Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models
Prosdocimi, I.; Kjeldsen, T.R.; Miller, J.D. ORCID: https://orcid.org/0000-0002-7705-8898. 2015 Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models. Water Resources Research, 51 (6). 4244-4262. https://doi.org/10.1002/2015WR017065
Before downloading, please read NORA policies.
|
Text
N511118JA.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (2MB) | Preview |
Abstract/Summary
This study investigates whether long-term changes in observed series of high flows can be attributed to changes in land use via nonstationary flood-frequency analyses. A point process characterization of threshold exceedances is used, which allows for direct inclusion of covariates in the model; as well as a nonstationary model for block maxima series. In particular, changes in annual, winter, and summer block maxima and peaks over threshold extracted from gauged instantaneous flows records in two hydrologically similar catchments located in proximity to one another in northern England are investigated. The study catchment is characterized by large increases in urbanization levels in recent decades, while the paired control catchment has remained undeveloped during the study period (1970–2010). To avoid the potential confounding effect of natural variability, a covariate which summarizes key climatological properties is included in the flood-frequency model. A significant effect of the increasing urbanization levels on high flows is detected, in particular in the summer season. Point process models appear to be superior to block maxima models in their ability to detect the effect of the increase in urbanization levels on high flows.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1002/2015WR017065 |
UKCEH and CEH Sections/Science Areas: | Reynard |
ISSN: | 0043-1397 |
Additional Information. Not used in RCUK Gateway to Research.: | Open Access paper - full text available via Official URL link. |
Additional Keywords: | flood-frequency analysis, nonstationarity, urban cover, change attribution |
NORA Subject Terms: | Hydrology |
Date made live: | 24 Jun 2015 09:51 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/511118 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year