post-storm survey data that assessed the beach

elevation to the newly eroded dune frontage. In the second

series of simulations, the post-storm model predicted profile

of the previous storm was adopted as the initial bed topog-

raphy in the subsequent simulation to enable the cumulative

response of beach/dune evolution within a storm cluster to be

modelled.

5 Model results and discussion

5.1 Model calibration

The morphodynamic prediction of XBeach is sensitive to

a number of model parameters (Pender and Karunarathna,

2013; McCall et al., 2010; Lindemer et al., 2010). The sensi-

tivity to parameter settings is known to increase with stepper

beach slopes (Vousdoukas et al., 2012b). Since this system is

dissipative with a gentle slope, many of the default settings

are appropriate. Only two parameters, found to cause the

highest contribution to the modelled morphological changes

of beach/dune systems, are used in this calibration: (1) the

factor for time-averaged flows due to wave skewness (facSk)

and (2) the factor for time-averaged flows due to wave asym-

metry (facAs). The sediment transport rate in XBeach is es-

timated using a representative velocity, which is a function

of flow velocity and advection velocity from wave skew-

ness and wave asymmetry (Roelvink et al., 2009). By apply-

ing different values for the calibration factors, of skewness

(facSk) and asymmetry (facAs), the magnitude and direction

of net sediment transport, and in turn the morphodynamic

predictions, are changed. These coefficients generally vary

from 0 to 0.8 according to the boundary forcings and topo-

graphic conditions of the study area (McCall et al., 2010).

A series of simulations were undertaken by changing the

values of these two parameters systematically around the de-

fault settings. The optimised values for facSk and facAs were

selected by comparing the predicted post-storm profile with

that of the measured profile (Fig. 4) using two statistical pa-

rameters; the root-mean-square error (RMSE) and Brier skill

score (BSS, see Van Rijn et al., 2003). The lowest RMSE

(0.11) and the highest BSS (0.63) values were found using

0 for both facSk and facAs. The observed pre- and post-

storm profiles indicate that the ridge–runnel formations are

flattened during the storm event (D1). The measured post-

storm profile shape (which covers the beach face to the above

the dune toe at approximately 5.8 m ODN) is broadly repro-

duced by the model (see Fig. 4). This section represents the

upper-beach and lower-dune interface, we see that the mod-

elled profile is not flattened to quite the same extent as that

observed and the dune erosion is not quite as observed. How-

ever, the model is simulating the event in isolation so does not

account for dune soaking by the previous spring tides prior

to the storm. For the chosen events only during D1 (Fig. 2)

do water levels enable wave action to impact the dune face

(see maximum water elevations in Fig. 2, D1= 6.2 m ODN,

D2 = 4.2 m ODN, J2 = 3.5 m ODN). Following an extreme

event continued erosion will be limited until the system re-

covers to those events that consist of even higher water ele-

vations to allow the dune frontage to be reached while in a

retreated position. This study therefore focuses on the upper-

beach and lower-dune section from 0 to+6 m ODN, consist-

ing of the ridge–runnel system, where maximum evolution

occurs. This is to identify how a sequence of storms modifies

the beach profile, which in turn modifies the wave dissipation

prior to dune impact during the most extreme events. This en-

ables assessment of how weaker storms prior to an extreme

event could modify the systems resilience and how weaker

storms following an extreme event could still cause further

impact.

These calibrated coefficients were used in the subsequent

model runs to investigate the cumulative response of the

beach/dune system to the variable wave chronology within

the storm clusters.

5.2 Profile evolution from mean sea level (MSL)

contour to +6 m ODN

Here we compared the shape of profile evolution over the

upper-beach and lower-dune system from 75 to 400 m cross-

www.nat-hazards-earth-syst-sci.net/15/1533/2015/ Nat. Hazards Earth Syst. Sci., 15, 1533–1543, 2015
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Figure 4. Comparison of measured and modelled profile evolution across transect P14 (13.65–14.00 km in Fig. 3) using the optimised

calibration factors (facSk and facAs).

shore distance in Fig. 4 (i.e. from 0 m ODN, MSL, to +6 m

ODN) during each storm event within the defined storm clus-

ters (Fig. 5). The initial profile is plotted alongside the pro-

file after each event. We see there is a clear flattening of

the ridge–runnel system and a retreat of the dune frontage.

Slumping of the dune face causes a rise in elevation around

the dune toe (∼ 5 m ODN) and a setback at higher elevations

(> 5.8 m ODN) during the D1 event. In general for each clus-

ter the first two storms flatten the ridge–runnel system and

the third has minimal influence. The impact of the first storm

depends on its severity; all storms act to flatten the ridge–

runnel features. The second storm causes further flattening

of this feature, but the actual change experienced is less than

if the storm had impacted the undisturbed system. The third

storm has minimal impact. At the dune toe the only storm that

is able to cause slumping of the dune face and retreat is D1.

No matter what the sequence of events is, the water levels in

D2 and J2 prevent impact on the undisturbed dune profile or

the retreated dune profile if they follow D1. The change in

the ridge–runnel system and beach slope does not influence

the ability of these storms to impact the dune toe. However,

the morphological evolution due to these events does modify

the impact of D1 on the dune system by up to approximately

0.02 m (see later Fig. 6a). Generally the erosion is increased

when D1 follows J2 or D2 and J2 in any combination to-

gether, but it is reduced when it follows D2 alone. Under the

initial storm the flattening of the ridge–runnel system also

promotes accretion on the upper-beach face initialising the

start of two small bars on the landward side of the last trough

formation. These embryo bars are then eroded during the pre-

ceding storms. However, when D2 initialises the cluster the

embryo bars are slightly larger and increase the system re-

silience reducing the impact of D1 on the dunes. The bar for-

mation when J2 initialises the sequence is not large enough

to reduce the impact of D1, but when J2 follows D2 the em-

bryo bar is eroded, allowing D1 to have greater impact due

to the repeated flattening of the ridge–runnel system.

These results show the importance of the wave chronology

enabling weaker storms to modify the beach profile when

they are in close succession to other storms, which influ-

ences the system’s resilience to dune erosion. This is due to

Figure 5. Profile evolution within the selected profile segment

(from 75 to 400 m in Fig. 4) during each storm event within the

six formulated storm clusters.

the flattening of the ridge–runnel system reducing the wave

dissipation and also the redistribution of sediment from this

feature to form new features further up the profile. The larger

the proceeding event, the less impact weaker storms that fol-

low it have on the ridge–runnel system; however, when if the

weaker storms come first they modify the systems resilience

of the upper beach and dunes to later extreme events.

5.3 Bed level change during each storm event within

the storm clusters

Bed level changes during each storm event in the upper-

beach/dune area are compared within each storm clus-

ter (Fig. 6). The highest bed level changes within all storm

events correspond to the region of the ridge–runnel system

and the dune toe in the case of D1. The ridge crests at 230

and 290 m experienced erosion while accretion occurred in

the troughs located at 190 and 260 m cross-shore distance.

The dune frontage at 400 m experiences erosion under D1.

Nat. Hazards Earth Syst. Sci., 15, 1533–1543, 2015 www.nat-hazards-earth-syst-sci.net/15/1533/2015/
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The variable bed level change found for each storm event

within the clusters indicates that event evolution depends on

the wave chronology. Over the ridge–runnel system the mag-

nitude of the bed level change corresponds to the events po-

sition in the cluster. When it occurs first the evolution is

greatest and when it occurs last the evolution is smallest.

These results suggest that after two storms in close succes-

sion, no matter what the storm power, this ridge–runnel sys-

tem reaches a nearly stable (flattened) storm beach profile

and noticeable evolution in response to further storms occurs

only at the beach–dune interface if water levels allow. It is

seen that when a storm initiates the cluster two small bars

towards the landward side of the initial ridge–runnel system

are initiated (at ∼ 306–335 m cross-shore distance, Fig. 6),

but they become eroded on the second event.

At the dune, toe water elevation controls the storm im-

pact as the waves either can or cannot reach the dunes. The

variable response of D1, the only storm that can reach the

dune system, is in relation to reduction of the dissipation by

the ridge–runnel system and also the increase in bed level

landward of the initial ridge–runnel system as new bars try

to form further landward under the elevated water levels.

For D1, the erosion of the dune frontage is quite consistent,

demonstrating greater sensitivity to the water elevation than

the dissipative nature of the ridge–runnel system on the wave

conditions. The erosion is slightly increased when the ridge–

runnel system is flattened and decreased when a bar starts to

form under D2 at higher elevations on the beach (at ∼ 306–

335 m) when D2 precedes D1. Both D2 and J2 are unable

to cause erosion of the dune system no matter what the se-

quence of events are that modify the beach/dune profile. J2

weakens the system resilience through flattening of the ridge

and runnels. D2 increases the resilience due to the formation

of slightly larger embryo bars on the upper-beach face than

during J2; however, this resilience is lost if J2 follows D2 as

the upper embryo bars are eroded. Also if D2 follows J2 the

upper bars are not formed due to erosion of the initial system

reducing sediment supply.

The time average of the absolute bed level change due to

the three storm events run in sequence to form a cluster was

separately analysed across the upper-beach region (Fig. 7).

This represents the average effect of each storm sequence on

the overall bed level change at select cross-shore locations

representative of the ridge runnel features. The maximum

event-average change of the bed level due to the clusters over

the ridge–runnel system is about (0.12 m) half of that possi-

ble within a single storm event (0.25 m in Fig. 6). At the dune

frontage the maximum time-averaged erosion is (0.26 m) is

just less than a third of that possible within a single storm

event (0.77 m in Fig. 6). This shows that while the ridge–

runnel system evolution is influenced by approximately two

storms the dune toe evolution is dominated by the single ex-

treme event (D1).

Peak values in the averaged evolution (Fig. 7) correspond

to the crests and troughs of the ridge–runnel formations of

Figure 6. Bed level change from 75 to 400 m cross-shore dis-

tance during each storm event within each storm cluster. A posi-

tive change indicates accretion and negative is erosion. The erosion

in (a) at the dune frontage reaches −0.71, −0.71, −0.70, −0.73,

−0.77 and −0.72 m in the order of the legend; not shown to enable

a consistent and clear y axis scale.

the initial profile (see Fig. 5), which experienced relatively

large bed level change due to feature flattening compared

with other locations across the profile. The first peak repre-

sents (0.06 m) erosion occurring on the bar located at 140 m

cross-shore distance. The influence of all storm clusters is

fairly similar at this location. The second peak at 190 m cor-

responds to the trough at 190 m cross-shore distance and its

averaged bed change (0.12 m) is greater than that of the first

peak, indicating strong deposition of slumped sediment from

the bars at higher levels. The largest change at this location is

found in cluster 4 while the lowest is given by the cluster 6.

In both clusters, the most severe storm (D1) occurred at the

end. The third peak at 230 m cross-shore distance shows the

greatest erosional impact across the experienced at the bar

(at 230 m) due to sediment at the crest being redistributed

into the troughs either side. In this location, the largest aver-

age bed change is found under cluster 4 as well; whereas the

smallest change resulted under the cluster 1 (i.e. D1 occurred

initially). This is because D1 has the highest power, so once

it has impacted this feature the latter storms that have less

duration at this point in the profile due to lower water eleva-

tions and less power have less impact on the wider and lower

feature. Deposition occurred in the trough located at 260 m

cross-shore distance and is shown by the fourth peak. Clus-

ter 2 produced the largest averaged bed change indicating the

greatest deposition in this trough, while the lowest at this lo-

cation was found in cluster 6. In these two clusters, the D1

event occurred at the beginning and the end of the sequence.

The last peak at 290 m indicates erosion on the bar located

at the landward end. All storm clusters resulted in similar

averaged bed change at the fifth peak, implying a similar im-

pact of storm clusters on the bed at this bar’s location. This

suggests the infill was dominated by one event (D1) with the

most impact at the higher elevations, potentially accessing

sediment from further up the beach system.

The averaged bed change from 300 m landwards to the

dune area is dominated by the erosion of the dune frontage
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Figure 7. The time-averaged absolute bed level change from the

75 to 400 m cross-shore distance profile segment within each storm

cluster. Dark grey indicates erosion areas while light grey indicates

accretion. The grey area just landward of 325 m can accrete during

the first event during the formation of the embryo bars. The fifth

cluster just exceeds the y axis scale causing an average change of

0.256 m at the dune toe.

which causes slumping at lower levels of the dune face seen

as accretion (to ∼ 375 m). Interestingly, at ∼ 300 m the clus-

ters starting with J2 experience less erosion because the

ridge–runnel system is still present and dissipating energy.

The average impact on the dune frontage is typically higher

for clusters 4, 5 and 6, suggesting the initial weak storm (J2)

or initial combination of weaker storms (D2 and J2) reduces

the system resilience due to the flattening of the ridge–runnel

system prior to the impact of D1. There is no variability in

the time-averaged impact on the dune toe between cluster 1

and 2, a consequence of the impact of D1 not causing a mor-

phological change that enabled the later storms to reach the

dune toe, which might have been achieved if the upper-beach

elevation had dropped.

These results indicated that the average effect of the storm

chronology within a cluster on the bed level change slightly

varies with location along the profile. Also, no clear criterion

is found such that the timing of the most severe storm, either

at the start, middle or end, within a cluster influences the

peaks in average erosion or deposition over the ridge runnel

system. However, the time-averaged impact at the dune toe

is greater when D1 follows J2. This is due to the modified

impact of D1 rather than a combined impact of events.

5.4 Volume change during each storm event and

cluster event

Volume change per unit cross-shore length was estimated

during each storm event by multiplying the change in bed

elevation and the cross-shore distance of grid cells along the

selected profile segment from 75 to 400 m cross-shore length

(black bar in Fig. 8). The volume change in response to the

cluster of events was then found as the summation of the

three storms (white bar in Fig. 8). A negative value indicates

erosion and thus all storm events resulted in erosion over the

upper-beach face. The event with the highest storm power

(266 m2 h−1, D1) produced the highest erosion volume in

each cluster, while the lowest volume is given by the weak-

est event (52 m2 h−1, J2). The volume change during a storm

event within a cluster tends to vary according to the offshore

wave power, though it is not proportional to the wave power.

The volume change induced by D2 (110 m2 h−1) is similar

to that of D1 and the wave chronology seems to play an im-

portant role on the difference between these events. Com-

paring the volume change between D1, D2 and J2 when

each event occurs as the initial storm clearly shows that even

when the storms impact the same initial cross-shore profile

the variability in the cross-shore volume change is not di-

rectly proportional the variability in offshore wave power.

This will be a consequence of the coastal water elevations

during the wave events, modifying the positions where the

waves impact the shoreface. Also, smaller waves below the

storm threshold during the event will redistribute sediment

when the water elevations enable them to act on the beach.

The timing of the wave events and associated surge relative

to the tides is therefore important. We found the wave power

ratio remains similar when looking at different water level

thresholds over the ridge–runnel system; this suggests dura-

tion of activity above a water level threshold rather than wave

magnitude may be a more important factor.

When looking at each storm event in turn, the greatest

erosion volume associated with an event occurs when that

storm is the initial event within a storm cluster. However, D1

has the same impact when it follows J2, if J2 leads the se-

quence, as it does in isolation. This is due to J2 having the

least influence on the ridge–runnel system and no impact on

the dunes. The variation in volume change associated with

each event varies very little when the event is positioned dif-

ferently in the storm sequence; however, it is slightly reduced

when the event occurs later within the wave chronology. The

amount of volume change is also found to depend on the

storm wave severity of the preceding event. Increasing the

proceeding event severity leads to a reduced erosion amount

in the secondary event and decreasing the severity increases

the erosion within the secondary event (e.g. compared D1

in the clusters 3 and 5) and thus shows the impact of storm

wave sequence on the event-driven bed evolution. This result

is due to the features of the bed profile being flattened by a

variable amount, which then determines the continued evolu-

tion until the profile is flat. The cumulative volume changes,

due to the three storm events within the clusters, indicate

some variations due to wave chronology, though they are not

significantly large. The largest cumulative volume change

(−11.14 m3 m−1) is found in cluster 6, which has the storm

wave sequence of J2, D2 and D1. The second largest vol-

ume change (−11.13 m3 m−1) is caused by cluster 3 (D2, D1

and J2). The lowest erosion (−11.01 m3 m−1) resulted in the

cluster 4 (D2, J2 and D1). It is seen that the wave chronology

has little influence on the cumulative storm impact, that only

the largest storms reach the dunes and that after two storms

the ridge–runnel system is practically flattened. The fact that

the largest cumulative evolution occurs with increasing wave
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Figure 8. Comparison of the volume change from MSL to +6 m

ODN during each storm event and cluster. Grey bar at D1, D2 and

J2 indicates volume change within the respective storm and black

bar shows volume change within a cluster.

power is most likely due to the fact each successive storm

can increase the erosive impact of the previous events and

the system resilience is reduced after each event. The fact

that cluster 3 has a large impact shows the evolution is dom-

inated by the events D1 and D2. When the smallest event

follows these events, it has least impact because the ridge–

runnel system is flat and the storm cannot reach the dunes.

The minimal cumulative evolution occurs when the moder-

ate size storm impacts first, reducing the dissipative nature

of the ridge–runnel system. The weaker storm, J2, then fur-

ther flattens the ridge–runnel system and the main impact of

D1 is limited to the dune system.

6 Conclusions

Impacts of storm chronology in a storm cluster on

beach/dune erosion were investigated using a numerical

model applied to Formby Point at the apex of the Sefton coast

in the Liverpool Bay, UK. Three storm events that impact the

ridge–runnel system with storm power values 266, 110 and

52 m2 h−1 from the 2013/2014 winter storms were selected

and formulated into six storm clusters using different wave

chronologies. The most extreme of these events was able to

impact the dune system due to the water level. The mod-

elling approach used the XBeach coastal area model in a 1-D

mode to simulate cross-shore profile evolution to assess how

changes in the ridge–runnel system modify the dune impact

of the extreme event. Offshore boundary forcings (i.e. water

elevations and waves) were imposed using the observed data

during the storms. The model was first calibrated against the

available post-storm profiles. In each cluster, the predicted

post-storm profile of the previous event was used as the ini-

tial pre-storm bed elevation for the subsequent event. The

resulting evolution within the six clusters was analysed con-

sidering the upper-beach and lower-dune interface (from 0 to

+6 m ODN). Our analysis enhances the understanding of the

importance of storm chronology within a storm cluster on

beach/dune erosion at Formby Point and suggested the fol-

lowing conclusions.

– The most severe storm was used to calibrate the model.

Comparison of the predicted post-storm profile with that

of the measured profile resulted in an RMSE of 0.11 m

and a correlation coefficient of 0.63 indicating a high

storm model performance.

– Negligible variability in the cumulative impact of the

storm clusters occurred in response to different storm

wave chronologies. However, it was found that the

event-scale ridge–runnel and dune face profile changed

depending on the storm severity and the magnitude of

the change was modified by previous events.

– Impacts of the storm clusters on bed change for this

transect are mostly in relation to the flattening of the

ridge–runnel system and slumping of the dune frontage.

– The largest event-driven bed level change occurred un-

der the forcing of the most powerful storm event when it

initialised the cluster. While the lowest bed level change

occurred for the weakest event when it ended the cluster.

– The ridge–runnel system that exists on the upper-beach

face at Formby Point lasts for about two storms in close

succession, after which the upper beach becomes more

susceptible to erosion. If the initial storm is weak the

upper-beach face undergoes less evolution under later

larger events, but the dune frontage is typically more

susceptible to impact during later extreme events. Any

morphological impact that occurs due to storms soon

after is minimal as the beach forms have already been

flattened, further erosion of the beach and cross-shore

sediment exchange does not seem to occur. Continued

response may result when longshore transport is con-

sidered.

– The highest erosion during each storm event was ob-

served when that storm occurred as the initial event of a

storm cluster. Within each cluster the most severe storm

always resulted in the highest erosion and the weakest

storm produced the lowest erosion no matter of its posi-

tion within all clusters.

– In a storm cluster, the highest erosion on the beach/dune

system was found when the storms increased in sever-

ity. The cumulative change in the ridge–runnel system

is similar as it flattens so the change is likely to be re-

lated to a slight increase in erosion of the upper beach

and the dune system during the most extreme event.

– Although the first storms acted to flatten the ridge–

runnel system this had little influence on the volume

change of the full profile in the last event, although it

did influence the local change experienced close to the

dune toe for the weaker storms when they occurred later.
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– Interestingly for this case study, a reduction in maxi-

mum water elevation during each storm event is con-

sistent with a reduction in offshore storm wave power.

This suggests the fetch-limited conditions of the Irish

Sea and the orientation of this coast causes storms to

generate similarity in the severity of the water and wave

elevations that occur together.

– The storm events that were chosen to represent chang-

ing severity of impact on the lower beach features

demonstrate how dune impact is more sensitive to

events with high water levels than storm-driven changes

in the beach profile. The ridge–runnel system therefore

provides little increase in resilience for the dune system

even when it is fully formed.

These results provide preliminary insights on the impacts

of storm chronology within a storm cluster on the beach/dune

erosion of Formby Point (Sefton coast). These findings will

have important implications for the interpretation of the con-

tinued monitoring of the beach/dune erosion along the Sefton

coast and will be useful to implement sustainable dune man-

agement strategies. Further model studies are now required

to consider different profiles along the Sefton coast, storms

with high water elevations and area simulation to get a com-

prehensive understand on the effects of the storm chronology.

For other locations these results suggest that although wave

chronology is important, influencing the event-scale morpho-

logical change, the cumulative impact is independent of the

temporal sequencing.
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