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Abstract. Lake water quality is affected by local and regional drivers, including lake
physical characteristics, hydrology, landscape position, land cover, land use, geology, and
climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology
framework using a random forest algorithm on a national-scale, spatially explicit data set, the
United States Environmental Protection Agency’s 2007 National Lakes Assessment. For 1026
lakes, we tested the relative importance of water quality drivers across spatial scales, the
importance of hydrologic connectivity in mediating water quality drivers, and how the
importance of both spatial scale and connectivity differ across response variables for five
important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic
carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at
different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-
volume ratio) were important for explaining water quality (54–60% variance explained), and
that regionalization schemes were much less effective than lake specific metrics (28–39% variance
explained). Basin-scale land use and land cover explained between 45–62% of variance, and
forest cover and agricultural land uses were among the most important basin-scale predictors.
Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the
presence of upstream surface water features) mediated the effect of regional-scale drivers. For
example, for water quality in lakes with upstream lakes, regional classification schemes were
much less effective predictors than lake-specific variables, in contrast to lakes with no upstream
lakes or with no surface inflows. At the scale of the continental United States, conductivity was
explained by drivers operating at larger spatial scales than for other water quality responses. The
current regulatory practice of using regionalization schemes to guide water quality criteria could
be improved by consideration of lake-specific characteristics, which were the most important
predictors of water quality at the scale of the continental United States. The spatial extent and
high quality of contextual data available for this analysis makes this work an unprecedented
application of landscape limnology theory to water quality data. Further, the demonstrated
importance of lake morphology over other controls on water quality is relevant to both aquatic
scientists and managers.

Key words: catchment geology; conductivity; drainage density; hydrogeology; hydrologic connectivity;
land use; landscape limnology; morphology; National Lakes Assessment; nutrients; turbidity; water quality.

INTRODUCTION

The quality of freshwater is a critical indicator of the

state of the environment (USEPA 1994, Williamson et

al. 2009). Freshwater bodies cover only 2% of the land

surface of Earth (McDonald et al. 2013), but belong

among the most extensively and rapidly altered ecosys-
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tems on the planet (Carpenter et al. 2011). Freshwater is

also a critically important resource. Although limnolo-

gists traditionally focus on the study of in-lake processes

(Johnes 1999), there is now widespread understanding

that water quality drivers operate from local to

continental scales (Likens 1985, Wetzel 2001, Meador

and Goldstein 2003, Soranno et al. 2010). These drivers

include mean depth, residence time, catchment geology,

drainage density, land use, catchment topography, and

hydrogeology (Dillon and Kirchner 1975, Kirchner

1975, Duarte and Kalff 1989, Rasmussen et al. 1989,

Wolock et al. 1989, Dillon et al. 1991, Soranno et al.

1996, Griffith 2014). While the relationships between

single driver-response pairs are well-characterized in the

literature (e.g., Kirchner 1975), surprising and complex

cross-scale interactions have been observed, especially

when drivers acting on multiple scales are considered

(Soranno et al. 2014). For example, agricultural activity

within a watershed influences lake water quality, but this

relationship may be dependent on interactions with local

wetlands (Fergus et al. 2011) and lake depth (Nielsen et

al. 2012). Because multiple drivers interact across

multiple scales to affect lake water quality, simple

scaling from a small number of well-studied systems to

a collection of many lakes across the landscape may not

be adequate to represent large-scale aquatic ecosystem

processes. Instead, focusing on large-scale patterns and

processes while simultaneously including system-specific

mechanisms has been suggested (Heffernan et al. 2014).

In order to account for multi-scaled drivers, region-

alization schemes have been delineated to describe

variation in climate, atmospheric deposition, land use

and land cover, geology, and/or hydrology (Omernik

1987). Ecoregions have been used to partition water

quality at the national scale (Paulsen et al. 2008, USEPA

2009, Griffith 2014); however, an understanding of the

specific biogeochemical processes classified by ecore-

gions is lacking. Large-scale studies show that lake-

specific characteristics (e.g., depth), watershed-scale land

use and land cover, and surface and groundwater

connectivity are important for predicting water quality

(e.g., Kratz et al. 1997, Martin and Soranno 2006,

Wagner et al. 2007, Bremigan et al. 2008, Taranu and

Gregory-Eaves 2008, Nielsen et al. 2012, Zhang et al.

2012, Cheruvelil et al. 2013); these drivers can vary both

within and among ecoregions. To some extent, national

policy takes into account cross-scale interactions among

these multi-scaled drivers by using regional variation in

water quality to set nutrient criteria recommendations

(USEPA 2009). However, at the scale of the continental

United States, the relative importance and interactions

among lake-specific characteristics, and watershed- and

regional-scale drivers are unknown.

The United States Environmental Protection Agency

(EPA) completed the National Lakes Assessment

(NLA) in 2007 to assess water quality of lakes across

the continental United States (USEPA 2009). This data

set, which includes drivers operating from local to

regional spatial scales, offers a rare opportunity to test

the robustness and utility of the existing conceptual

framework of landscape limnology (the spatially explicit

study of aquatic ecosystems in their landscapes [Soranno

et al. 2010], hereafter referred to as the landscape

limnology framework; Fig. 1). We set out to address

three questions about broad-scale patterns and drivers

of lake water quality impairment for five key water

quality indicators, total phosphorus (TP), total nitrogen

(TN), dissolved organic carbon (DOC), turbidity, and

conductivity. First, what is the relative importance of

lake-specific, local, and regional controls on water

quality for lakes at the scale of the continental United

States? Second, how does hydrologic connectivity, a

classification of upstream surface water, mediate the

relationship between lake context (the anthropogenic,

terrestrial, atmospheric, and hydrologic settings) and

water quality? Third, how does the relative importance

of individual drivers vary across water quality respons-

es? In order to address these questions for .1000 lakes,

we faced analytical challenges arising from the volume

and complexity of the database, such as co-varying

driver data and non-linear water quality responses. To

account for these challenges, we used a random forest

algorithm to simultaneously contrast key lake water

quality drivers across the continental United States at

multiple spatial scales and to examine the effect of

hydrologic connectivity as a mediator of water quality.

METHODS

Using a macro-systems ecology approach (Heffernan

et al. 2014) and applying the conceptual landscape

limnology framework (Soranno et al. 2014), we sought

to explain the continental-scale patterns of water quality

in the United States using known water quality drivers

that range from lake-specific characteristics to coarse

regionalizations. We used the EPA NLA data set of lake

water quality and associated data (available online),14 in

addition to independently derived metrics for hydrology,

topography, and land use. TP, TN, DOC, turbidity, and

conductivity are metrics frequently used to indicate

freshwater impairment in the United States (USEPA

2009) and were selected as water quality responses for this

study. To address the challenges of non-linear response

variables and co-varying driver data, we applied a

random forest algorithm (Archer and Kimes 2008) to

identify the scale and relative importance of water quality

drivers for all NLA lakes and for subsets of lakes

aggregated by hydrologic connectivity type.

Landscape limnology is a framework within which the

interactions across spatial scales and between surround-

ing landscapes on lake ecosystem processes are defined

and studied (Fig. 1; Soranno et al. 2010). Two

dimensions of the conceptual framework are spatial

scale (local to regional) and landscape context (fresh-

14 http://water.epa.gov/type/lakes/NLA_data.cfm
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water, terrestrial, or human), both of which were useful

for structuring our modeling framework and hypothesis

testing. First, we tested alternative hypotheses about the

importance of the spatial scale for explaining water

quality; submodels containing drivers at the regional,

basin (watershed), buffer (200-m margin around lake

perimeter), and lake-specific scales were compared for

lakes across the continental United States (Fig. 1). The

four submodels, containing all of the drivers occurring

at any given spatial scale, were also compared against a

combined model that contained all drivers occurring at

all scales, in order to quantify the relative importance of

individual water quality drivers aggregated to specific

spatial scales. Because of the documented importance of

features specific to a lake (e.g., maximum depth, basin

shape, surface elevation, and latitude and longitude) for

water quality, we modified the landscape limnology

framework to explicitly include the lake-specific scale,

which more closely reflects our hypotheses and model

setup (Fig. 1) than the Soranno et al. (2010) model.

Lake-specific features are fixed, that is, independent of

characteristics external to the lake and generally cannot

be altered. We hypothesized that freshwater landscape

context, part of the second dimension of the Soranno et

al. (2010) landscape limnology framework, would

mediate the effects of terrestrial and anthropogenic

drivers on water quality. To test this, we classified lakes

by hydrologic connectivity, according to the presence of

upstream hydrologic surface features (described in

greater detail under Methods: Data: Lake hydrologic

connectivity classification), and grouped lakes by con-

nectivity type prior to modeling. In addition to scale-

specific models for the collection of all lakes, we

classified lakes by connectivity type and applied the

regional, basin, buffer, lake-specific, and combined

models to each type in order to identify interactions

between hydrology, scale, and individual drivers, which

could have important implications for lake connectivity

type response to stressors and allocation of management

resources. In this paper, we describe the data sets and

random forest model structure in greater detail.

Data

Lake sampling.—EPA NLA lakes were selected to

provide a representative sample of lakes .4 ha across

the continental United States using a spatially balanced

design to ensure an adequate random sample of lakes

(.100) in each of five size classes ranging from 4 to 250þ
ha (USEPA 2009). The NLA data set includes 132

reference (minimally disturbed) lakes, and each EPA

ecoregion represented in the NLA contains between six

and 30 reference lakes (USEPA 2009). Reference lakes

were identified in one of two ways, by identification of

minimally disturbed lakes existing within the area

nearby pre-selected NLA lakes based on chemical and

biological condition, or by identification by the prior

FIG. 1. Conceptual representation of landscape limnology, modified from Soranno et al. (2010). Columns represent freshwater,
geomorphologic or terrestrial, and anthropogenic drivers of water quality. The vertical gradient represents the spatial scale at which
drivers act on water quality. Variables shown here are not exhaustive, but represent documented drivers of water quality from the
literature. Gray boxes represent the model structure used in this paper to test the importance of scale in water quality across the
continental United States. Sed : vol refers to the epilimnetic sediment-to-volume ratio, which is described in detail in Methods: Lake
specific variables. A complete list of predictor variables in each model can be found in the Appendix.
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knowledge of local water quality experts (designated by

the EPA) for minimally disturbed systems within a

region and subsequent inclusion as an NLA reference

site (USEPA 2009). Because of the range of chemical

reference conditions defined for regions by the EPA

(USEPA 2009), reference lakes were chemically indis-

tinguishable from non-reference lakes across the entire

data set and were, thus, combined for all subsequent

analysis. Reference and non-reference lake data were

sampled using identical protocols across the entire

population of sample lakes between June and October

in 2007 (USEPA 2009). Ninety-five lakes in the original

data set were sampled multiple times during 2007, and

the values of all continuous variables were averaged

across visits for these lakes. A detailed description of the

EPA NLA project sample design is available online.15

Lake-specific variables.—Twelve variables were used to

characterize lake-specific features (Appendix). Ten vari-

ables were provided by or directly derived from the EPA

NLA data set (surface area, perimeter, maximum depth,

watershed area, ratio of watershed area to lake area,

shoreline development index, elevation, perimeter-to-area

ratio, latitude, and longitude). In addition, we estimated

the epilimnetic sediment-to-volume ratio, which is related

to the potential for chemical interaction and nutrient

exchange between the lake and the surrounding sediment,

using methods in Carpenter (1983) and NLA thermal

profile, maximum depth, and area data, and assuming a

conical lake basin (Carpenter 1983). Lake-specific esti-

mates of residence time, originally published by Mc-

Donald et al. (2013), were also used.

Land use and land cover.—The EPA NLA data set

includes land use and land cover data for a 200-m buffer

around each lake and within the entire watershed. Mean

percent land use and land cover is characterized for 21

land cover types at the buffer and basin scales, yielding

42 predictor variables (Appendix). Percent cover values

were derived from the 2006 National Land Cover

Database (NLCD; available online).16

Geographic lake information.—In order to overlay

additional spatial data sets (topography, road data, and

impervious surfaces) with EPA NLA lakes at a scale that

was consistent with the buffer-scale land use and land

cover variables in the original EPA NLA data set, we

followed four steps. We created shapefiles with the

coordinates of each lake centroid; used centroids to

extract lake polygons from the National Hydrography

Dataset (NHD; available online);17 created a set of 200-

m buffers around these lake polygons; and obtained a

shapefile of lake watersheds from the EPA. All spatial

analyses were conducted in R (R Core Team 2014) using

the sp, maptools, rgdal, raster, and rgeos packages

(Hijmans and van Etten 2010, Bivand and Lewin-Koh

2011, Bivand and Rundel 2013, Bivand et al. 2013,

2014).

Road metrics.—We generated three metrics of road

development (road density, road proximity, and the

mean percentage of land area covered by impervious

surfaces) using the methods of Pechenick et al. (2014)

and data from the U.S. Census Bureau 2012 TIGER/

Line road maps (available online)18 (2006 NLCD).

Regionalizations.—To represent subcontinental re-

gional environmental drivers, we used two ecoregion

classifications as categorical variables, the Omernik

Level II and EPA Aggregate Level III Nutrient

Ecoregion classifications. The Omernik Level II scheme

subdivides North America into 50 regions distinguished

by enduring components, such as vegetation, soils, and

climate. Of these 50 regions, 16 contained EPA NLA

lakes. Omernik Level II designations were derived by

overlaying maps of land use, regional topography, soils,

surficial geology, climate, and resource usage (Omernik
1987). The EPA classification scheme is designed

specifically to identify regions that face similar threats

(e.g., point sources of atmospheric deposition or

regional agricultural practices) associated with impaired

water quality (USEPA 2009).

Lake hydrologic connectivity classification.—We clas-

sified EPA NLA lakes by hydrological connectivity of

upstream hydrologic surface features (Fig. 2). Lakes

were grouped into three classes: headwater and isolated

(HW/ISO) lakes with no surface inflows (n¼ 211 lakes),

stream drainage (SD) lakes with upstream stream

features but no large upstream lakes (n ¼ 464 lakes),

and lake drainage (LD) lakes with both inflowing

streams and upstream lakes greater than 10 ha (n ¼
351 lakes). We derived these classifications by overlaying

lake polygons with NHD flowline data in ArcGIS 10.1

using the Cross Scale Interaction (CSI) Limnology
Toolbox (Smith et al. 2014). Thirty-two of 1058 lakes

in the EPA NLA data set could not be classified using

our methods and were excluded from all analyses,

resulting in a total sample size of 1026 lakes.

Data availability.—The underlying data used for the

analysis are openly accessible online.19

Model description

We applied a random forest algorithm, a machine-

learning technique based on regression tree analysis

(Cutler et al. 2007), to the EPA NLA data set to address

our research questions. Random forest techniques

overcome the limitations of generalized linear models

and of standard regression tree analysis (Karels et al.

2004) by generating hundreds of trees based on

bootstrap samples drawn from the original data set

(Cutler et al. 2007). Each tree is produced using a
random subset of predictor variables and sample points.

15 http://water.epa.gov
16 http://www.mrlc.gov/nlcd06_data.php
17 http://nhd.usgs.gov

18 ftp://ftp2.census.gov/geo/tiger/TIGER2012/ROADS/
19 https://portal.lternet.edu/nis/mapbrowse?scope¼knb-

lter-ntl&identifier¼10000&revision¼1
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Tree accuracy is determined by validating predictions

against the sample points that were withheld when a

given tree was generated. The mean squared error

(MSE) is calculated for each tree by comparing its

predictions for the withheld (e.g. out-of-bag) data set

with observed values in order to generate an estimate of

the percent of variance in the response variable that

could be explained by the tree. These values are

averaged over the entire forest of regression trees to

produce a cross-validated estimate of model-averaged fit

(Liaw and Wiener 2002, Archer and Kimes 2008).

Model structure

To address questions about the relative importance of

drivers across spatial scales, the interaction of hydro-

logic connectivity with primary water quality drivers,

and how water quality responses contrast across the

continental United States, we grouped drivers by spatial

scale (Fig. 1; Appendix) and classified lakes by

hydrologic connectivity type. We subsequently applied

the scale-specific (regional, basin, buffer, and lake-

specific) and combined (all scales) random forest models

for each response variable for all lakes, and for subsets

of lakes grouped by connectivity type. We conducted all

random forest modeling using the randomForest pack-

age in R (Liaw and Wiener 2002).

Assessing predictor variable importance

The comparison of predictor variable importance

complemented our multi-model comparisons by decom-

posing the influence of scale-specific water quality

drivers (e.g., basin-scale land use and land cover) into

specific components (e.g., percent forest cover vs.

percent wetlands). Model-averaged predictor variable

importance estimates were generated using out-of-bag

data (Archer and Kimes 2008) and can be interpreted

heuristically in much the same way that Akaike weights

are used, when results are averaged across multiple

generalized linear models (Burnham and Anderson

2002). Here, to calculate variable importance for a

single tree, out-of-bag values for a given variable were

randomly permuted, and the tree MSE was then

estimated using both the original and the permuted

out-of-bag data set. The resulting percent increase in

MSE (IMSE) reflects the predictive power of that

variable compared to random chance. Because IMSE

cannot be compared across response variables, we used

a relative IMSE metric (quotient of IMSE and highest

IMSE observed for the corresponding response variable)

in order to compare the importance of the highest-

ranking predictor variables across responses.

Because they are generated stochastically, model-

averaged variable importance values can vary slightly

between model runs, which may complicate the interpre-

FIG. 2. U.S. Environmental Protection Agency (EPA) National Lake Assessment (NLA) site locations for 2007. Spatial
distribution of lakes included in the EPA NLA 2007 data set (n¼ 1026 lakes) is shown, with lakes categorized by connectivity type
calculated using the National Hydrography Dataset (http://nhd.usgs.gov) lake and flow line layers to identify upstream surface
water features. Headwater lakes (HW; n¼ 98 lakes; orange asterisk) have an outlet, but no inlet. Isolated lakes (ISO; n¼ 113 lakes;
purple triangle) are isolated. Stream drainage lakes (SD; n¼ 464 lakes; blue circle) have stream inlets but no upstream lakes greater
than 10 ha. Lake drainage lakes (LD; n¼ 351 lakes; green cross) have stream inlets connected to upstream lakes greater than 10 ha.
Stream and lake drainage lakes may or may not have outlets.
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tation of model output. However, if the top-ranked

variables in a random forest result have substantially

higher importance values than all others, their position

should remain unchanged from run to run. In this

analysis, we identified the top five predictor variables

from the combinedmodels for each response variable, and

compared importance values for each of these predictors

across all responses. Our goal was to identify variables

that could consistently predict multiple aspects of water

quality and to identify which of the five response variables

were sensitive to similar drivers and spatial scales.

Ecological differences across water quality responses,

partial dependence plots, and effect size

After identifying the most important predictor vari-

ables according to variable importance, we characterized

the magnitude and direction of relationships between

response and predictor variables by generating partial

dependence plots for all of the variables with a top-five

ranking in one or more of our combined (all predictors

at all spatial scales) models. Partial dependence plots can

be used to identify non-linear relationships between

predictors and the response variable, as well as threshold

predictor values (Carlisle et al. 2009).

To determine the ecological relevance of predictor

variables with high variable importance rankings, we

derived an estimate of effect size from partial depen-

dence plots by dividing the y-axis range of each partial

dependence plot by the difference between the first and

third quartiles of the response variable in our data set.

Effect size values are comparable across drivers and

responses, show the average magnitude of functional

responses to specific predictor variables, and, therefore,

complement the information provided by variable

importance measures, which describes the influence of

predictor variables on a model’s predictive power.

RESULTS

Combined random forest models containing all predic-

tor variables at all spatial scales explained between 61–

66% of variance in response variables (Table 1). Sub-

models were constructed to test the predictive ability of

drivers by spatial extent; regional, basin, buffer, and lake-

specific scale predictor variables explained from 28%
(turbidity predicted by regional variables) to 62% (con-

ductivity predicted by buffer-scale variables) of response

variance. The submodel including only lake-specific

features explained the most variance for most response

variables (54–60%, with the exception of conductivity).

Basin-scale submodels generally outperformed the 200-m

buffer scale models, while the regional submodel had the

least predictive ability (28–39%, variance explained).

At the national scale, regional classification schemes

alone explained a lower percent of variance than the

TABLE 1. Percentage variance explained by combined random forest models (all predictors at all
scales) and by scale-specific submodels (regional, basin, buffer, and lake-specific scale) for water
quality response variables (log-transformed): conductivity (cond), total phosphorus (TP),
dissolved organic carbon (DOC), total nitrogen (TN), and turbidity (turb).

Lake type log(turb) log(TP) log(TN) log(DOC) log(cond)

All lakes, n ¼ 1026 lakes

Combined 0.61 0.63 0.65 0.63 0.66
Regional 0.28 0.31 0.34 0.33 0.39
Basin 0.45 0.50 0.55 0.53 0.62
Buffer 0.41 0.46 0.51 0.49 0.56
Lake-specific 0.54 0.56 0.60 0.60 0.60

HW/ISO, n ¼ 211 lakes

Combined 0.53 0.57 0.70 0.64 0.60
Regional 0.23 0.34 0.43 0.40 0.45
Basin 0.39 0.48 0.63 0.56 0.56
Buffer 0.46 0.49 0.62 0.53 0.57
Lake-specific 0.51 0.52 0.68 0.61 0.52

SD, n ¼ 464 lakes

Combined 0.60 0.64 0.62 0.55 0.62
Regional 0.35 0.39 0.37 0.37 0.41
Basin 0.46 0.53 0.52 0.48 0.59
Buffer 0.42 0.45 0.46 0.41 0.52
Lake-specific 0.53 0.57 0.51 0.51 0.50

LD, n ¼ 351 lakes

Combined 0.55 0.54 0.56 0.56 0.61
Regional 0.07 0.08 0.14 0.12 0.23
Basin 0.35 0.36 0.46 0.47 0.58
Buffer 0.34 0.31 0.41 0.43 0.51
Lake-specific 0.49 0.47 0.49 0.46 0.46

Notes: The data set was further categorized and modeled by lake connectivity type (headwater
and isolated [HW/ISO], stream drainage [SD], or lake drainage [LD]) using combined and scale-
specific submodels. Bold values indicate the submodel with the highest explanatory power for each
water quality variable.
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other spatial submodels for the selected water quality

metrics. Spatial patterns of mean water quality concen-

trations were similar across response variables, despite

correlations of varying strength between responses,

ranging from 0.05 for conductivity–turbidity to 0.70

for DOC–TN (Table 2). Water quality concentrations

tended to be highest in Omernik Level II Ecoregions 9.2,

9.3, and 9.4 (temperate, west-central, and south-central

semi-arid prairie regions; Fig. 3). Omernik Level II

Ecoregions 5.2, 5.3, 6.2, and 7.1 (mixed wood shield,

Atlantic highlands, western cordillera, and marine west

coast forest) generally had the lowest concentrations of

response variables. Omernik Level II Ecoregions alone

explained 25–32% variance in water quality responses.

Although strong spatial patterns existed across all

responses, deviations from broad scale patterns for

some response variables were evident. Conductivity was

elevated in the southwest ecoregions, unlike nutrients,

DOC, or turbidity. Turbidity was elevated throughout

the entire mid-longitude continental US, in contrast to

other variables that had strong latitudinal gradients.

For each response variable, we ranked the predictive

power of random forest driver variables by IMSE and

used a relative IMSE metric to compare across water

quality responses (Fig. 4). The relative importance of the

top predictor variables for conductivity differed from

the top predictors for TP, TN, and DOC. Regional,

basin, and buffer predictors (Omernik Level II Eco-

regions, percent forest cover at the basin and buffer

scale, and percent coniferous forest cover in the buffer)

were most important for explaining variance in conduc-

tivity. For TP, TN, DOC, and turbidity, lake-specific

features (maximum depth and sediment-to-volume

ratio) and Omernik Level II ecoregionizations were

most important for model predictive ability.

The mean responses of water quality variables over

the range of predictor variables showed that the

directionality and shape of the relationships between

predictors and responses were similar for response

variables across water quality drivers, particularly for

land use and land cover predictors at the basin- and

buffer-scales (Fig. 4). Conductivity had more complex

responses across the top predictors than TN, TP, DOC,

and turbidity. Turbidity and TP responses to latitude

and longitude differed in directionality and/or shape

from TN, DOC and conductivity. Basin, buffer, and

morphologic lake-specific variables typically had mono-

tonic responses, while regionalizations, latitude, longi-

tude, and elevation had more complex responses (Fig.

4).

For effect size, TP, TN, DOC, and turbidity had

generally similar trends by response variable, in which

maximum depth and sediment-to-volume ratio had the

highest effect sizes, followed by Omernik Level II

Ecoregions and percent forest in the basin. The

magnitude of effect sizes observed for the top predictor

variables ranged from 0.02 to 0.45. The highest effect

sizes observed corresponded to lake-specific variables

and percent forest in the basin (Fig. 4).

Prediction by lake connectivity type

By hydrologic connectivity type (HW/ISO, LD, or

SD), submodels for regional, basin, buffer, and lake-

specific scales behaved similarly to the model composed

of the entire EPA NLA data set (Table 1). The lake-

specific submodel tended to explain the most variance

across connectivity types, followed by basin, buffer, and

regional submodels. Generally, basin-scale submodels

explained slightly more variance than 200-m buffer-scale

submodels.

Distinct functional responses of water quality metrics

to scale-specific controls were evident across lake

connectivity classes (Table 1). Combined model perfor-

mance was highest for SD lakes, followed by HW/ISO

lakes, and LD lakes. For all lake connectivity classes, the

lake-specific submodel explained almost as much vari-

ance as the combined model. Basin-scale submodels

explained slightly more variance than buffer scale

models, with some exceptions, such as turbidity and

conductivity in HW/ISO lakes, turbidity in SD lakes,

and DOC in LD lakes (Table 1). In contrast to SD and

HW/ISO lakes, the regional submodel for LD lakes

explained much less variance for water quality responses

(,12%), except for conductivity (23% variance ex-

plained). Among the water quality responses, conduc-

tivity had unique trends across lake types and

submodels; scale-specific submodels and the combined

model had generally high predictive ability for this

variable. Total N and DOC had similarly high variance

explained for HW/ISO lakes (70% and 64%, respective-

ly), and at all scales including the regional scale (43%
and 40%, respectively). In contrast, TP and turbidity

had lower overall predictive ability at all scales for HW/

ISO lakes (Table 1).

DISCUSSION

Despite limited replication of lake water quality

sampling (.90% of NLA sites were sampled only once),

our predictive classification modeling using landscape-

level contextual information derived from publicly

available data sets explained a high percent of variance

(up to 70%) for lakes across the continental US.

Morphological lake-specific metrics were most impor-

tant at the continental scale, and regionalization

TABLE 2. Pearson correlation coefficients for the water quality
response variables turbidity (turb), total phosphorus (TP),
total nitrogen (TN), dissolved organic carbon (DOC), and
conductivity (cond).

Variable Turb TP TN DOC Cond

Turb 1.00
TP 0.44 1.00
TN 0.54 0.58 1.00
DOC 0.26 0.44 0.70 1.00
Cond 0.05 0.39 0.40 0.52 1.00
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schemes were much less effective than lake-specific

metrics for predicting water quality. However, the

relationships between water quality drivers and respons-

es were complex, and we observed interactions between

response and hydrological connectivity type. The

analysis of multi-scaled, interacting drivers to under-

stand broad-scale patterns and processes (a macro-

systems approach [Heffernan et al. 2014]) was essential

for describing the controls on lake water quality at the

scale of the continental United States.

Importance of scale

The drivers that best predicted water quality across

the continental United States operate at the local, lake-

specific scale. Depth and epilimnetic sediment-to-vol-

ume-ratio, basic physical features of lakes that represent

internal cycling and retention of nutrients, were highly

effective for predicting lake nutrient status (Table 1; Fig.

4), yet are among the most difficult lake features to

estimate remotely (Hollister et al. 2011, Sobek et al.

2011). Residence time, a documented lake-specific

control on lake nutrient status (Vollenweider 1976,

Cheng et al. 2009), was not an important predictor of

any water quality variables. The lack of predictive

ability of residence time in this study could reflect error

in residence time estimates, or that residence time was

relatively less important than depth and other internal

processes such as sedimentation. Consideration of the

relationship between lake-specific drivers and water

chemistry is important for setting water quality stan-

dards, because lake-specific characteristics (except

depth) are generally not altered by humans.

In comparison to lake-specific variables, coarse

regionalization schemes were relatively ineffective for

describing water quality across the continental United

States, but regional model performance was dependent

on hydrologic connectivity and response variable.

Regionalization schemes explained very little variability

in water chemistry for LD lakes (Table 1), indicating

that regional-scale drivers interact with hydrologic

connectivity and regionalization schemes are not appro-

priate for defining water quality standards in some cases.

Additionally, the distribution of lake connectivity types

is uneven across ecoregions for the NLA lakes (Fig. 2),

so explanatory power of the all-lakes regional model

may reflect regional differences in connectivity type.

Hydrologic connectivity mediates the relationship be-

tween lake context and water quality in some cases

(particularly for LD lakes), and may also control

ecosystem processing. In a recent study of EPA NLA

lakes, an unexpected decoupling between in-lake DOC

concentration and CO2 flux observed for some eco-

regions was attributed to potential differences in carbon

processing due to hydrologic connectivity type (McDon-

ald et al. 2013). Although the underlying mechanism for

these relationships is unclear (Cheruvelil et al. 2013), we

performed a post hoc analysis of the spatial variability

of important predictors identified by this study (e.g.,

lake morphometry and land use and land cover) and

found significant variation across ecoregions. Addition-

ally, climate (air temperature norms and annual

precipitation) and atmospheric deposition varied re-

gionally, and could likely drive water quality trends at

the ecoregional scale (data not shown). Further analysis

of association of ecoregions with specific mechanisms

and processes was beyond the scope of this study, but

has the potential to greatly increase the usefulness of

regionalizations for management purposes.

Influence of hydrologic connectivity

Connectivity type can be an important mediator of

surrounding land use (Bremigan et al. 2008, Zhang et al.

2012). We found that the most important scales of

control of water quality drivers differed according to

lake connectivity type. For example, when all lakes (n¼
1026 lakes) were modeled, lake-specific drivers appeared

to be important for explaining water quality across all

responses. In contrast, modeling by hydrologic connec-

tivity type revealed that basin drivers were always more

important than lake-specific drivers for conductivity.

Lake hydrologic connectivity is an important mediator

of the relationship between lake context and water

quality (Fraterrigo and Downing 2008, Abell et al.

2011). Streams act as integrators of the watershed,

responding to changes in the landscape and transporting

nutrients and material to receiving water bodies (Likens

et al. 1970, Williamson et al. 2008). Hydrologic

connectivity also revealed important differences in the

predictive ability of submodels; in general, LD lake

water quality was the most difficult to predict for most

models. Lakes are areas of intense biogeochemical

processing and the presence of an upstream lake can

alter nutrient flows to downstream systems (Zhang et al.

2012), which may obscure the relationship between the

terrestrial context and water quality. SD lakes have

water chemistry that more closely reflects the landscape,

and water quality in hydrologically connected lakes is

easier to predict than in disconnected lakes (Nielsen et

al. 2012). Additionally, modeling this subset of lakes by

hydrologic connectivity type improved model perfor-

mance in many instances; for example, many submodels

for HW/ISO lakes performed better than the same

submodels for all lakes, indicating that in these lakes, the

biogeochemical processing is fundamentally different

than in lakes that are hydrologically connected to the

terrestrial landscape.

Response-specific model performance

When lakes were grouped by hydrologic connectivity

class and modeled independently, three functional

response groups emerged, conductivity, TP and turbid-

ity, and TN and DOC. Conductivity responded to a

different set of drivers than other response variables and

tended to be controlled by drivers that operate at large

spatial scales rather than lake-specific metrics; the

regional model always performed best for conductivity
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FIG. 3. Variance in water quality explained by Omernik Level II Ecoregions (numbered on the map) was spatially
heterogeneous (left), and underlying distributions had similarities across response variables (right). Boxplots show median and
interquartile range for total phosphorus (TP; mg/L), total nitrogen (TN; mg/L), dissolved organic carbon (DOC; mg/L), turbidity
(turb; nephelometric turbidity units, NTU), and conductivity (cond; mS/cm at 258C). Whiskers represent the lowest value ,1.5
times the interquartile range away from the bottom of the box and the highest value .1.5 times the interquartile range away from
the top. Dots above or below whiskers are outliers. Percentage variance (var.) explained by the random forest model is shown inset
in right-hand panels. Regional patterns in mean water quality concentrations are similar across response variables and tend to be
highest in Omernik Level II Ecoregions 9.2, 9.3, and 9.4 and lowest in Omernik Level II regions 5.2, 5.3, 6.2, and 7.1.
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relative to other responses (Table 1), and variables at the

buffer- and basin-scale outperformed lake-specific var-

iables (Fig. 4). This suggests that, at the continental

scale, documented local drivers of conductivity (e.g.,

variation in road density; Jackson and Jobbagy 2005)

are masked by drivers that operate at regional scales

(e.g., atmospheric deposition and surficial geology).

Although metrics of road density and proximity were

not significant drivers of ionic concentrations at the

national scale, increases in road salt application have

significant regional (Kaushal et al. 2005) and long-term

(Kelly et al. 2008) effects on water quality. Compared to

nutrients, conductivity has different sources and delivery

mechanisms to the lake, as well as processing within the

lake, and so should be treated as a unique water quality

parameter. For example, some common ions, such as

magnesium and sodium, that contribute to conductivity

in lakes are conservative (Wetzel 2001) and in-lake

processes that affect cycling of nutrients (biological

uptake and mineralization) are less important in driving

ionic concentration.

Differences between TN and DOC, and TP and

turbidity emerged with connectivity type. TN and DOC

were better predicted than TP and turbidity for HW/

ISO, but not for SD and LD lakes (Table 1). Nitrogen

and phosphorus have similar anthropogenic sources, but

fundamental differences in chemical properties and

natural sources of the material provide support for

FIG. 4. Relative percentage increase in mean squared error (IMSE; right), and effect size and mean response sparkline (left) for
top water quality predictor variables for the EPA NLA water quality data set (n ¼ 1026 lakes; see footnote 14 in text). IMSE is
calculated as the difference between the predictive power of the model with the predictor as it was observed and the average
predictive power of the model when the values of the predictor variable are randomly permuted in the data set. Relative IMSE is the
quotient of the IMSE and the highest IMSE observed for a given response. The top five predictors (highest IMSE) for each
response were chosen, which resulted in 12 unique variables shown in rows. Sparklines represent the mean response (y-axis) over
the range of the predictor (x-axis), after accounting for all other predictors. Effect size (inset with sparklines) was calculated as the
ratio of the interquartile range of the response variable to the range of the predictor observed in the lake data sets, shown as the x-
axis range inset as sparklines in the partial plots. Sed : vol refers to the epilimnetic sediment-to-volume ratio, which is described in
detail in Methods: Lake specific variables. Elevation SD is elevation standard deviation.
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treating these as distinct functional response groups.

Phosphate interacts strongly with inorganic suspended

particulates, such as natural clay particulates (Froelich

1988), and because turbidity is comprised of inorganic

particulates with strong phosphate sorption capacity, we

expected that TP and turbidity would have similar

behavior in the environment. Additionally, these vari-

ables are further connected, because, once in the lake,

phosphorus, as a limiting nutrient to primary produc-

tivity, promotes turbidity. Likewise, dissolved organic

nitrogen (DON) is the dominant terrestrial form and is

directly associated with pools of DOC (Neff et al. 2003).

Nitrogen and carbon have gaseous and particulate

atmospheric sources, unlike phosphorus, which has no

significant gaseous atmospheric sources and relatively

minor particulate sources (Mahowald et al. 2008).

Because HW/ISO lakes lack significant surface hydro-

logic inflows, groundwater is likely the dominant source

of TN and DOC, as well as TP and turbidity, but is

more likely to transport dissolved material. Additional-

ly, TN and DOC availability on the landscape is easier

to predict than phosphorus. Total N and DOC are

controlled by biome-scale vegetation patterns (Aitken-

head and McDowell 2000), and high organic matter

content in the watershed has high potential for both

DOC and DON transport (Neff et al. 2003). In contrast,

phosphorus has geologic sources controlled by weath-

ering patterns. Therefore, the difference between model

performances in HW/ISO lakes is likely due to both a

lack of accounting for geologic phosphorus sources and

the hydrologic disconnect between land and water for

phosphorus in HW/ISO lakes.

CONCLUSION

Freshwater quality, an important indicator of overall

environmental integrity, is influenced by the surround-

ing landscape and stressors related to large-scale change

in the environment. Our research contributes both

ecological and methodological insights for the manage-

ment of freshwater resources. Specifically, including

lake-specific characteristics in large-scale water quality

modeling and management considerations is important,

as these highly localized drivers were often the best

predictors of water quality across the continental United

States. We demonstrated the utility of a landscape

limnology conceptual model by quantifying predictive

power of variables across spatial scales, considering

hydrologic, terrestrial, and anthropogenic influences

across the landscape mosaic (sensu Soranno et al.

2010). Further, within this conceptual framework, the

random forest algorithm is a powerful and useful

modeling tool for predictive classification of lake water

quality and assessment of individual variable’s contri-

bution to predictive power. The volume of contextual

data included here is computationally intensive to

manage and analyze, but allows novel application of

the random forest algorithm to lake water quality

research. The random forest algorithm is robust against

multicollinearity, non-normal distributions of predictor

variables, and model over-fitting, and we consider the

application of these methods a contribution to others

wishing to conduct similar analyses.

Direct extrapolation of the findings presented here to

lakes outside of this data set is limited by the stratified

random sampling design applied by the EPA (random

sampling of lakes across size classes). However, because

the lakes included in the EPA NLA cover wide gradients

in area and geographical location, these findings are

informative to lake science and management. The

research connects local, basin-scale, and regional drivers

to water quality observations at an unprecedented

national scale to provide managers with new tools to

identify the most effective scales at which to target their

attention and resources, including estimates of the

potential effects of specific management strategies. Scale

is particularly important when management is being

done at the individual lake scale. Lake-specific drivers of

water quality and lake hydrologic connectivity type are

nearly impossible to control, whereas the terrestrial

landscape in the buffer zone of lakes is the easiest to

manage. Even limited data on lake-specific characteris-

tics may help managers distribute their resources more

efficiently by identifying lakes that are likely to have low

water quality regardless of their landscape context.

Because the influence of scale depends on both response

variable and connectivity type, it is important to

consider both the target (response) and hydrologic

context before making management decisions. Current-

ly, ecoregions are used to inform nutrient criteria

recommendations (Section 304[a] Clean Water Act, 68

FR 557).20 Further research on the mechanisms

operating at the coarse ecoregional scale (e.g., the

interactions between regional-scale drivers, such as

climate or atmospheric deposition, with known water

quality controls), could enhance understanding of

regional-scale water quality patterns and processes,

and potentially protect or remediate water quality in

the future.

ACKNOWLEDGMENTS

We offer special thanks to Pat Soranno, Emily Stanley,
Shannon LaDeau, Jon Cole, and Clara Funk for valuable input
on the results and interpretation. We are grateful to Cory
McDonald and co-authors for the use of residence time data for
the NLA lakes and to Corinna Gries for making the data
publically accessible. This synthesis was supported by National
Science Foundation Macrosystems Biology Awards # 1137353
and 1137327.

LITERATURE CITED

Abell, J. M., D. Ozkundakci, D. P. Hamilton, and S. D. Miller.
2011. Relationships between land use and nitrogen and
phosphorus in New Zealand lakes. Marine and Freshwater
Research 62:162–175.

20 http://www.gpo.gov/fdsys/granule/FR-2003-01-06/03-
176

June 2015 953LAKE-SPECIFIC DRIVERS OF WATER QUALITY



Aitkenhead, J. A., and W. H. McDowell. 2000. Soil C:N ratio
as a predictor of annual riverine DOC flux at local and global
scales. Global Biogeochemical Cycles 14:127–138.

Archer, K. J., and R. V. Kimes. 2008. Empirical characteriza-
tion of random forest variable importance measures.
Computational Statistics and Data Analysis 52:2249–2260.

Bivand, R., T. Keitt, and B. Rowlingson. 2014. gdal: Bindings
for the geospatial data abstraction Library. R package
version 0.8-16.

Bivand, R., and N. Lewin-Koh. 2011. maptools: Tools for
reading and handling spatial objects. R package version 0.8-
27.

Bivand, R., and C. Rundel. 2013. rgeos: Interface to Geometry
Engine - Open Source (GEOS). R package version 0.3-2.

Bivand, R. S., E. J. Pebesma, V. Gómez-Rubio, R. Gentleman,
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